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Abstract
Advanced machine learning models have become widely adopted in various domains due to their
exceptional performance. However, their complexity often renders them difficult to interpret, which
can be a significant limitation in high-stakes decision-making scenarios where explainability is crucial.
In this study we propose eXplainable Random Forest (XRF), an extension of the Random Forest model
that takes into consideration, crucially, during training, explainability constraints stemming from the
users’ view of the problem and its feature space. While numerous methods have been suggested for
explaining machine learning models, these methods often are suitable for use only after the model
has been trained. Furthermore, the explanations provided by these methods may include features that
are not human-understandable, which in turn may hinder the user’s comprehension of the model’s
reasoning. Our proposed method addresses these two limitations. We apply our proposed method to six
public benchmark datasets in a systematic way and demonstrate that XRF models manage to balance the
trade-off between the models’ performance and the users’ explainability constraints.
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1. Introduction

In recent years Artificial Intelligence (AI) has been widely adopted in many domains and aspects
of lives [1], including healthcare [2], finance [3], games [4], and other complex cognitive tasks.
This wide adoption can be attributed to improved performance of AI models, which has been
made possible by increasingly complex, and therefore also increasingly difficult to explain,
models [5, 6]. However, the goal of these AI models is often to aid or make decisions for humans,
thus giving cause for concern, especially in domains with potentially severe individual or
societal consequences. For example, the use of Machine Learning (ML) algorithms in healthcare
to predict a medical outcome or a patient’s diagnosis [7, 8, 9] may raise concerns regarding their
reliability, trustworthiness, and ethics [10, 11], especially in terms of the patients’ characteristics
these models rely on.

These concerns have spurred public debates, which in turn gave rise to legislation (e.g., [12,
13, 14]) and high-volume research in the domain of eXplainable Artificial Intelligence (XAI) [15].
While many XAI approaches have been proposed, they are predominantly post-hoc. That is,
they only deem the ML model explainable or not, after it is set (i.e., done training). If the ML
model is deemed not explainable, there is often no known course of action to rectify it. One
could try, for example, other ML models, modify hyper-parameters, or modify the training data,
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but none of these options is guided by any form of explainability. As such, these solutions could
result in no more, if not less, explainable ML models. A few exceptions to this rule include
data-type-specific (often unstructured data, such as images or text) methods for Deep Neural
Networks (DNNs) [16] and Teaching Explanations for Decisions (TED) [17].

In this work we propose eXplainable Random Forest (XRF), a method for incorporating a
form of user-defined explainability into the training stage of Random Forest (RF) models. The
user-defined explainability in the current context is a global Feature Preference (FP) vector,
which is provided as input to the model by the user. The preference is dependent on the user and
can be based on, for example, human-understandability, political correctness, or actionability
of the features. The proposed method can be viewed as a user-driven "soft" feature selection
where, unlike traditional feature selection methods, all the features remain available for the ML
model to use.

The objective of the proposed method is to foster a sound trade-off between the performance
of the ML model and its explainability, as defined by the adherence of the model’s Feature
Importance (FI) values to the user-defined FP vector. Thus, we employed a systematic method
that challenges RF’s FI values. Our testing method encouraged the ML model to use 𝑘 features
with the lowest FI values and discouraged the use of 𝑘 features with the greatest FI values. The
rest of the features were treated with neutral preference. The generality of this method allowed
us to test its applicability using multiple benchmark datasets in a way that is neither dataset-
nor domain-specific. It is our belief that other studies could benefit from this type of systematic
testing in the future.

Our results demonstrate that our method manages to balance the trade-off between the
performance and explainability of the ML model. For example, if a feature does not hold great
predictive power, a strong user-defined preference will not inflate its importance in the model at
any cost to the model’s performance. Alternatively, a high-importance feature with a negative
user-defined preference can be substituted by another feature or a set of features, even if the
model’s performance is negatively impacted.

