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Abstract
This study investigates the impact of unexpected stimuli on participants’ stress levels during human-robot
interactions (HRI). We designed an experiment, where a cobot performs writing tasks, as well as some
unexpected actions, intended to surprise the human observer. During this experiment, we are continu-
ously monitoring physiological responses through Electrodermal Activity (EDA) and Electrocardiogram
(ECG) sensors. Our goal was to capture the relationship between surprising actions by the cobot and
indicators of change in the human stress levels.

We employed time series classification techniques, namely ROCKET, Shapelet Transform and
WEASEL, along with Support Vector Machine (SVM) analysis on temporal segments. This approach
enabled us to develop a binary classification model on stress levels. Our research contributes to the
design of AI systems that can detect changes in the stress levels of humans who interact with cobots
that perform unexpected actions. Thus, we work towards the improvement of safety protocols in HRI.
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1. Introduction and Related Work

One of the major safety concerns in HRI is the potential for human-robot collisions, which can
cause significant injuries, even cobots, when equipped with a sharp tool, can no longer be safe.
Rapid, unexpected movements by robots can lead to involuntary human responses, such as
startle or surprise, increasing the likelihood of such collisions. Recognizing changes in the stress
levels, is crucial for improving safety and efficiency in HRI. Understanding these emotional and
physiological responses is key to designing safer and more efficient robot trajectories.

Previous research has explored various aspects of HRI, particularly focusing on the detection
and management of human emotions and physiological responses. Kirschner et al. [1] examined
the effect of interactive user training on reducing human startle-surprise motion, highlighting
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the importance of managing unexpected movements to prevent involuntary motions. This study
demonstrated that hands-on training could significantly reduce involuntary motions, thereby
enhancing safety in HRI. Our work is inspired by the need to recognize startle-surprise, even
if it does not result in motion. As a first step in this direction, we conducted an experiment
where the cobot is doing something surprising and we analyzed the stress levels of the human
participant (one per experiment) before and after the surprising cobot motion.

Understanding the impact of unexpected stimuli on stress levels during human-robot in-
teractions (HRI) is crucial for designing safer and more effective collaborative robots (cobots).
Previous research has established that unexpected events can induce stress, which can be
measured through physiological responses such as EDA and ECG signals [2, 3]. However, it is
important to distinguish between general physiological arousal and specific stress responses. In
this study, we assume that interruptions by the cobot lead to increased physiological arousal,
which we interpret as stress within the experimental context. It is important to note that
our findings do not map one-to-one to physiological responses and that ECG data had to be
discarded due to poor contact quality.

Alonso-Martín et al. [4] presented a multi-modal emotion detection system that integrates
voice and facial expression analysis to detect user emotions during HRI. The impact of surprising
cobot motion on human stress levels is less investigated. Therefore, according to Klimek
et al. [2], wearable EDA sensors are promising tools for detecting perceived stress, with field
studies showing an average accuracy of 82.6% in predicting stress . The system, comprising
GEVA (Gender and Emotion Voice Analysis) and GEFA (Gender and Emotion Facial Analysis),
demonstrated high accuracy in emotion detection by combining the outputs of both channels
through a decision rule. This multi-modal approach significantly improved detection rates
compared to using individual channels. Inspired by this approach, we selected two physiological
sensors, EDA and ECG, to capture human stress responses during HRI.

However, few studies have focused on the specific impact of surprise elements introduced by
robots on human stress levels. Therefore, in this work we pursue following Research question:
how to model and detect change in a human’ stress levels, as caused by a cobot’s surprising
actions in a within-lab experimental setting? To address this question, we capture physiological
data of the human, namely Electrodermal Activity (EDA) signal, monitor cobot activity, propose
a workflow that partitions the human signal time series into segments containing human EDA
and ECG recordings during the cobot’s surprising action and segments of time where no such
actions took place. Then, we deploy time series classification for segment separation and study
the quality of the classifier. We postulate that high quality classification would indicate a change
in the stress levels, which in turn would be associated to the only surprising event that occurs
during the experiment, namely the cobot’s surprising actions.

2. Experimentally Capturing Human Surprise in HRI

The primary aim of this experiment is to ascertain whether the proximity of a robotic arm
engaged in writing, with the potential for unforeseen actions, exerts an influence on the stress
levels of individuals. This influence will be quantified utilizing EDA and ECG sensors. The
collected data are then used for stress level classification.



