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Abstract
Reflectance Transformation Imaging (RTI) is an imaging technique used to analyze objects or surfaces by capturing
their appearance under varying illumination directions. This paper proposes two self-supervised learning
algorithms to classify surfaces according to their reflectance profiles. The classification problem is addressed
using K-means and Self Organizing Map (SOM) neural networks. The proposed methodology is evaluated using
both real and synthetic datasets. The primary motivation for our approach is to exploit illumination variation data
to enhance surface understanding and detect anomalies. Given the exploratory nature of this task and the lack of
ground truth for comparison, a self-supervised method was deemed most suitable. The classification of surfaces
using reflectance information has immense applications in fields such as Cultural Heritage (CH) preservation,
digitization, and industrial quality control.
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1. Introduction

Reflectance Transformation Imaging (RTI) is a non-contact, non-destructive, computational imaging
technique used to study objects under varying illumination directions. This provides an enhanced visu-
alization experience which is its primary use. RTI was first developed at Hewlett Packard Laboratories
(HP Labs) in 2001 [1]. Since then, many new RTI tools (PTMFitter, RTIBuilder and RTIViewer) and
methods have been developed to exploit this imaging technique for various applications. RTI has three
stages. The first stage is Acquisition. It encompasses the acquisition setup and planning algorithms,
calibrations, preparation, and dataset handling. Figure 1 demonstrates the concept of RTI acquisition
setup. Each image is captured with a different illumination direction where the camera and object
are fixed. This collection of acquired images is called the RTI dataset. RTI datasets are also known as
Multi Light Image Collection (MLIC) or Single Camera Multi Light (SCML), depending on the research
community [2, 3]. The second stage is called Modelling. It primarily processes the dataset to model
the data from discrete to continuous space [4, 5, 1, 6]. The third stage is called Application. It involves
utilizing the modeled data to get insights about the surface [7, 8, 9, 10, 11, 12]. For example, to study
the geometry of a surface, Normal maps created from modeled RTI data can be one application that
can further help in the deeper investigation of surfaces [13]. Another application can be interactive
visualization of surfaces in continuously varying illumination [14, 15]. RTI has profound applications
in CH of which change detection and digitization are the most popular ones [16, 17].
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Figure 1: RTI setup: The camera is fixed at the top and the object is kept stationary at the bottom. The images
are captured in series with varying illumination directions

The main idea behind RTI is exploiting the reflectance information of the surface under varying
illumination. Illumination is incident light of some wavelength (visible spectrum) that hits the surface.
Part of the light is absorbed by the surface and part of the light is reflected. If most of the reflected light is
concentrated in one direction, it is called specular scattering. Conversely, if the light is more uniformly
reflected in all directions it is called a diffuse or lambertian scattering. The comprehensive dataset of
reflectance measurements of a surface point, obtained from different light directions as observed by
a fixed optical sensor (camera) in a Reflectance Transformation Imaging (RTI) setup, is termed as the
reflectance profile. Figure 2 demonstrates this reflectance model. Reflectance modeling is a well-studied
problem in computer graphics and notable models are Phong Reflectance Model [18], Cook-Torrance
Reflectance Model [19] and modern deep-learning based reflectance models like NeRF [20].

The reflectance profile captures how the appearance of a surface point changes as the light direction
varies, while the viewing angle remains constant. This concept is closely related to the Bidirectional
Reflectance Distribution Function (BRDF) used in computer graphics. BRDF explains how light is
reflected for all possible combinations of incoming light direction, viewing direction and wavelength
whereas RTI is focused on a fixed viewing direction and wavelength with only variable incoming light
direction. BRDF therefore has many applications in color analysis in computer graphics [21] and surface
classification in digital imaging [22] however BRDF measurement is a complex task and is often very
difficult to do for many CH objects.

Classification in computer vision has been revolutionized in this decade due to recent advancements in
deep learning methods [23, 24, 25]. Most of the classification is based on the geometrical features of the
object. The question we ask ourselves is, while the existing methods are very good at identifying objects,
can these methods provide information about the composition of the object, its tactile properties, and
other physical characteristics? Humans can predict how an object feels to the touch and comprehend
its properties from an image. For example, we can identify the material of the table; we can predict the
feeling of touch, anticipate its tactile sensation, and understand the state of the table if it’s dirty or clean
from an image. Our brains have the remarkable capacity to infer the physical attributes of surfaces
from visual input, and humans develop this skill from a young age.