The main contributions of the current work are as follows:

1. We introduce XRF, an extension of RF that balances performance and user-defined ex-
plainability during training.

2. We propose an "eXplainability Score", a metric to quantify explainability and demonstrate
on six benchmark datasets XRF’s ability to balance the trade-off between the model’s
performance and its explainability, as measured by this metric.

3. We present a novel testing scheme to empirically evaluate the trade-off between perfor-
mance and explainability in the absence of a human agent.

2. Background

2.1. eXplainable Artificial Intelligence

XAI refers to the ability to understand and interpret the decision-making process involving an AI
model. It serves multiple purposes [18, 15], one of which is increasing trust and accountability in
AI-based (thus also ML-based) systems. This is especially imperative in high-stakes applications



with potentially severe individual or societal consequences (e.g., judicial, health-related, or
financial decisions).

Some ML models are interpretable [18, 15], that is, their inner workings are inherently
human-understandable (e.g., Decision Trees (DTs)). These models are often very simple and
do not perform well on real-world complex tasks. Conversely, ML models that perform well
on real-world tasks are usually complex and not interpretable. XAI methods can be used to
make non-interpretable models explainable. Explainable ML models are models whose inner
workings are not human-understandable, but can be explained using proxies (e.g., FI of surrogate
interpretable models [19, 20]).

XAI methods for ML models can be categorized into local, global, and hybrid methods. Local
explanation methods, such as Local Interpretable Model-Agnostic Explanations (LIME) [19]
or SHapley Additive exPlanations (SHAP) [20], provide an explanation for a specific model
prediction. These methods usually provide an explanation in the form of a list. This list can
indicate, for example, the respective contribution of each of the features to the particular
prediction or alternative values that would result in a different prediction (i.e., counterfactual
explanation). In contrast, global XAI methods explain a ML model over the entire input space,
as captured by the training data. Hybrid methods explain a ML model over sub-samples of the
input space. In this paper we focus on adjusting the global explanation provided by XRF models
to accommodate the user’s FP.

2.2. Genetic Algorithms

Genetic Algorithms (GAs) [21, 22] are a family of gradient-free optimization algorithms inspired
by the mechanics of natural selection and genetics. They are known for solving a variety of
optimization and search problems [23, 24, 25, 26]. GAs encode the solution space of a problem
as a set of individuals (i.e., a population) and then repeatedly apply genetic operators such
as selection, crossover (recombination), and mutation in order to make the individuals (i.e.,
solutions) evolve with the end goal of finding a sufficient solution to the problem.

3. Related Work

Our work is another step in the ongoing quest to make AI more transparent and human-
understandable. Some of the earliest XAI techniques include LIME [19] and SHAP [20]. These
techniques are model-agnostic and propose feature-attribution-based explanations to a ML
model using a surrogate ML model. While LIME uses a linear surrogate model, SHAP makes use
of Shapley values [27], borrowed from the field of cooperative game theory. More recent papers
introduced Bayesian aspects to these techniques [28, 29]. For example, the Local Interpretation-
Driven Abstract Bayesian Network (LINDA-BN) method proposed using a Probabilistic Graphical
Model to provide a local explanation. That said, these methods are applied post-hoc and,
therefore, do not incorporate consideration of explainability in the training phase.

Several approaches have been proposed to improve a ML model’s explainability during its
training. One approach is to use the TED [17] framework, which predicts both a label and an
explanation from a predefined set of explanations. This is done using a multi-label classifier,
trained to predict the original label coupled with the explanation. TED is model-agnostic and



can be applied to every model capable of performing multi-label classification, but it suffers
from the following limitations: (1) the training set must include both labels and explanations,
(2) no new explanations outside the predefined set can be "learned" from the data, and (3) there
is nothing to prevent a predicted explanation from contradicting features in the explained data
point.