Designing HRI systems should balance surprise and predictability to maintain both engage-
ment and trust. In our experiment, we achieved this balance by having the robot perform
predictable writing tasks for most of the time, while incorporating short sequences with un-
expected, i.e. surprising actions performed by the cobot. Such an action had the form of a
sudden interruption of the cobot’s writing activity and a movement of the cobot arm in another
direction. Hereafter, we term this activity as ’surprising action (of the cobot). This design
allowed us to measure the impact of unexpected actions on stress levels, while also considering
the broader implications on engagement and trust as suggested by Law et al. [5].

2.1. Assumption of Stress Induction

We operate under the assumption that surprising actions of the cobot serve as indicators for time
segments with change in stress levels. This assumption is based on established links between
unexpected events and stress responses, as indicated by prior research Kirschner et al. [1].
Specifically, we expect that segments containing surprising actions will correspond to higher
stress levels, as inferred from EDA signals. EDA has been shown to be a reliable indicator of
stress, with wearable sensors demonstrating high accuracy in predicting perceived stress levels
in various studies [2].

2.2. Measurement of Physiological Arousal

EDA is widely used to measure physiological arousal, which can indicate stress among other
responses. Increased EDA reflects heightened sympathetic nervous system activity, often
associated with stress. Studies have confirmed that EDA is an effective measure of stress, with
reported accuracies between 42% and 100%, averaging 82.6% [2]. Although EDA measures
general arousal and not exclusively stress, we label each segment containing a surprising action
as ’positive’ in the sense of being likely to contain an increase in stress level, and a segment
containing no surprising action as ’negative’. Additionally, ECG has been shown to be a reliable
tool for measuring stress [3]. However, we discarded ECG data altogether due to poor sensor
contact, which compromised data quality.

2.3. Experiment Design

2.3.1. Setup

The experiments were conducted using the KUKA LBR iiwa robot 1. We created and 3D-printed
a tool that attaches to the robot’s flange and holds the writing implement (pen) used by the
robot to write. We then programmed the robot to transcribe the input sentences onto a sheet of
paper placed on a table in front of the human participant.

2.3.2. Types of surprising actions

To model surprise, five different types of actions were designed:

1https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa Kuka Robotics.
http://www.kuka.com "Kuka" is a registered trademark of KUKA Deutschland GmbH.

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa


1. The robot stops writing mid-sentence.
2. The robot returns to the starting position.
3. The robot makes a sudden movement towards the participant.
4. Small spline movement. (A small movement in space of the robotic arm close the base of

the arm.)
5. Big spline movement. (A bigger movement that outreaches more towards the participants.)

The first two actions were designed by Participant 1, the third by Participant 2, and the
last two by a 3rd party that didn’t have the experiment run on them. actions 1 and 2 are non
threatening movements (the robot is not moving towards the human), while actions 3, 4, and
5 differ in the amount of movement (for example, action 5 utilizes more workspace for the
movement). We opted for this approach to minimize exposure to the surprises as much as
possible, given our dual roles as both the experiment’s programmers and participants.

To measure the impact of the Cobot’s actions on human stress levels, Electrodermal Activity
(EDA) and Electrocardiogram (ECG) sensors are utilized. These sensors capture physiological
responses indicative of stress and arousal levels:

• Electrodermal Activity (EDA): Measures changes in skin conductance, reflecting sym-
pathetic nervous system activity. Increased EDA suggests heightened arousal or stress.

• Electrocardiogram (ECG): Records the electrical activity of the heart, providing insights
into heart rate variability (HRV) and cardiac responses to stressors.

2.3.3. Hypothesis

We hypothesize that the EDA/ECG levels of participants will differ between the segments that
contain a surprising actions of the cobot and the segments that do not.

2.3.4. Procedure in the Experiment

Pre-Experiment Setup: (1) Position the robot in front of the table and secure it to prevent
unwanted movements. (2) Place and secure the paper on the table using tape. (3) Attach EDA
and ECG sensors to participants according to manufacturer instructions. (4) Set up cameras to
record the experiment.

Note that the camera is used to identify the exact time points where each surprising action
started and ended, so that the segments with the physiological signal can be marked accordingly.

