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Abstract 
Nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence in situ hybridization (FISH) 
microscopy provide high-resolution, multimodal image representations of cell identity and cell activity, 
respectively, for studies of targeted microbial communities in microbiological research. Despite its 
importance to microbiologists, multimodal registration of FISH and nanoSIMS images is challenging 
given the morphological distortion and background noise in both image modalities. In this paper we 
propose a scheme for multimodal registration of FISH and nanoSIMS images that employs 
convolutional neural networks (CNNs) for multiscale feature extraction, shape context for computation 
of the minimum transformation cost feature matching and the thin-plate spline (TPS) model for the 
registration of the two image modalities. Registration accuracy is quantitatively assessed against 
manually registered images, at both the pixel and structural levels, using standard metrics. 
Experimental results show that among the six CNN models that were tested, ResNet18 outperforms 
VGG16, VGG19, GoogLeNet, ShuffleNet and ResNet101 based on most evaluation metrics. This study 
demonstrates the utility of CNNs in the registration of multimodal images with significant background 
noise and morphology distortion. We also show that the shape of microbial aggregates, preserved by 
binarization, to be a robust feature for registering multimodal microbiology-related images. The 
proposed multimodal image registration scheme can serve as a powerful tool in microbiological 
research.  
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1. Introduction 

Nanoscale secondary ion mass spectrometry (nanoSIMS) is a powerful tool to quantify elemental 

distribution at nanometer-scale resolution [1]. Combining nanoSIMS imaging with fluorescence 

in situ hybridization (FISH) microscopy allows one to study microbial activity and correlate it 

with the identity of cells [2]. However, the nanoSIMS and FISH images display unequal 

magnification and distortion. Several image registration algorithms exploit geometrical 

information to align the input images [3]. Notably, feature-based registration methods rely on 

point- or shape-based correspondences between two images where the features, such as corners 

or contours of structures, are either derived automatically from the underlying image or from 

markers with known positions. Once the corresponding points are selected, their locations in the 

two images are used to reconstruct a spatial transformation [4, 5]. In contrast, in intensity-based 

methods, only pixel intensity values, instead of specific features, are considered to determine the 

spatial transformation. 

 

 

CVCS2024: the 12th Colour and Visual Computing Symposium, September 5–6, 2024, Gjøvik, Norway 
∗ Corresponding author. 

 Xiaojia.he@ul.org (X. He); suchi@uga.edu (S. Bhandarkar); cmeile@uga.edu (C. Meile)  

 0000-0001-8274-5564 (X. He); 0000-0003-2930-4190 (S. Bhandarkar); 0000-0002-0825-4596 (C. Meile) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



Deep learning has been increasingly recognized as a powerful toolbox for multimodal image 

registration, especially in medical imaging [6, 7] and remote sensing [8, 9]. The convolutional 

neural network (CNN) is a widely used deep neural network (DNN) architecture comprising of 

convolutional layers, max-pooling layers and a softmax layer, in addition to problem-specific 

layers. CNNs have been used extensively for feature extraction in image classification [10, 11], 

image segmentation [12, 13] and image registration [14, 15], and several variants of the CNN 

architecture have been proposed for multimodal image registration [6, 16, 17], and have been 

shown to be successful in solving biomedical image registration problems [18-21].   

In this paper, we present an automated scheme to register FISH and nanoSIMS images using 

multiple CNN models. Although images of neither microorganisms nor microbial aggregates are 

in the ImageNet database, deep CNN architectures that are pre-trained on ImageNet have been 

shown to be very effective at general image feature extraction. The convolutional feature map is 

extracted at multiple image resolutions and used for feature point selection. The shape context 

descriptor is used to identify matched features and the thin-plate spline (TPS) model is employed 

to register the FISH and nanoSIMS images by computing a transformation matrix [22]. The 

results obtained using the different CNNs, feature matching approaches and transformation 

computation and registration methods are compared and discussed. To the best of our 

knowledge, this is the first documented application of deep CNN models to extract features from 

multimodal microbial images and subsequently register them. 

2. Materials and Methods 

The FISH and nanoSIMS images were acquired using the protocol proposed by McGlynn et al. 