An example of a model-specific approach [30] proposed a framework that trains an AdaBoost
ensemble while enforcing the fairness of the model. In this approach the samples’ weights, used
for training each weak learner, are chosen while considering SHAP values. In each iteration, a
surrogate model is fitted in addition to a weak learner and the SHAP values from the surrogate
model are used together with the weak learner’s error rate to update the training samples’
weights. Another model-specific approach [31] comes from the domain of data privacy. In this
field of study some of the dataset features are considered more sensitive and are encouraged to be
used less, in order to protect against Membership Inference attacks [32]. This approach extends
the DT’s training process: in each feature split, a predefined weight is considered in addition to
the entropy score. This training process yields a DT whose FI values are aligned with the privacy
requirements that were defined by the user. Although this approach is meant for enforcing
privacy requirements, it can also be used to improve a DT’s explainability. However, the user
has no way of balancing model performance against privacy requirements or explainability.

Finally, it is worth noting that there is a large body of work that focuses on DNNs [16, 33, 34].
In this work, however, we focus on DT ensemble models.

4. Explainable Random Forest

In this part of the paper we present our proposed model, the XRF. XRF is an adaptation of the
RF model, which allows the user to influence the model’s dependency on specific features in the
training data. More accurately, given a FP vector, 𝐹𝑃 ∈ R𝑁 , the model is adjusted to use all the
𝑁 features in the training data, while attempting to assign weights to features in accordance
with 𝐹𝑃 .

Training an XRF model consists of two steps: (1) constructing the DTs (the FP vector does
not affect this step) and (2) optimizing the Objective Function (OF) (equation 2) with respect to
the FP vector. In the following subsections we will describe each of these steps.

4.1. Constructing the Decision Trees

As previously mentioned, XRF is an extension of RF. The RF model employs a bagging method,
which means that each DT in the RF is constructed independently. During inference, all the
DTs are used in a voting scheme to get a final prediction from the ensemble. In RF, each DT is
given an equal weight and the prediction for a data point 𝑥 is computed as follows:

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐∈𝐶

{
𝑘∑︁

𝑖=1

𝑤𝑖 · 𝑡𝑖(𝑐|𝑥)} = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐∈𝐶

{1
𝑘
·

𝑘∑︁
𝑖=1

𝑡𝑖(𝑐|𝑥)} (1)

Where 𝐶 is the set of possible classes, 𝑦 is the predicted class, 𝑘 is the number of DTs in the RF,
𝑡𝑖 is the 𝑖𝑡ℎ DT, and 𝑤𝑖 is its weight. Notice that RF assumes that

∑︀𝑘
𝑖=1𝑤𝑖 = 1 and gives each



DT an equal vote. Therefore, in plain RF, 𝑤𝑖 =
1
𝑘 for all 1 ≤ 𝑖 ≤ 𝑘 ∈ N.

4.2. Optimization Process

In this step the user-defined FP vector is used to influence the model’s use of the features.
During the optimization process the weights of the DTs, 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑘 ∈ N, are modified
such that the FI values of the XRF adhere to the specifications in the FP vector as much as
possible.

We optimize an OF that balances between the model’s performance and a similarity measure
between the model’s FI values and the input FP vector. We refer to this similarity measure as
"eXplainability Score" (XS) and denote it by 𝑋𝑆. Formally, we define the OF of the XRF as
follows:

𝑂𝐹 (𝑋𝑅𝐹,𝐹𝑃 ) = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑋𝑅𝐹 ) + 𝛼 ·𝑋𝑆(𝐹𝐼, 𝐹𝑃 ) (2)

Where 𝛼 is a hyper-parameter controlling the similarity metric’s weight during the optimization
process and 𝐹𝐼 is a vector of the FI values of the XRF model.

It is worth noting that the representation of the FP vector should match the choice of XS. For
example: if XS cannot handle negative values or 0, then the FP vector should hold only positive
values; and if XS expects probability distributions, then the values in the FP vector should sum
up to 1.