RTI can provide an extra dimension of reflectance in the data, making it unique relative to other
imaging modalities. This dimension can capture the reflectance of the surface and can also be used to
estimate BRDF parameters. This BRDF can be estimated by various surface reflectance models such
as the Ward model [26] shown in figure 2 which models diffuse as well as specular surfaces and can
provide surface understanding beyond identification. This can help us gain insights into the material
properties and conditions of the surface under study. The classification of surfaces with respect to their
reflectance properties can also help in optimizing the acquisition process in RTI. RTI acquisition is
conventionally done manually using homogenous, equally spaced light directions, pre-planned without
using any surface information. This can produce redundant light directions, potentially leading to
huge-size RTI datasets. The optimization of light directions can save a lot of resources and time for
acquiring RTI datasets [17, 27, 28].

We propose to exploit the illumination variation property of RTI to classify different areas in the
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Figure 2: The illustration depicts the interaction of illumination direction with a surface, showing both lambertian
or diffuse scattering and specular scattering from a light source as shown in the RTI setup. Some light is also
absorbed by the surface. This interaction varies with the change in incident illumination direction

surfaces. The differences in reflectance properties within a surface could be caused by various factors. For
example, rust can alter the reflectance profiles of surfaces, and dust or dirt can also affect the reflectance
profile of a surface. Developing a tool to classify surfaces using RTI can aid in the study, detection, and
investigation of changes or degradation. Surface classification can also lead to material identification.
Material information is extensively exploited by curators, restorers, conservators, and researchers to
gain insights into cultural heritage objects. Our framework’s initial outcome is identifying interesting
features and anomalies from the RTI data by leveraging self-supervised learning techniques like K-means
and Self-Organizing Maps (SOMs). This framework can be later integrated to RTI visualization tools for
interactive visualization and aims to provide a powerful tool for the analysis and visualization of surface
characteristics. This tool will be valuable for applications in cultural heritage preservation, industrial
quality control, and beyond, enabling users to gain comprehensive insights into the surfaces they study.

Section 2 familiarizes with the related work and section 3 presents the methodology designed for
classification. The paper then introduces the dataset in section 4 used in this study, followed by section
5, which discusses the experiments conducted using the proposed methodology. Finally, section 6
presents the conclusions drawn from this study. The code for this work is available at github1.

2. Related Work

Classification of surfaces is a complex task. Multiple modalities have been used to learn and understand
the surfaces. Some related works in this field use texture with visual modality to classify surfaces using
deep learning [29]. Surfaces tend to have a unique texture, which can serve as critical information in
classification. A computational imaging method was presented for raw material classification using
features of Bidirectional Texture Functions (BTF) in [30]. They proposed to learn discriminative illumina-
tion patterns and texture filters to directly measure optimal projections of BTFs for the classification of
surfaces. The multispectral polarimetric imaging technique captures both the spectral and polarimetric

1https://github.com/akhawaja2014/CVCS2024_ClassificationOfSurfaces

https://github.com/akhawaja2014/CVCS2024_ClassificationOfSurfaces


properties of the light, adding dimensions to the spatial intensity that is normally acquired. This pro-
vides unique and discriminatory information that can help in material classification. This classification
method based on multispectral polarimetric BRDF characteristics is proposed in [22]. In particular,
near-infrared (NIR) range wavelengths were used for materials classification [31]. A hyperspectral
imaging system was developed in [31] to classify and sort papers according to their material quality.
Another paper proposed a Deep Convolutional Neural Network (DCNN)-based 60-GHz radar material
classification system that uses images from the radar sensor as input features [32]. A classification
accuracy of above 97 % was achieved while classifying 1875 radar images from ten different materials.
These materials included books, chocolate cream, glass, the aluminum surface of a laptop, wood, wool,
carpet, tile, laminate, and water. However, all these techniques are expensive because they utilize
specific hardware like radar, multispectral cameras, hyperspectral cameras, or texture measurement
tools and are not trivial methodologies. Furthermore, studying the object’s state (whether the object is
clean or dirty, etc.) has not yet been explored in these above-mentioned methods.

Some inspiration comes from the medical field. The classification of ECG signals using machine
learning has been an important milestone in the diagnostic and medical analysis field [33, 34]. The ECG
signals have hidden properties and profiles for a certain class of disease [35, 36]. Rastgoo et al. [37]
proposed a classification framework for melanoma lesions using sparse-coded features and Random
Forests. Melanoma is a type of skin cancer that can be treated if diagnosed.