[23] and a detailed description of sample collection and preparation, measurement methodology 

and data analysis is given in [23]. In brief, anaerobic methane-oxidizing consortia were obtained 

from ocean sediment samples collected at Hydrate Ridge North (station HR-7) during the AT 18-

10 Hydrate Ridge August/September 2011 expedition. Push core sediment samples were 

processed on ship and kept under an N2 atmosphere at 4°C. Slurry incubations were carried out 

with anoxic filtered seawater at elevated pressure.  FISH and nanoSIMS images were then 

collected and manually aligned using the Matlab program Look@nanoSIMS as described in [24]. 

These manually aligned images were used as ground truth in this study.  

In our workflow, depicted in Figure 1, 41 raw RGB images and their binarized versions were 

used as input. In brief, the input images were preprocessed to remove background noise and 

then fed to the chosen CNN models with pretrained weights. Features were then extracted at 

desired predetermined layer depths (scales) using the CNN architectures ShuffleNet [25], 

GoogLeNet [26], ResNet-18 and ResNet-101 [27], VGG16 and VGG19 [28], with pretrained weights 

derived from the several million training images in the ImageNet database (http://www.image-

net.org). A subset of the extracted features was selected and further constrained to generate a 2-

D array of matched feature points using shape context and bipartite graph matching algorithms 

[22]. Finally, the matched feature points were used for image transformation computation and 

image registration using the thin-plate spline (TPS) model. Quantitative registration accuracy 

metrics such as the root mean squared error (RMSE), structural similarity index (SSIM), and 

average absolute intensity difference (AAID) were computed at both the pixel and structural 

levels. Additional details on the above- mentioned of methods are available at 

https://doi.org/10.6084/m9.figshare.26321587.v3. 

 

http://www.image-net.org/
http://www.image-net.org/
https://doi.org/10.6084/m9.figshare.26321587.v3


 
Figure. 1: Workflow for multimodal registration of FISH and nanoSIMS images.  

2.1. Image preprocessing 

FISH images are intensity measurements represented in their respective coordinate systems in 

the individual RGB channels, whereas nanoSIMS images represent ion counts at each pixel 

location. A global threshold was first generated using Otsu's method [29] to minimize the intra-

class variance (i.e., weighted sum of variances of black and white pixels in a binary image) and 

was modified manually based on trial and error to preserve aggregate morphology. Aggregate(s) 

from the FISH image were then chosen and cropped to best match the nanoSIMS image. The 

resulting input images to the CNN were either raw RGB or preprocessed binary FISH and 

nanoSIMS images. All input images were rescaled to a size of 224×224 pixels and fed through the 

convolutional layers in the CNN. 

2.2. Feature extraction and matching 

For the FISH and nanoSIMS images, features were extracted from the final layer of each 

individual module in the CNN architecture starting with a layer size of 28×28 and proceeding to 

layer sizes of 14×14 and 7×7. The selection of convolutional layers was heuristic and aimed to 

include both high- and low-level features. The feature maps obtained from each layer was 

normalized by applying the transformation z = (x-μ)⁄σ, where the feature x in each feature map 

is assumed to be normally distributed with mean μ and standard deviation σ. Next, we generated 

the feature distance map by computing the symmetric matrix of pairwise feature distance values. 

We concatenated the feature distance maps from each layer to yield a single feature distance 

map for each FISH and nanoSIMS image pair and processed the concatenated feature distance 

map by selecting the smallest value from each row and using the match threshold to select the 

top 20% matched features.  

2.3. Shape context descriptor 

After selecting the preliminary matching features, we used the shape context descriptor to 

determine the feature correspondence that minimizes a transformation cost function. The 

transformation cost function quantifies the shape similarity based on the neighborhood 

structure of a feature point on a shape contour. The shape context descriptor at feature point pi 

is defined as a histogram hi of the relative coordinates q of the remaining n-1 feature points [22]:  

ℎ𝑖(𝑘) = #{𝑞 ≠ 𝑝𝑖: |(𝑞 − 𝑝𝑖)| ∈ 𝑏𝑖𝑛(𝑘)}                                     (1) 



where the bins are designed to uniformly partition the log-polar (log, ) space ( is the radial 

distance and   is the polar angle). To generate a shape context descriptor, we first computed the 

Euclidian distance values between points in the matched feature map and normalized them by 

the mean. Next, we computed the shape context descriptor by directly counting the points within 

each radial and angular region (bin) as described above.  