Taking into consideration the FI values makes the OF a parametric non-differentiable function
and, therefore, our method must use a gradient-free optimization algorithm, such as the GA used
in our implementation [35]. The GA searches for the weights of the DTs, 𝒲 = [𝑤1, . . . , 𝑤𝑘], to
maximize the value of the OF over a validation set. Formally, this can be written as:

max
𝒲

𝑂𝐹 (𝑋𝑅𝐹,𝐹𝑃 ) (3)

To ensure that
∑︀𝑘

𝑖=1𝑤𝑖 = 1, which is a requirement in plain RF, a normalization strategy is
used in our proposed method. This normalization is applied each time the GA calculates the OF,
as well as when the final weights for the DTs are returned by the optimization process.

5. Experimental Setting

Our evaluation consisted of compering the performance and the explainability of XRFs for
different 𝛼 values, using plain RFs as baselines. We performed the evaluation on six publicly
available benchmark datasets of varying sizes (see Table 1) and domains: Yeast 1 [36], Adult
Income 2 [37], German Credit 3 [38], Nursery 4 [39], Iris 5 [40], and Breast Cancer 6 [41]. Due

1https://archive.ics.uci.edu/ml/datasets/yeast
2http://archive.ics.uci.edu/ml/datasets/Adult
3http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit
+data)

4https://archive.ics.uci.edu/ml/datasets/nursery
5https://archive.ics.uci.edu/ml/datasets/iris
6https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin
+diagnostic



Dataset #Samples #Features #Labels
Yeast 1,299 8 4*
Adult Income 32,561 12 2
German Credit 1,000 20 2
Nursery 12,960 8 3*
Iris 150 4 3
Breast Cancer 569 30 2

Table 1
Description of the datasets used in the XRF evaluation. Due to the scarcity of some of the labels, we
used only the most common labels for the German Credit and the Nursery datasets.

Dataset #Trees Max
Depth

Max
Samples #Gens. Mating

Prob.
Mutation
Prob.

Yeast 40 5 0.4 20 0.5 0.7
Adult

Income
70 6 0.6 30 0.5 0.7

German
Credit

70 6 0.8 120 0.5 0.4

Nursery 30 6 0.8 100 0.5 0.7
Iris 10 2 0.2 10 0.1 0.1

Breast
Cancer

40 3 0.6 20 0.5 0.4

Table 2
Values of hyper-parameters per dataset based on grid searches. The number of DTs (#Trees), max depth,
and max samples (per tree) were searched on RFs. Their results were set and the number of generations
(#Gens), mating probability and mutation probability (prob.) were then searched on XRF with 𝛼 = 0.0.

to the scarcity of some of the labels in the German Credit and Nursery datasets, we used only
their top four 7 and top three 8 labels, respectively. These datasets are popular, also in related
work [42, 31, 43, 44]. Additionally, the sizes of their feature spaces allow us to study, as well as
comprehensively visualize, the method’s performance (e.g., the change in feature attribution as
a function of performance-vs-explainability trade-off).

The XRF relies on the user to specify a FP vector. However, datasets with user-defined FP
vectors, as well as expected explanations, are not readily available. Moreover, human preferences
and feedback are subjective and could vary greatly, possibly adding complexity that would
detract from the methodological focus of the current work. Therefore, we chose to not involve
humans in the evaluation. In the absence of human involvement in the evaluation process, we
developed an automated testing procedure to challenge the XRF’s ability to affect the FI values.
Inverting the FI values of a trained model can be a complicated task, since often the signal
supporting the model prediction is embedded within the features with the greatest FI values.
Thus, to test the effect of XRF’s OF, we employed the following testing scheme:

1. We trained a RF model on a dataset 𝒟
2. We extracted the FI values of 𝒟’s features for that RF
3. Finally, we set the FP vector such that the 𝑘 top-importance and 𝑘 bottom-importance

7CYT, NUC, MIT, and ME3
8not_recom, priority, and spec_prior



features are penalized and rewarded, respectively. The rest of the features were assigned
neutral preference (default). We used 𝑘 = 1 if |𝒟| ≤ 5 and 𝑘 = 2 if |𝒟| > 5, where |𝒟|
is the number of features in 𝒟.