Another source of inspiration comes from multispectral and hyperspectral image analysis. This type
of analysis and classification has led to numerous applications in cultural heritage, medical imaging,
quality control, and industrial inspection. Mandal et al. used unsupervised learning to classify pigments
on Edvard Munch’s self-portrait painting by utilizing hyperspectral data [38]. The classification of
pigments using hyperspectral imaging provides valuable insight for understanding the painting as well
as for its conservation [39, 40, 41, 42]. It also offers opportunities to estimate the era of paintings and
identify forgery in paintings. Devassy et al proposed unsupervised clustering to classify hyperspectral
data of paper, which has significant applications in document forgery investigations [43]. Another
important technique for pigment identification in CH is Near Infrared Imaging (NIR). NIR imaging
reveals information about the chemical composition and physical properties of pigments in CH which
can also be used for surface analysis and classification [44, 45].

3. Methodology

In this paper, we propose a comprehensive methodology to classify the surfaces with respect to
reflectance profiles using RTI. We divide our methodology into four major parts. The first part is data
acquisition and processing. The second part includes modeling data using machine learning algorithms.
The third part consists of result extraction and mapping into the spatial domain for interpretation.
The final part is a visualization of results using a segmentation mask on the reference image. Figure 3
demonstrates the pipeline of the methodology.

This study primarily focuses on qualitative data (such as anomalies, degradation, rust, etc). Our
objective is to identify the surfaces that are otherwise not identifiable as distinguished ones based on
their appearance. This is a latent property and reasons for the change in reflectance profile might
include anomaly, rust, material degradation etc. It is also important to note that this methodology is for
Visible Spectrum (ViS) imaging. We have not utilized any multispectral sensor.

The virtual and real RTI both have been utilized to test our methodology. We started with a virtual
RTI dataset simulated in Blender [46]. The Blender RTI toolbox mimics the RTI setup where a stationary
object is illuminated from a desired number of illumination directions. This virtual approach allows
us to precisely control the illumination conditions and surface properties, providing a clear and noise-
free dataset for initial algorithm development and testing. The use of Blender enables us to simulate
various material properties and reflectance behaviors, which are crucial for validating our classification
framework in a controlled environment before applying it to real-world data. The real and simulated
datasets were used to train the Self-Organizing Maps (SOMs) and K-means from scratch, ensuring that
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Figure 3: This flowchart outlines the step-by-step process of signal classification. It begins with RTI Acquisition
and the selection of the Region of Interest (ROI), followed by the extraction of pixel signals. The signals then
undergo analysis using methods such as K-means and SOM. Post-classification, the signals are mapped back to
their spatial locations, resulting in a segmentation mask for visualization.

the models could correctly classify surface reflectance profiles. No pre-trained SOMs were used in
this study. Section 4 explains more about the dataset. This is real-time training for each dataset and is
self-supervised without the need for any labeled data.

The first step in our methodology is signal extraction. In this step, we acquire the Multi Light
Image Collection (MLIC) data from a simulated environment or real acquisition in the RTI dome that
is available in the lab. The acquired data needs to be pre-processed. We reduce the sample space by
extracting the Region of Interest (ROI) from the dataset using a reference image. Figure 4 demonstrates
the signal extraction process.

3.1. K-Means

The second and most important part of the methodology is the machine learning methods for the
classification of surfaces. Initially, we used K-means clustering to classify the signals based on their
standard deviation. K-means is a machine learning algorithm that divides the n-dimensional data
into k-clusters using variance inside the dataset [47, 48]. While it works well for many cases, it can
be vulnerable to wrongly classifying the surfaces because two different signals might have the same



Figure 4: Demonstration of signal extraction method. The first step is to select the region of interest. Each pixel
from the same location is extracted across the MLIC. The intensity value that changes with varying illumination
is plotted against the light positions. The pixel signal consists of a list of varying pixel values across the MLIC
for the same spatial location.

standard deviation. This motivated us to utilize SOM neural networks. The K-means algorithm that we
employed for our classification is explained in pseudocode 1.

3.2. Self Organizing Maps (SOMs)

SOM’s are inspired by biological neural systems. They are an abstract mathematical model of topographic
mapping from visual sensors to cerebral cortex[49]. SOMs are a type of artificial neural network that is
trained using unsupervised learning to produce a low-dimensional discretized representation of the
training samples from input space [50, 51]. Figure 5 demonstrates the vanilla architecture of SOMs.