2.4. Bipartite graph matching 

We consider minimizing the total cost of matching given by 

𝐻(𝜋) = ∑ 𝐶(𝑝𝑖 , 𝑞𝜋(𝑖))𝑖                    (2) 

where π denotes a permutation, and C is the cost function defined as 𝐶𝑖,𝑗 =

1

2
∑

(ℎ𝑖(𝑘)−ℎ𝑗(𝑘))2

ℎ𝑖(𝑘)+ℎ𝑗(𝑘)
𝐾
𝑘=1 , where hi and hj are the obtained shape context descriptors (normalized k-bin 

histograms) for the matched feature points pi and qj on the FISH and nanoSIMS images, 

respectively. The resulting weighted bipartite graph matching problem based on H(π) was 

solved using the efficient Jonker-Volgenant algorithm [30]. Finally, we computed the Euclidian 

distance between each matched feature pair and only retained the matches that fall between the 

25% and 75% quantiles as inliers. The values of the matching threshold were chosen based on 

trial and error. 

2.5. Transformation and Registration 

Given a finite set of point correspondences between two shapes, the image transformation and 

registration function 𝑇: ℝ2 → ℝ2 can be realized using the TPS model [31] which performs non-

rigid registration or alignment of deformed images. The underlying transformation was modeled 

as a radial-basis function where the foreground pixels of the moving image deform under the 

influence of the control points pi, i = 1, . . . n. 

2.6. Similarity registration 

Similarity registration was used as a comparison to our proposed non-rigid, TPS-based 

registration scheme. Using the features extracted from CNN models, similarity registration 

allows for alignment of images via a combination of globally applied rigid-body translation, 

rotation, and scaling operations [32, 33]. 

2.7. Comparison to a state-of-the-art registration method and non-CNN feature 

extraction-based registration methods 

The Contrastive Multimodal Image Representations (CoMIR) scheme [34; 

https://github.com/MIDA-group/CoMIR], which is shown to outperform several other state-of-

the-art image registration methods in biomedical and remote sensing applications, was used in 

this study for the purpose of comparison. To further evaluate the performance of our CNN-based 

feature extraction schemes, we also implemented and evaluated a variety of traditional non-

CNN-based feature extraction methods such as the similarity-invariant, fast and robust 

algorithm for local feature extraction SURF [35], scale- and rotation-invariant, fast multiscale 

feature detection and description approach for nonlinear scale spaces KAZE [36], scale- and 

rotation-invariant, fast feature point extraction algorithm BRISK [37],  and Harris corner feature 

detector [38] and features from accelerated segment test (FAST) [39]. 

2.8. Quantitative image registration assessment  

The results of automated registration were compared to manually registered images (i.e., the 

ground truth). Three different error metrics were employed to assess registration accuracy at 



the pixel and structural levels: root mean squared error (RMSE), structural similarity index 

(SSIM), and average absolute intensity difference (AAID). RMSE quantifies the difference 

between registered images (�̂�, 𝑦) by computing the square root of the mean square error of pixel 

values over the RGB channels between the two images (40):  

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑁
                                 (3) 

The SSIM metric measures the perceived similarity in structural information between two 

images and entails computing a weighted combination of the luminance index l, the contrast index 

c and the structural index s (41):  

𝑆𝑆𝐼𝑀 =  [𝑙(�̂�, 𝑦)]𝛼[𝑐(�̂�, 𝑦)]𝛽[𝑠(�̂�, 𝑦)]𝛾                  (4) 

Here 𝑙(�̂�, 𝑦) =
2𝜇�̂�𝜇𝑦+𝑐1

𝜇�̂�
2+𝜇𝑦

2+𝑐1
, 𝑐(�̂�, 𝑦) =

2𝜎�̂�𝜎𝑦+𝑐2

𝜎�̂�
2+𝜎𝑦

2+𝑐2
, and 𝑠(�̂�, 𝑦) =

𝜎�̂�𝑦+𝑐3

𝜎�̂�𝜎𝑦+𝑐3
 where 𝜇�̂�, 𝜇𝑦 are the 

local means; 𝜎�̂� , 𝜎𝑦 the standard deviations; and 𝜎�̂�𝑦 the cross-covariance for images �̂� and 𝑦, 

respectively. The weights α, β and γ were set to 1.  