For XS we used the cosine similarity measure:

𝑋𝑆 (𝐹𝐼, 𝐹𝑃 ) =
𝐹𝐼 · 𝐹𝑃

‖𝐹𝐼‖·‖𝐹𝑃‖
(4)

As the performance of XRF is bounded between 0 and 1 (for both accuracy and 𝐹1 score), it
is more convenient if XS is bounded too (as is the case with cosine similarity: −1 < 𝑋𝑆 < 1)
for ease of choice of the hyper-parameter 𝛼 (see equation 2). As previously mentioned, the
representation of the FP vector should match the choice of XS. For simplicity, we considered FP
values, 𝐹𝑃 𝑖 ∈ R, such that (1) 𝐹𝑃 𝑖 > 0 indicates that the 𝑖𝑡ℎ feature should be preferred by
the model, (2) 𝐹𝑃 𝑖 < 0 indicates that the model should avoid it as much as possible, and (3)
𝐹𝑃 𝑖 = 0 indicates that the model may use it as needed (default; neutral preference).

For example: let 𝒟 be a dataset with four features (|𝒟| = 4). Then for a RF model on 𝒟
with FI values of [0.15, 0.3, 0.2, 0.35], the first and last features are the least (0.15) and most
(0.35) important features in the RF, respectively. Thus, for the computation of XS in the XRF’s
optimization process, the FP vector would be set to: [1, 0, 0,−1].

For the optimization step, we employed in our implementation a simple version of the GA
from the DEAP framework 9. We used CxOnePoint crossover operator, a tournament selection,
and an additive Gaussian noise as a mutation operator. We chose softmax to normalize the
weights:

𝑤̂𝑖 =
𝑒𝑤𝑖∑︀𝑘
𝑗=1 𝑒

𝑤𝑗
(5)

We performed in addition an ablation study, examining the effect of a different normalization
strategy and a different XS.

In all of our experiments we performed a grid search over the hyper-parameters of the plain
RF and the GA (searched per dataset 10). To reduce complexity, we split the grid search into two
steps: (1) RF-related features (i.e., number of trees ∈ [10, 20, ..., 120], max depth ∈ [1, 2, ..., 7],
and max samples ∈ [0.2, 0.4, ..., 1]) were first searched using a plain RF and then (2) fixing
these values, the GA-related features (i.e., number of generations ∈ [10, 20, ..., 120], mating
probability ∈ [0.1, 0.3, 0.5], and mutation probability ∈ [0.1, 0.4, 0.7]) were searched using an
XRF with 𝛼 = 0. This split also ensures that XRF results could be fairly compared to RF results.
Table 2 summarizes the results of these grid searches. We then used these hyper-parameters to
evaluate three XRF models for three different values of 𝛼, the hyper-parameter controlling the
XS’s weight in the XRF’s OF. To measure the prediction performance of the model, we used
the 𝐹1 score and accuracy metrics, while to measure the adherence to the FP vector, we used
the XS. Notice that performance-wise, the model was trained in respect to its accuracy. We ran
these experiments ten times per dataset, using a different random seed in each run.

9https://deap.readthedocs.io/en/master/
10random seed = 42
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Figure 1: Performance comparison of models with different 𝛼 vealues, per dataset.

6. Evaluation

In this section we present the results of our evaluations. The XRF optimization process balances
between the task performance (e.g., accuracy or 𝐹1 score) and the XS based on the choice
of 𝛼. Therefore, we started out by testing how 𝛼 affects the XRF model’s performance and
explainability. To this end we computed three metrics for the resulting XRF model: (1) accuracy,
(2) 𝐹1 score, and (3) XS. We performed this evaluation on six public benchmark datasets (see
Table 1) for three different 𝛼 values (0.5, 1.0, and 2.0; see Figure 1).