SOM’s are trained using competitive learning rather than the error-correction learning (e.g., backprop-
agation using gradient descent) conventionally used by other artificial neural networks like ResNets[24],
VGG [52], and Tranformers [53, 54] etc. SOM’s work in two phases. The first one is training and the
second one is mapping. Initially, the training phase learns from the dataset or input space to create
a simplified, lower-dimensional version of "map space". Finally, this established map space is used to
classify new input data in the mapping phase. The SOM algorithm is summarized in pseudocode 2
adapted from [55, 49]

The third part of the algorithm is the extraction of results. The signals that are classified with their
surface labels are mapped back to the spatial space of the image. Finally, a segmentation mask is built
based on labels and visualized in the fourth and last part. The section 5 explains and demonstrates the
experiments and results by applying the discussed methodology.



Algorithm 1 Classifying RTI signals using K-means with Standard Deviation

1: Input: Signal Standard deviation dataset 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], number of clusters 𝑘, threshold 𝜖,
iterations 𝜂

2: Output: Classification of signals into cluster and centroids
3: Initialize cluster centroids 𝜇1, 𝜇2, . . . , 𝜇𝑘 ∈ R𝑛 randomly
4: repeat
5: for each signal 𝑥(𝑖) do
6: 𝐶𝑗 =

{︁
𝑥𝑖 : ‖𝑥𝑖 − 𝜇𝑗‖2 ≤ ‖𝑥𝑖 − 𝜇𝑙‖2 for all 𝑙 = 1, 2, . . . , 𝑘

}︁
◁ 𝐶𝑗 is set of data points

assigned to 𝜇𝑗

7: for each cluster 𝑗 do
8: 𝜇𝑗 =

1
|𝐶𝑗 |

∑︀
𝑥𝑖∈𝐶𝑗

𝑥𝑖 ◁ Update cluster centroids

9: Convergence Check:
10: if ||𝜇𝑛𝑒𝑤

𝑗 − 𝜇𝑜𝑙𝑑
𝑗 || < 𝜖 then

11: break
12: if 𝑖𝑡𝑒𝑟 == 𝜂 then
13: break
14: until convergence
15: return cluster assignments and centroids

4. Dataset

We have prepared some in-house data, and other data has been obtained from published works [56, 57].
For the acquisition of MLIC, we selected the ring setup (varying azimuth, fixed elevation) due to its
capability to showcase unpredictable patterns in pixel intensity because of surface characteristics.
This lets us focus more on the data depending on surface characteristics. The data is explained in the
following sub-sections.
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Figure 5: SOMs map high-dimensional data into a lower-dimensional space while preserving the topological
structure of the data. The n-pixel signals are classified into m-classes



Algorithm 2 SOM for RTI signal classification

1: Input: RTI Signals X = [𝑥1, 𝑥2, . . . , 𝑥𝑛], iteration 𝑡, learning rate 𝛼
2: Output: Classification of signals into 𝑚 classes
3: Initialize the weight vectors W = [𝑤1, 𝑤2, . . . , 𝑤𝑚] randomly
4: for 𝑡 = 1 to 𝑇 do
5: At each iteration 𝑡, present an input signal 𝑥(𝑡), and select the winner using competition.

𝜈(𝑡) = argmin𝑘∈Ω ‖x(𝑡)−w𝑘(𝑡)‖
6: Update weights of the winner and its neighbors.

Δw𝑘(𝑡) = 𝛼(𝑡)𝜂(𝜈, 𝑘, 𝑡) [x(𝑡)−w𝜈(𝑡)] ◁ Ω is a set of neuron indexes
where:
𝜂(𝜈, 𝑘, 𝑡) = exp

[︁
−‖r𝜈−r𝑘‖2

2𝜎(𝑡)2

]︁
◁ neighbourhood function

7: Learning rate decreases monotonically and satisfies the following equations:
0 < 𝛼(𝑡) < 1
lim𝑡→∞

∑︀
𝛼(𝑡) → ∞

lim𝑡→∞ 𝛼(𝑡) → 0

8: return updated 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑚]
9: 𝑌 = 𝑊 (𝑋)

10: 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 = 𝑣𝑒𝑐2𝑖𝑛𝑑(𝑌 )

4.0.1. Coin of Emperor Nicolas

The first surface consists of a cultural heritage object. It is a coin called the "Coin of Emperor Nicolas II"
from the year 1897 AD, depicted in figure 6. This coin’s 3D model is sourced from Sketchfab under a
Creative Commons license and was used in our study [56]. We used Blender software to capture the
RTI images.