The AAID metric is based on the absolute intensity difference between the two images (�̂�, 𝑦) 
[42]:  

𝐴𝐴𝐼𝐷 =  
1

𝑀𝑁𝑄
∑ ∑ ∑ |�̂�𝑖,𝑗,𝑘 − 𝑦𝑖,𝑗,𝑘|

𝑄
𝑘=1

𝑁
𝑗=1

𝑀
𝑖=1                  (5) 

where M, N, and Q represent the dimension of images. Smaller RMSE and AAID values 

represent a better registration result, whereas the SSIM value is larger for better aligned images. 

3. Results 

Visual (Figures 2 and 3) and quantitative (Table 1) comparison of our results with manually 

registered images shows good agreement, signifying the advantages of the automated 

registration. Image preprocessing with binary thresholding significantly improved the accuracy 

of image registration compared to the raw input RGB images (the left panels in Figures 2 and 3). 

It also yielded substantially better quantitative results compared to than when analyzing the raw 

RGB images, as reflected in the smaller the small pixel differences in RMSE and AAID values (TPS 

registration, Table 1), and the larger SSIM indices, which exceeded 0.8 for a significantly 

deformed FISH image and 0.78 for a deformed FISH image with multiple connected components, 

respectively (TPS registration). Additional details on the aforementioned results are available at 

https://doi.org/10.6084/m9.figshare.26321587.v3. 

The additional intra-aggregate features during RGB image registration, which may differ 

between the FISH and nanoSIMS images, results in deterioration of the registration results 

(Figures 2 and 3). It is also noted that residual component(s) in the FISH and nanoSIMS images 

outside the region of interest (ROI) did not match well even after several exhaustive trial and 

error iterations (see binary images in Figures 2 and 3). However, mismatches between the small 

connected components due to the binarization preprocessing did not impact the registration of 

our microbial aggregate images and hence there is no need to first remove the small connected 

components in the two images before proceeding to align them.  

Our results show that TPS-based registration outperforms registration based on similarity 

metrics (Table 1). With radial basis functions, TPS-based registration is capable of locally 

transforming and warping the target FISH image onto the nanoSIMS image. In contrast, 

similarity-based registration involving only global linear rigid-body transformations, i.e., 

rotation, scaling, and translation [43], leads to significant disparity in registration results 

between TPS-based and similarity-based registration (Figure 2).  

 

  



Table 1. Image registration accuracy for a significantly deformed FISH image and a deformed 

FISH image with multiple connected components. RMSE and AAID values are smaller when the 

registration result is better, whereas the SSIM value is larger for a better aligned image. The best 

performance measure compared across CNNs is highlighted in gray shade. The best performance 

measure for a registration scheme and CNN architecture for a given image type is indicated in 

bold font. The best performance measure for each aggregate is indicated with an asterisk (*). 

 

 
Significantly deformed 

 Binary RGB 

 Similarity TPS Similarity TPS 

 RMSE AAID SSIM RMSE AAID SSIM RMSE AAID SSIM RMSE AAID SSIM 

GoogLeNet 19.26 6.41 0.83 19.48 2.68 0.82 75.05 60.91 0.2 61.03 11.4 0.48 

ResNet101 19.66 4.93 0.814 13.97 1.66* 0.88 75.07 63.37 0.21 49.53 19.77 0.53 

ResNet18 25.01 8.66 0.75 12.44* 1.67 0.89* 54.80 32.06 0.51 32.45 6.65 0.7 

ShuffleNet 15.52 4.68 0.85 13.23 1.83 0.88 54.80 33.93 0.48 44.7 9.36 0.62 

VGG16 39.04 17.75 0.67 14.38 2.25 0.87 66.49 51.63 0.24 45.74 10.59 0.6 

VGG19 15.68 4.4 0.86 19.84 2.1 0.81 67.67 51.45 0.23 54.67 23.39 0.53 

 