The classification performance metrics (i.e., accuracy and 𝐹1) were compared to a baseline
model: a plain RF classifier that was trained using comparable configuration (number of trees,
max depth, and max samples) as the respective XRF models (see RF in Figure 1). Our results
demonstrate that for most of the datasets the classification performance metrics decreased
gradually, compered to the respective baselines models, as 𝛼 increased. Intriguingly, for high-
dimensional datasets, such as the Breast Cancer and German Credit datasets, this decrease
was less pronounced. This can be attributed to the optimization process employed in the XRF
algorithm, which is responsible for increasing the similarity between the FI values and FP
vector. As the number of features in the dataset increases, the space of possible solutions widens,
allowing for the discovery of solutions that strike a better balance between explainability and
performance (i.e., reduce the performance less). Conversely, as desired, for most of the datasets
XS gradually increased as 𝛼 increased. For some datasets (e.g., Nursery) we observed an increase
in the performance metrics of the XRF model with 𝛼 = 0.5, as compared to the baseline RF
model. This might be attributed to the optimization step in XRF, which searches for weights to
be assigned to the DTs in the ensemble such that the OF (equation 2) is maximal, as for 𝛼 < 1
the OF assigns greater importance to the performance term than to the XS term.

To further evaluate the effects of the OF on the FI values, we plotted, per dataset, the FI value
of each feature as a function of 𝛼 (Figure 2). Solid blue and magenta lines in the plots indicate
features that were set (in the FP vectors) to be rewarded and penalized, respectively. In some
datasets (e.g., Iris and Nursery) we saw a clear exchange in the FI values between penalized
and rewarded features, while in others (e.g., Adult Income) we saw a clear exchange between
penalized and neutral features. Finally, we observed in some datasets (e.g., Adult Income and
Yeast) that the FI values of rewarded features remained fairly unchanged, suggesting that they
were not found sufficiently useful by the model. Overall, these results lend support to our
claim that the XRF’s optimization process indeed shifts the FI values of rewarded and penalized



0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

Yeast
POX
ERL
MIT
ALM
MCG
GVH
VAC
NUC

0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

Adult Income
Country
Race
Capital Gain
Relationship
Age
Workclass
Education-Num
Marital Status
Occupation
Sex
Capital Loss
Hours per week

0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

German Credit
num_people_liable
num_credits_at_bank
savings_account_bonds
checking_account_status
duration_months
credit_history
purpose
credit_amount
present_employment_seniority
installment_rate_percent_disp_income
status_and_sex
other_debtors
present_residence_since
property
age_years
other_installment_plans
housing
job
has_telephone
is_foreign_worker

0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

Nursery

family_social_conditions
family_form
child_has_nursery
family_health_conditions
parents_occupation
number_of_children
family_housing
family_finance

0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

Iris
sepal length (cm)
petal length (cm)
sepal width (cm)
petal width (cm)

0 1 2 3 4 5

Alpha
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at

ur
e 

im
po

rta
nc

e

Breast Cancer
smoothness error
compactness error
mean concave points
worst concave points
mean radius
mean texture
mean perimeter
mean area
mean smoothness
mean compactness
mean concavity
mean symmetry
mean fractal dimension
radius error
texture error

perimeter error
area error
concavity error
concave points error
symmetry error
fractal dimension error
worst radius
worst texture
worst perimeter
worst area
worst smoothness
worst compactness
worst concavity
worst symmetry
worst fractal dimension

Figure 2: The effect of 𝛼 on the FI values. In solid blue and magenta are the features to be rewarded
and penalized, respectively. In dotted lines are the neutral features.

features in the intended direction when possible, but does not impose the FP at any cost to the
XRF’s performance.