Figure 6: Coin of Emperor Nicolas II. It is 1 Rouble coin that was in circulation from the year 1895 to 1915 in
what is now modern-day Russia. This coin weighs 20𝑔, has a diameter of 33.65𝑚𝑚, a thickness of 2.7𝑚𝑚, and
is made of silver. Source: [58]

4.0.2. Rust Course Metal

The second surface we used in our experiments was "Rust Course Metal", which is obtained from a
dataset published by [57]. It consists of a metallic surface with some rust on it. The figure 7 shows the
metal. This surface is important to understand how the reflectance properties of metals change when
rust comes on them. This has significance in industrial quality control and material inspection.



Figure 7: Rust Course Metal. Source: [57]

4.0.3. Two Black Surfaces

This dataset was prepared to compare the algorithm’s performance in simulated data and real data.
Two black surfaces with the same color perception to the human eye but different material properties
were prepared by 3D printing. We have used the grayscale camera, primarily a one-channel camera, to
acquire its MLIC dataset. Figure 8 demonstrates the real "Two black Surfaces".

(a) The surface on the left side is PLC
and the one on right side is Nylon.

(b) Demonstration of
varying reflectance
profiles of surfaces

(c) Color measurement
values of PLC.

(d) Measuring L*a*b*
values of both surfaces.

(e) Color measurement
values of Nylon.

Figure 8: Two black surfaces (real): It can be seen that these two surfaces have similar color. However, they are
made of different materials and hence possess different reflectance properties. Nylon is shinier and PLC is more
matt. The texture on them is a fabrication constraint.



Figure 9: Two black surfaces (simulated): It can be seen that while these two surfaces have same color but they
are made of different materials and hence possess different reflectance properties. The images are simulated in
blender software.

The synthetic/simulated "Two black surfaces" were also created in blender software by putting the
same constraint of the same color and different material. The metallic and roughness properties were
kept different for both surfaces. Figure 9 shows the two black surfaces on the blender. Since it is a
simulated environment, there was no fabrication constraint and hence the surface did not have any
texture lines like the real "Two black surfaces".

5. Experiments and Results

This section employs the methodology discussed in the section 3 to experiment on data explained in
section 4. The results are obtained and discussed.

The first experiment was done on the "Coin of Emperor Nicolas". Since the coin is old and a cultural
heritage object, it has undergone various aging processes, and its surface is no longer homogenous. We
aim to differentiate the surface within the coin based on its illumination variation information. This
can further help cultural heritage experts understand the level of rust or other degradation process that
can be present and not apparent otherwise. We used 27 distinct illumination directions at a constant
elevation of 30∘ and variable equally spaced azimuth to generate 27 simulated images in the blender.
Figure 10 demonstrates and explains the results. The same experiment was repeated with the K-means
algorithm, and results are shown in figure 11.

The second experiment was performed on the "Rust Course Metal". We used 10 distinct illumination
directions with a constant elevation of 30∘ and equally spaced variable azimuth angles to generate 10
simulated RTI images. Figure 12 explains the results. Since it is a synthetic flat surface with symmetric
reflectance profile, ring acquisition was not helpful in getting illumination variation data. We found
that using a varying elevation acquisition, where lights are positioned at different elevation angles,
would be more suitable for obtaining meaningful reflectance data from this type of surface.

The third experiment was performed on the real "Two Black Surfaces". The two black surfaces were
assembled in the RTI dome to get MLIC. We captured 24 distinct images from 24 illumination directions
with a constant elevation of 45∘ and variable equally spaced azimuth. The camera in the RTI dome is
very high quality and produces 4000 by 6000-pixel images. Hence, it was difficult to process big regions
of interest. While the algorithm struggles to classify real data, as shown in figure 13, it was able to
differentiate one surface from another to some extent.