 

Deformed with multiple components 

 Binary RGB 

 Similarity TPS Similarity TPS 

 RMSE AAID SSIM RMSE AAID SSIM RMSE AAID SSIM RMSE AAID SSIM 

GoogLeNet 38.69 2.5 0.75 27.18 4.02 0.8 39.96 3.06 0.74 52.73 7.53 0.62 

ResNet101 38.78 2.56 0.74 31.15 4.56 0.78 38.81 4.28 0.74 45.07 6.57 0.71 

ResNet18 43.34 3.09 0.71 29.92 3.56 0.79 40.98 4.8 0.719 52.69 7.51 0.63 

ShuffleNet 40.97 3.2 0.72 29.50 5.43 0.78 39.12 2.49* 0.75 34.48 2.8 0.76 

VGG16 41.47 3.41 0.72 29.29 5.27 0.78 39 3.74 0.75 44.37 4.19 0.69 

VGG19 41.08 3.17 0.73 25.62* 5.22 0.81* 39.18 3.1 0.75 55.21 6.07 0.63 

 
Figure 2: Registration of a significantly deformed FISH image and nanoSIMS image using  

binary (left) and RGB (right) images as input with TPS-based (upper two panels) and similarity-

based (lower two panels) schemes. 



 

Figure 3: Same as Figure 2, but for a deformed FISH image with multiple components. Orange 

rectangles indicate missing components in either nanoSIMS or FISH images after binarization. 

The CNN models also performed well with deformed FISH images containing multiple 

connected components. The analysis of a significantly deformed image (Figure 4), and a 

deformed image with multiple connected components (Figure 5) revealed that ResNet and 

ShuffleNet often outperformed VGG and GoogLeNet implementations.  Registration using a fine-

tuned CNN in which the weights of a pre-trained CNN are refined by training with new data [44] 

produced almost the same registration results using binary images as input (not shown). Using 

raw (RGB) images as input improved the registration slightly, but the differences in registration 

performance were minimal. 

 
Figure 4: Feature correspondences after final thresholding during registration of a significantly 

deformed FISH image and nanoSIMS image using binary (upper row for each method) and RGB 

inputs (lower row for each method). 

For validation purposes, we first compared our CNN-based methods to other well-recognized 

traditional feature extraction-based methods that employ SURF, KAZE, BRISK, Harris corner 

detector and FAST features (see Figures S15-S16 in the supplemental materials available at 

https://doi.org/10.6084/m9.figshare.26321587.v3). None of the aforementioned traditional 

feature extraction-based methods produced satisfactory registration results in our tests for a 

modestly deformed, a significantly deformed, and a multiple-component deformed FISH image 

https://doi.org/10.6084/m9.figshare.26321587.v3


with a nanoSIMS image. With RGB images as input, all the aforementioned traditional feature 

extraction-based methods failed completely to register the FISH images with the nanoSIMS 

image due to the inherent shortcomings of the extracted and matched features.  

 

Figure 5: Same as Figure 4, but for a deformed FISH image with multiple components.  

To assess the quality of our CNN-based implementations, we compared them with the results 

of the state-of-the-art, pretrained CoMIR method [34] that is based on contrastive learning. Here 

we considered three distinct types of deformed FISH images: a moderately deformed FISH image 

(Figure 6A), significantly deformed FISH image (Figure 6B), and multiple-component deformed 

FISH image (Figure 6C). CoMIR registered these FISH images with the corresponding nanoSIMS 

images with high accuracy. Our proposed CNN-based methods performed comparably to the 

state-of-the-art CoMIR method, while significantly outperforming the rigid-body registration 

methods. 

 
Figure 6: Comparison of state-of-art method to our proposed CNN models. Image registration 

accuracy for a moderately deformed FISH image (A), a significantly deformed FISH image (B), 

and a deformed FISH image with multiple components (C), quantified by the RMSE (upper 

panel), AAID (middle panel), and SSIM (lower panel). RMSE and AAID values are smaller when 

the registration result is better, whereas higher SSIM values denote a better aligned image. The 

asterisks indicate better performance with either smaller RMSE and AAID values, or higher SSIM 

values. 