6.1. Ablation Study

In the current work we report the results for a particular choice of XS (cosine similarity) and
normalization strategy (softmax). However, the proposed XRF model does not limit the user



Config. Metric XRF0.5 XRF1.0 XRF2.0

Abs. + CS
Acc. 0.6046± 0.0206 0.6015± 0.0180 0.5942± 0.0189
𝐹1 0.6310± 0.0221 0.6273± 0.0205 0.6171± 0.0225
𝑋𝑆 0.2062± 0.0095 0.2139± 0.0114 0.2230± 0.0135

Abs. + CE
Acc. 0.6062± 0.0137 0.6092± 0.0122 0.6042± 0.0177
𝐹1 0.6319± 0.0152 0.6351± 0.0118 0.6311± 0.0188
𝑋𝑆 0.1405± 0.0056 0.1431± 0.0062 0.1472± 0.0058

SM + CS
Acc. 0.6050± 0.0156 0.5992± 0.0167 0.5950± 0.0265
𝐹1 0.6297± 0.0152 0.6239± 0.0179 0.6190± 0.0310
𝑋𝑆 0.2012± 0.0077 0.2098± 0.0143 0.2262± 0.0210

SM + CE
Acc. 0.6042± 0.0121 0.6038± 0.0118 0.6035± 0.0164
𝐹1 0.6314± 0.0142 0.6282± 0.0114 0.6286± 0.0173
𝑋𝑆 0.1403± 0.0054 0.1430± 0.0063 0.1468± 0.0065

Table 3
Performance comparison of XRFs with different configurations for the modified Yeast dataset. Results
are presented in Mean±SD form based on ten runs, each with a different random seed. Abs. = Absolute,
CS = Cosine Similarity, SM = Softmax, Acc. = Accuracy, SD = Standard Deviation, XRF𝑘 = XRF with
𝛼 = 𝑘.

to this configuration and the user can choose to use other similarity metrics for XS and other
normalization strategies for the DTs’ weights. In this part of the paper we consider XRF models
that use alternative configurations.

During these experiments we considered defining the input FP vector as a probability distri-
bution (𝐹𝑃𝑖 ∈ [0, 1] and

∑︀𝑁
𝑖=1 𝐹𝑃𝑖 = 1). Under this definition, the model’s usage of features

with high or low probabilities in the FP vector will be encouraged or discouraged, respectively,
by the optimization process. Cross-Entropy (CE) is a well-defined distance metric between two
probability distributions:

𝐶𝐸(𝑃,𝑄) = −
𝑚∑︁
𝑖=1

𝑃𝑖 · log(𝑄𝑖) (6)

Where 𝑄 and 𝑃 are two probability distributions over the same 𝑚 variables in corresponding
order. Thus, we used for XS a CE -based similarity measure. Given the FP vector and the
FI values, which satisfy the conditions for probability distributions, we define the following
similarity measure:

𝑋𝑆 (𝐹𝐼, 𝐹𝑃 ) =
1

𝐶𝐸 (𝐹𝑃, 𝐹𝐼) + 1
(7)

For the weights normalization strategy we used absolute value normalization:

𝑤̂𝑖 =
|𝑤𝑖|∑︀𝑘
𝑖=1 |𝑤𝑖|

(8)