The fourth experiment was performed on the synthetic "Two Black Surfaces". We used 10 distinct
illumination directions with a constant elevation of 30∘ and equally spaced variable azimuth angles to
generate 10 simulated RTI images. This surface is discussed in section 4 and figure 9. The algorithm
classifies the two different materials in "Two Black Surfaces" as shown in figure 14 because it is a clean
synthetic surface with a distinguished reflectance profile.
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Figure 10: It can be seen that the pixels have been classified according to their reflectances w.r.t varying
illuminations. SOMs learn the pattern in the signals and classify them accordingly. The yellow segmented area
represents a bright surface type whereas green and blue are relatively specular surface types considering their
sensitivity to light directions. The red surface type is a relatively dark background. This can help cultural heritage
experts identify potential degradation that might not be apparent on the surface. Non-experts might struggle
due to the complexity of the variations in reflectance.

6. Conclusion

This paper presents an approach to surface classification using RTI data. The suggested method uses
SOM and K-means, two self-supervised learning algorithms, to classify surfaces according to their
reflectance profiles. Surface classification using RTI has great potential for several applications, such as
industrial quality control and the preservation of cultural heritage. We believe surface classification is
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Figure 11: K-means classified the surface using standard deviation in the signal. The pixels with similar re-
flectance profiles are clustered together. This segmentation mask tells what part of the surfaces have illumination
variation (for example, Blue and Green classes here). However, it can be seen that means is misclassifying dark
background (yellow class) which is dark with a bright part of the face since they have similar standard deviation.

the first step to material classification using RTI.
Machine learning plays a crucial role in surface classification problems. We used K-means classifi-

cation initially, but it had drawbacks because signals can be mistakenly misclassified since K-means
classifies signals based on standard deviation. It does not learn the patterns of the signal. This resulted
in the use of artificial neural networks known as SOM neural networks, which is a self-supervised
learning method and offers a better low-dimensional representation of data. The examination of coin
of Emperor Nicolas II provides us with valuable information about the reflectance properties of the



(a) (b)

(c) (d)

Figure 12: The sub-figure (a) shows the classification of the surface using K-means, sub-figure (b) shows
classification using SOM neural network, and sub-figure (c) shows the original color image of the surface. It can
be observed that SOMs perform better than K means. SOMs are able to detect scratches in the surface which
appear like lines in sub-figure (b). Sub-figure (d) shows the compares the same segmented part in subfigure (c)
with its SOM segmented part.

surfaces. This methodology is designed for 2D plain surfaces and struggled with real "Two Black Sur-
faces" whose geometry was not completely flat due to 3D printer fabrication constraints. The algorithm
was identifying shadow of elevations as matt surface which was the wrong classification as discussed
in section 5. However, the algorithm was still able to classify surfaces according to their reflectance
profiles. We observed that the K-means algorithm does not perform as well as the SOM neural networks
in our experiments, however this observation is primarily based on visual inspection of the classification
results. This qualitative assessment, though not quantified by classification mismatch metrics, can be
supported by expert validation of the results.

Our approach’s motivation is to exploit the illumination variation data to better understand the
surfaces and discover their anomalies. This is the prime reason we are using the self-supervised method,
and since we are exploring the surface, we do not have the ground truth to compare our algorithm.

In summary, the experiments presented here contribute to the advancement of techniques for surface
analysis, with implications for fields such as cultural heritage preservation and material characterization.

In the future, our research will focus on refining and creating methodologies to address computational
challenges, expanding the scope of materials analyzed and addressing geometrical 3D properties of the
surfaces in the algorithm. We plan to extend this classification model to use RGB images. RGB images
offer extra color information that can help the model better distinguish between different materials,



(a) Segmentation of two black surfaces using K-means. It can be seen that the
K-means algorithm has classified the right side (PLC matt surface with red)
mostly correctly but is struggling with classifying the relatively specular
left side (Nylon). This is due to the involvement of texture geometry.

(b) Segmetation of two black surfaces using SOM neural network. It can be
seen that the SOM algorithm mostly classifies the right PLC side as one
class (red) based on its matt response. However, it has misclassified some
parts of the left side surface because it mistakes shadow a matt surface due
to texture geometry.

Figure 13: The gray lines between them signify the separation. The left side surface is more shiny while the
right side surface is more matt. The fabrication constraints of texture lines have complicated the reflectance
responses, and this makes the algorithm vulnerable to wrongly classifying the surface.

potentially improving accuracy. We also plan to extend this framework for 3D RTI acquisition. This
means the algorithm will be extended for RTI acquisitions with variable elevations and variable azimuth
angles. This can provide invaluable reflectance variation information.
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Figure 14: The synthetic "Two Black Surfaces" are classified correctly using SOM. The red class shows the first
surface and the green class shows the second surface.
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