Experimental Phase: (1) The robotic arm writes a text on a surface; this is visible to the
participant of the experiment. (2) Each participant undergoes two experiments/sessions, with
up to 6 surprising actions per experiment.

Each surprising action has a 0-37% chance of occurring randomly during the writing phase,
with a minimum of 5-10 movements between surprising actions. surprising actions that haven’t
happened yet will take precedent over ones that did.

Data Collection: (1) Record EDA and ECG readings throughout the experiment. (2) Prompt
participants to rate their stress levels after each session. (3) Record any additional observations
or qualitative data relevant to stress levels.



Post-Experiment tasks: (1) Remove the sensors from the participants’ hands. (2) Log the
sensor data. (3) Shut down the robot.

2.4. Building Time Segments for Classification on Surprise

We segmented the recorded physiological data (EDA and ECG) in 1-second intervals. We also
used video recordings, which helped us to identify and mark in the time series the precise
starting point and ending point of each surprising action. For EDA data, we use a minimum
segmentation of 20 units, and for ECG data, 25 units, accommodating the longest observed
interruption. Then, we assigned labels to the segments, as explained in subsection 2.2, where
’positive’ corresponds to class 1 and ’negative’ to class 0. We used these segments to train and
test and time series classifier.

We show the concrete EDA time series of Participant 1 in the two plots of Figure 1, and alike
the EDA time series of Participant 2 in the two plots of Figure 2. We marked the 0-segments
as red and the 1-segments as green. The starting time point in each time series is the moment
where the participant taps at the sensor - and then the recording starts.

Figure 1: The EDA time series of participant 1, first then second experiment: segments with surprising
actions (class 1) are marked in green, segments without (class 0) are marked in red



Figure 2: The EDA time series of participant 2, first then second experiment: segments with surprising
actions (class 1) are marked in green, segments without (class 0) are marked in red

As can be seen in the two figures, and particularly in Figure 2, some peaks at the stress levels
are after or even before the time interval where the surprising action took place: for a case
with a peak well before the surprising action, refer to time point 36 of the first experiment of
participant 2. Moreover, there are segments with peaks, although there is no surprising action.
This can be attributed to some external event that caught the participant’s attention, or to some
misalignment between video recording and EDA recording. These artifacts were ignored during
time series classification, but it is evident that they made the classification task much more
difficult.

Notwithstanding the aforementioned artifacts, Table 1 depicts the number of segments
per participant and experiment; it is evident that the class distribution is skewed, class 1 is
underrepresented. Note that we show only the EDA time series, because the ECG signals were
not properly captured and had to be discarded.

2.5. Preparing the Data for Time Series Classification Algorithms

Building on the segmented data from the previous subsection, we carried out additional steps
to make the data suitable for classification.



# positive (1) segments # negative (0) segments Total
Participant 1 Experiment 1 3 39 42

Experiment 2 3 40 43
Participant 2 Experiment 1 1 39 40

Experiment 2 2 39 41

Table 1
Distribution of positive and negative segments per participant and experiment

We computed statistical features for each segment for the SVM classifiers, including the mean,
standard deviation, and median. We also tabulated the count of positive (stress response) and
negative (no stress response) instances.

For classification, we used several algorithms including ROCKET, Shapelet Transform, and
WEASEL classifiers. Additionally, we trained three SVM classifiers with different kernels (linear,
RBF, and sigmoid) on both 1st participant’s and 2nd participant’s experimental data, testing
them across each other’s datasets using the extracted features.

2.6. Time Series Classification Models

2.6.1. ROCKET

According to Dempster et al. [6], "ROCKET transforms time series using a large number of
random convolutional kernels, i.e., kernels with random length, bias, weights, dilation, and
padding." Essentially, ROCKET breaks the time series data into small windows, identifying the
highest point (global max) and calculating the proportion of positive values (ppv) [6]. In our
context, a time series is a segment.

2.6.2. WEASEL

The WEASEL algorithm, as described by Schäfer and Leser [7], uses a sliding window to extract
sub-sequences, then transforms each one into a feature vector by applying Symbolic Fourier
Approximation (SFA) Schäfer and Leser [7]. As with ROCKET, the inputs to WEASEL are the
segments.

