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Abstract
Image classification involves categorizing images into predefined classes based on their visual features.
While most existing classifiers perform well on noise-free and non-corrupted images, their performance
is significantly compromised on real-world images that exhibit severe degradation. Real-world images,
especially ones of military targets, are typically captured under extenuating battlefield conditions and
subject to a variety of natural and anthropogenic stressors such as occlusion, obfuscation, camouflage,
distortion and sensor noise. Traditional image classifiers prove inadequate in such situations since they
require large amounts of visual training data to build resilience to the above stressors. Since visual
training data acquired under a variety of viewing conditions are not always abundant, the problem of
achieving acceptable classification accuracy with limited training data is of growing interest. Zero-shot
learning (ZSL) and low-shot learning (LSL) offer a means for incorporating auxiliary information sources
to compensate for the absence or paucity of visual training data respectively. We propose a supervised
LSL-based classifier termed as CoNNText that uses auxiliary shape-based information to improve the
robustness of traditional convolutional neural network (CNN)-based RGB image classifiers. The proposed
CoNNText model integrates the shape context descriptor with CNN-derived RGB image features to yield
improved automatic target recognition (ATR) accuracy for military vehicles in RGB images corrupted
by various environmental and anthropogenic stressors with limited visual training data. Experimental
results show that the CoNNText model improves upon the benchmark CNN classification accuracy,
quantified using the F-1 score and AUC (area under the ROC curve) as the performance metrics, when
tested on an RGB image dataset of military vehicles under varying battlefield stressors.
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1. Introduction

Automatic target recognition (ATR) is an important component of autonomous military systems.
The development and deployment of accurate real-time ATR systems is of paramount importance
to the military given their critical role in modern warfare. In recent times, ATR systems have
undergone a significant revolution with the incorporation of artificial intelligence (AI) and
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machine learning (ML) techniques. The integration of AI and ML techniques in military systems
and operations has transformed various aspects of modern warfare resulting in the extensive
deployment of a variety of systems with semi and completely autonomous capabilities including
unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), autonomous decision-
support systems, ATR systems, autonomous target tracking and engagement capabilities among
others [17].

Enabling high levels of autonomy and accuracy in ATR systems under battlefield conditions
requires enormous amounts of training data acquired under a wide variety of battlefield condi-
tions. Due to the adverse nature of battlefield conditions characterized by the presence of several
detrimental factors and a wide variety of viewing conditions, accurate target identification
and localization requires that the classifier be trained on data that encompass a large range
of detrimental factors and viewing conditions. The paucity of such training data presents a
significant bottleneck in the development and deployment of robust and reliable ATR systems.
Consequently, ATR systems need to be designed to be capable of identifying target classes
that they have not been explicitly or adequately trained on. These include previously unseen
or rarely seen target classes and more importantly, known targets that are corrupted with
degradation factors (e.g., noise, occlusion, illumination variations, camouflage, distortion) that
are not represented in the training image dataset.

The aforementioned paucity of training data in ATR is addressed by Zero-Shot Learning
(ZSL) and Low Shot Learning (LSL) approaches. ZSL is essentially designed for situations where
a target class in the testing data is entirely absent from the training data whereas in LSL the
target class in the testing data is insufficiently represented in the training data [2], [3]. LSL,
also referred to as few-shot learning (FSL), deals with situations where the final classification
(during testing time) must be done based on a few observed training samples whereas in the
case of ZSL, the final classification is performed for a previously unobserved target class. ZSL
and LSL methods represent a generalization of the traditional supervised learning methods to
improve classification accuracy in that LSL encourages the model to be robust and invariant to
environmental variations in visual features whereas ZSL goes a step further, wherein the model
learns to classify novel target classes by transferring the relevant knowledge from previously
observed target classes.

Humans perform ZSL and LSL naturally. For example, a person who has never seen a
zebra before would be able to recognize it in an image if the person were told that a zebra is
visually similar to a horse (a previously observed class) with the distinguishing characteristic
of possessing stripes (provided as auxiliary information). To achieve ZSL and LSL capabilities
within an ML system, we need to identify the sources of auxiliary knowledge that would allow
generalization from previously seen target classes to unseen or rarely seen target classes. To
this end we propose a fusion model termed CoNNText, that integrates auxiliary information
with color (RGB) image data to enable this generalization. We use convolutional neural network
(CNN)-based models for extraction of RGB image features and fuse them with shape-based
information in the form of the shape context (SC) descriptor to enable ZSL/LSL-based target
classification [4], [5]. The proposed CoNNText model enables us to determine the functional
dependence of the classification accuracy on the global CNN-based image features and a
geometric shape representation in the form of the SC descriptor. We expect the CoNNText
model to yield higher classification accuracy compared to traditional CNN-based models when



the input images of seen target classes are subject to various battlefield stressors (e.g., distortion,
camouflage, defilade, vertical coloration, and horizontal coloration) with limited training data.