4. Discussion 

The integration of multiple multimodal data streams is critical to gain new insights into the 

functioning of microbial communities. Here we present the results of a processing pipeline that 

merges spatially explicit data sets on the identity and activity of microorganisms in the form of 

images. The alignment of such multimodal images to resolving individual cells can be challenging 

due to image distortion. 

We successfully used CNNs that are pretrained on the ImageNet database to replace tedious 

manual alignment and image registration. Our results indicate that all six CNN models yield high 

registration accuracy at both, the pixel and structural levels (Figs. 2 and 3, Table 1), even though 

the ImageNet database does not contain microbial imagery. Nevertheless, our pipeline produces 

results that compare favorably with manually registered images. This good agreement illustrates 

that automated registration is a valuable tool for microbial image analysis.  

The finding that binary thresholding significantly improved image registration shows that 

aggregate shape is a useful characteristic or feature to employ and that alignment of (deformed) 

aggregate contours that are consistent between image modalities yields robust results (Figures 

2 and 3; Table 1). Our analysis also shows that the selection of regions of interest is not extremely 

critical and that the results are not sensitive to small mismatches. This is largely due to the 

observation that features extracted using the CNNs were mostly found to be from the dominant 

object in the image (Figure 5). This facilitates the alignment of FISH and nanoSIMS images, with 

the former covering larger areas compared to the more detailed, high-resolution nanoSIMS 

observations. However, the registration performance is negatively impacted when objects in the 

image are fragmented resulting in the absence of a dominant object. 

We further demonstrate that the use of more involved registration methods can improve the 

results substantially. While computationally more intensive, TPS-based registration introduces 

smooth, elastic deformations, producing a reasonably well-aligned image even for a significantly 

deformed FISH image (Figure 2). This finding is consistent with the reported high accuracy and 

robustness of TPS in data interpolation and image registration [45]. 

While all CNNs performed well – better than several standard extraction methods, and 

comparable to CoMIR, there are some differences between them. Notably, features extracted by 

ResNet and ShuffleNet were generally more complex than those extracted by their VGG and 

GoogLeNet counterparts; thus, potentially contributing to slightly better registration results for 

a significantly deformed FISH image (Figure 2 and Table 1), or a deformed FISH image with 

multiple components (Figure 3). Moreover, we found that fine-tuning did not improve 

registration significantly. As it consumes significantly more computing power and takes 

substantially longer to finish, we deemed that fine-tuning is not necessary for this type of image 

registration task. Lastly, graph theory-based [46] and phase-based [47] image registration 

techniques have also demonstrated promising registration accuracy for multimodal images. 

Future avenues of work will include the incorporation of these techniques. The code for our 

processing pipeline is publicly available on the Bitbucket repository at 

https://bitbucket.org//MeileLab/he_imageregistration/src/master.  

5. Conclusions 

Our workflow employed advanced CNN models to successfully extract shared feature points in 

FISH and nanoSIMS images for multimodal image registration. CNN-derived, feature-based non-

rigid TPS registration methods significantly outperformed conventional similarity-based rigid-

body registration methods and produced registration results that were very comparable to those 

of the state-of-art method CoMIR method that is based on contrastive learning. We tested six CNN 

models using TPS-based non-rigid registration for different FISH and nanoSIMS images. The 

differences between the registration results obtained from the different CNN models considered 

https://bitbucket.org/MeileLab/he_imageregistration/src/master


in this study were minor. We demonstrated that image preprocessing with binarization is critical 

for final image registration and aggregate shape is a robust feature for microbiology-derived 

images such as FISH and nanoSIMS images. This may be largely owing to the significant 

differences in intra-aggregate patterns between the FISH and nanoSIMS images, leading to poor 

registration performance when using raw RGB images as input. It is also noted that images with 

significant background noise (non-ROI components) that cannot be easily removed via simple 

thresholding and binarization still pose a significant challenge. This highlights the importance of 

aggregate morphology and reducing background noise in images with multiple aggregates.  
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