2.6.3. Shapelet Transform

The Shapelet Transform method by Bostrom and Bagnall [8] and Hills et al. [9] selects randomly
a subset of sub-sequences from the time series data as potential shapelets, thus avoiding
exhaustive search for shapelets of all possible lengths. These potential shapelets are compared
to all possible sub-sequences in the data [8, 9]. For our data, these are sub-sequences of each
segment, keeping in mind that segments may vary in length. Finally, features are extracted
based on the similarity between each time series and the selected shapelets [8, 9].



2.7. Training and Testing

We constructed Time Series Classifier (TSC) models using the sktime library, specifically
employing the ROCKET Classifier (multirocket), WEASEL, and Shapelet Transform classifiers.

A total of nine time series models were trained. The models included: one trained solely on
1st participant’s first experiment data; one trained on both 1st participant’s first and second
experiment data; and one trained on 1st participant’s first and second experiment data in
addition to 2nd participant’s first experiment data.

All models were evaluated using data from 2nd participant’s second experiment, which was
selected due to its higher frequency of interruptions.

3. Results

Our results are depicted on Table 2, where we evaluate on precision, recall and F1 towards the
positive class 1. We didn’t add SVM to the table because every SVM model we trained predicted
only 0 for everything. It is evident that no model could cope with the extreme skew in favour
of class 0: ROCKET focussed one class 1 when training on participant 1, Shapelet Generation
did so only when using all data from participant 1, while WEASEL concentrated on class 0
throughout. The usage of the data of the second participant did not contribute to model quality.
This indicates that oversampling of class 1 or under-sampling of class 0 or both should be done
before learning on such skewed data.

Classifier Scenario Precision Recall F1
ROCKET Experiment 1 of Participant 1 0.29 1.00 0.44

Experiments 1 & 2 of Participant 1 0.20 1.00 0.33
Experiments 1 & 2 of Participant 1, Experiment 1 of
Participant 2

0.00 0.00 0.00

WEASEL Experiment 1 of Participant 1 0.00 0.00 0.00
Experiments 1 & 2 of Participant 1 0.00 0.00 0.00
Experiments 1 & 2 of Participant 1, Experiment 1 of
Participant 2

0.00 0.00 0.00

Shapelet Generation Experiment 1 of Participant 1 0.00 0.00 0.00
Experiments 1 & 2 of Participant 1 0.50 1.00 0.67
Experiments 1 & 2 of Participant 1, Experiment 1 of
Participant 2

0.00 0.00 0.00

Table 2
Performance metrics for each scenario and model

4. Conclusion

We presented an experiment design to measure change in stress levels due to surprising cobot
actions, and a framework for the analysis of the experimental data. We measured electrodermal
activity (EDA) of the participants, and we partitioned the EDA time series into segments
that correspond or do not correspond to surprising actions (positive/negative). The analysis



encompassed the separation between segments of the two classes with time series classifiers.
For this, we created a workflow that allowed the comparison of models build by different state of
the art time series classification algorithms. For this workflow, we also used several evaluation
criteria, namely precision, recall and F1 for each of the classes, albeit we only reported for the
rare class here.

The purpose of the analysis was to investigate to what extend it is possible to distinguish
between the two types of segments by considering only EDA as stress indicator. The hypothesis
could not be tested because the number of positive segments was too small. Furthermore, the
presence of peaks in the stress levels well after or even well before the actual surprising action
indicates either that the participant was distracted or that the time interval of the surprising
action could not be reproduced properly from the video; this corresponds to a misalignment
between video recording and time series of body signal. This affected the classification negatively.
Moreover, the experimental data were reduced because the ECG signal recordings indicated a
sensor fault and had to be ignored. A further limitation was the small number of experiment
participants. Nonetheless, the data skew was the primary limiting factor, and should be mitigated
in future work through oversampling of the positive class and/or under-sampling of the negative
class. While under-sampling is straightforward, oversampling of temporal segments may
demand the generation of synthetic time series, which is itself challenging in the case of so few
positive samples.

We suspect that the duration of the surprising actions also affected the EDA recordings. In
particular, surprising actions of long duration translate into long segments, where a short peak
in the stress level might be misinterpreted as noise. Hence, future experiments should achieve a
balance between duration of the surprising actions and number of such actions. Finally, a larger
number of participants should be recruited. Then, it will become interesting to investigate
to what extend participant-specific models can be augmented with data or models of other
participants.