Where 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑘 ∈ N is the weight of the 𝑖𝑡ℎ DT in the XRF model.
Finally, in these experiments we considered only the modified Yeast dataset (with four labels

after removing relatively scarce labels) and performed a grid search over the hyper-parameters
for each of the combinations of normalization strategy and XS. As these choices (of normalization
strategy and XS) do not affect the performance of RF, there was no need to repeat the grid search
over RF-related hyper-parameters (i.e., number of trees, max depth, and max samples). Thus,
we performed grid searches over the hyper-parameters that are related to the optimization
process (the GA’s hyper-parameters: number of generations, mating probability, and mutation



probability) using XRFs with 𝛼 = 0. The results of these grid searches were identical to the
results using the cosine similarity measure and the softmax normalization strategy (see top row
in Table 2). Then, similarly to our main experimental setting, we evaluated the performance of
three XRF models with 𝛼 ∈ [0.5, 1.0, 2.0] based on ten runs, using a different random seed in
each run. Overall, our results (see Table 3) suggest that the configuration we chose to use in the
main experimental setting (cosine similarity for XS and the softmax normalization strategy) is
either comparable to or better than the alternatives considered here, according to our metrics.
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Figure 3: The effect of increasing the number of DTs in the XRF ensemble on the XS.

Another important hyper-parameter of the XRF model, with the potential to considerably
affect the model’s performance, is the number of DTs in the ensemble. In the main experimental
setting we selected the number of DTs based on a grid search on a plain RF. That is, the number
of DTs was determined based on performance only and without optimization. As we aim to
create a robust method, we examined how the number of DTs in the XRF ensemble affects the
XS. To this end we trained multiple XRF models on the modified Yeast dataset (same variation
as above), each with a different number of DTs. We set the rest of the hyper-parameters, as well
as the XS and normalization strategy, in accordance with the main experimental setting (see
top row in Table 2). We repeated this experiment with 11 𝛼 values for every number of DTs
(see Figure 3). Our results did not reveal a clear trend in XS when plotted against the number of
DTs, thereby suggesting that the XS is relatively unaffected by the number of DTs in the XRF.



Thus, we conclude that the number of DTs in the XRF is a hyper-parameter that can be left to
the user to set, either manually or by using an automatic grid search.

It is worth noting that these results could be due to a limitation in our experimental setting.
As we chose to use low-dimensional datasets (30 features at most), the number of significantly
unique DTs for them is capped. In turn, it is possible that in higher-dimensional datasets the
number of DTs will affect the XS.

7. Conclusion

In this paper we introduce XRF, a novel family of DT ensemble models that optimize a balance
between a performance metric (e.g., accuracy or 𝐹1 score) and a user-defined form of explain-
ability during training. In this context, the explainability is defined as adherence of the model’s
feature attribution (i.e., FI values) to a user-defined FP vector. Through this vector the user may
define which features they prefer the model to use, which features they prefer the model to
avoid, and which features they are neutral about. Additionally, our method allows the user to
determine the desired balance between the model’s explainability and its predictive performance.
That is, the user can determine to what degree the model should prioritize explainability over
performance (or performance over explainability). In contrast to our proposed method, existing
XAI methodologies for structured data are primarily either post-hoc [19, 20] or limited to a
predefined set [17], thereby limiting the insight one could gain from the ML model.

The results of our experiments demonstrate that the FI values in the XRF model are affected
as expected by the FP vector, and in a controlled manner. For example, the FI of a rewarded
feature is increased only if either (1) the feature provides information that could be used for
prediction by the model or (2) explainability is highly prioritized over performance (1 << 𝛼).
Similarly, the FI of a penalized feature is decreased only if either (1) the predictive signal it
provides to the model can be replaced by another feature or features, or (2) explainability is
highly prioritized over performance (1 << 𝛼). Finally, our results also suggest that the XS of
the XRF model is relatively unaffected by the number of DTs in the model. Although this should
be reexamined in higher-dimensional settings.

We hope that this work serves as a building block towards the development of more ML
models that balance the trade-off between performance and explainability during training in
an informed manner. As such, we recognize some calculated limitations of the current study,
including the low-dimensionality of the datasets and the time complexity introduced by the
GA algorithm. These will need to be addressed in future work. Additional future research
directions may include (1) extending models that are more complex than RF, (2) developing other
forms of human-defined or metric-derived explainability, and (3) developing other explainability
quantification metrics.
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