Acknowledgments

This research was supported by a grant from the Erasmus+ Program of the European Union,
which enabled us to spend a semester at Otto von Guericke University Magdeburg during the
summer. We would like to express our gratitude for their invaluable support and funding, which
made this work possible. Special thanks to the Erasmus+ team for their dedication to fostering
academic cooperation and innovation across Europe.

References

[1] R. Kirschner, L. Burr, P. M., H. Mayer, S. Abdolshah, S. Haddadin, Involuntary motion in
human-robot interaction: Effect of interactive user training on the occurrence of human
startle-surprise motion, in: 2021 IEEE International Conference on Intelligence and Safety
for Robotics, 2021.

[2] A. Klimek, I. Mannheim, G. Schouten, E. J. M. Wouters, M. W. H. Peeters, Wearables



measuring electrodermal activity to assess perceived stress in care: a scoping review, Acta
Neuropsychiatrica (2023) 1–11. doi:10.1017/neu.2023.19.

[3] M. Naeem, S. A. Fawzi, H. Anwar, A. S. Malek, Wearable ecg systems for accurate mental
stress detection: a scoping review, Journal of Public Health (2023). URL: https://doi.org/10.
1007/s10389-023-02099-6. doi:10.1007/s10389-023-02099-6.

[4] F. Alonso-Martín, M. Malfaz, J. Sequeira, J. F. Gorostiza, M. A. Salichs, A multimodal emotion
detection system during human–robot interaction, Sensors 13 (2013) 15549–15581. URL:
https://www.mdpi.com/1424-8220/13/11/15549. doi:10.3390/s131115549.

[5] E. Law, V. Cai, Q. F. Liu, S. Sasy, J. Goh, A. Blidaru, D. Kulić, A wizard-of-oz study of curiosity
in human-robot interaction, in: 2017 26th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), 2017, pp. 607–614. doi:10.1109/ROMAN.
2017.8172365.

[6] A. Dempster, F. Petitjean, G. I. Webb, Rocket: exceptionally fast and accurate time
series classification using random convolutional kernels, Data Mining and Knowl-
edge Discovery 34 (2020) 1454–1495. URL: https://doi.org/10.1007/s10618-020-00701-z.
doi:10.1007/s10618-020-00701-z.

[7] P. Schäfer, U. Leser, Fast and accurate time series classification with weasel, in: Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, CIKM
’17, ACM, 2017. URL: http://dx.doi.org/10.1145/3132847.3132980. doi:10.1145/3132847.
3132980.

[8] A. G. Bostrom, A. J. Bagnall, Binary shapelet transform for multiclass time series
classification, Trans. Large Scale Data Knowl. Centered Syst. 32 (2015) 24–46. URL:
https://api.semanticscholar.org/CorpusID:265852316.

[9] J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Classification of time series by
shapelet transformation, Data Mining and Knowledge Discovery 28 (2013). doi:10.1007/
s10618-013-0322-1.

http://dx.doi.org/10.1017/neu.2023.19
https://doi.org/10.1007/s10389-023-02099-6
https://doi.org/10.1007/s10389-023-02099-6
http://dx.doi.org/10.1007/s10389-023-02099-6
https://www.mdpi.com/1424-8220/13/11/15549
http://dx.doi.org/10.3390/s131115549
http://dx.doi.org/10.1109/ROMAN.2017.8172365
http://dx.doi.org/10.1109/ROMAN.2017.8172365
https://doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1145/3132847.3132980
http://dx.doi.org/10.1145/3132847.3132980
http://dx.doi.org/10.1145/3132847.3132980
https://api.semanticscholar.org/CorpusID:265852316
http://dx.doi.org/10.1007/s10618-013-0322-1
http://dx.doi.org/10.1007/s10618-013-0322-1

	1 Introduction and Related Work
	2 Experimentally Capturing Human Surprise in HRI
	2.1 Assumption of Stress Induction
	2.2 Measurement of Physiological Arousal
	2.3 Experiment Design
	2.3.1 Setup
	2.3.2 Types of surprising actions
	2.3.3 Hypothesis
	2.3.4 Procedure in the Experiment

	2.4 Building Time Segments for Classification on Surprise
	2.5 Preparing the Data for Time Series Classification Algorithms
	2.6 Time Series Classification Models
	2.6.1 ROCKET
	2.6.2 WEASEL
	2.6.3 Shapelet Transform

	2.7 Training and Testing

	3 Results
	4 Conclusion