The remainder of the paper is organized as follows: Section 2 presents a review of the relevant
ATR research literature; the datasets used are described in Section 3; the relevant ATR methods
are described in Section 4; the experimental results are presented and discussed in Section 5;
and the paper is concluded in Section 6 with an outline for future work.

2. Literature Review

Convolutional Neural Networks (CNNs) have radically changed the field of computer vision
on account of their ability to learn hierarchical representations directly from raw image data,
thereby eliminating the need for feature engineering. The pioneering CNN architecture LeNet-5,
introduced by LeCun et. al [3], demonstrated the power of convolutional, pooling and fully-
connected layers in the context of handwritten digit recognition. The AlexNet proposed by
Krizhevsky et al. [4], is a deep CNN architecture that won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012. AlexNet with a deeper architecture comprising of
multiple convolutional and fully connected layers, dropout regularization and the use of Rectified
Linear Units (ReLUs) [24] significantly outperformed other contemporary CNN models. AlexNet
paved the way for several deep CNN architectures, namely VGGNet [5] whose primary feature
was the increased depth of the network architecture. The ResNet [6], a deep CNN architecture
with residual connections to address the vanishing gradient problem, achieved state-of-the-art
performance on several visual recognition tasks and became a fundamental building block for
deeper architectures. The use of CNNs was extended beyond image classification. With the
advent of region-based CNNs (RCNNs) [7] that combined CNN features and region proposal
algorithms, object detection in images became feasible and led to the development of Faster-
RCNN [8] and Mask-RCNN [9] architectures which achieved state-of-the-art performance in
object detection, semantic segmentation and instance segmentation tasks. Recent advancements
in CNNs include the inclusion of attention mechanisms [18], which enable the CNN model to
focus on relevant image regions, and self-supervised learning, which leverages unsupervised
pretraining to boost the CNN performance with limited labeled data.

Zero-shot learning (ZSL) is an ML paradigm where a pretrained deep learning model is
made to generalize on a novel category of samples. The seminal work by Lampert et al. [10]
introduced the concept of attribute-based ZSL, where each class is associated with a set of
semantic attributes. Akata et al. [11] introduced the use of CNNs to map visual features to
semantic embeddings, whereas Socher et al. [12] utilized recursive neural networks (RNNs)
to map visual features to compositional phrase embeddings. The semantic attributes and
embeddings were used to bridge the gap between seen and unseen classes within the ZSL
framework. Low-shot learning (LSL) is an ML framework that enables a pretrained model to
generalize over new categories of data using only a few labeled samples per class, and is regarded
as a form of meta-learning [27]. Vinyals et al. [13] proposed Matching Networks to learn a metric
space in which instances from the same class are mapped in closer proximity than instances
from different classes. To further enhance LSL performance, meta-learning approaches such as
Model-Agnostic Meta-Learning (MAML) [14] and Meta-Learning with Memory-Augmented



Neural Networks (MANNs) have been proposed. Recent advancements have also explored the
combination of ZSL and LSL techniques, termed Generalized Zero-shot Learning (GZSL) [19].
GZSL aims to bridge the gap between seen and unseen classes while addressing the challenges
of limited labeled data, enabling more comprehensive and flexible learning scenarios.
The shape context (SC) descriptor, introduced by Belongie et al. [1], [2], captures the distribution
of local shape features around each point on a shape contour. A formal definition of the SC
descriptor is as follows: Consider 𝑛 points sampled on the shape contour. Consider the set of
vectors originating from a sample point 𝑝𝑖 on the shape contour to the remainder 𝑛− 1 contour
sample points on the shape. For the point 𝑝𝑖, a coarse histogram ℎ𝑖 representing the distribution
of the relative positions of the remaining 𝑛− 1 sample contour points is computed and defined
as the shape context of the point 𝑝𝑖 [1]. The key idea behind the SC descriptor is to represent
each contour point by a histogram that encodes the relative spatial relationship between the
reference sample point and the remaining sample points on the shape contour. The histogram
bins represent different angular sectors and log-radial distances, thus capturing the local shape
structure in (log 𝜌, 𝜃) space where 𝜌 is the radial distance and 𝜃 is the polar angle.
Multimodal feature fusion has gained significant attention in recent years with the increasing
availability of data from various modalities, such as images, text, audio, and sensor data [25].
By exploiting the complementary and synergistic nature of multiple input data modalities, the
capabilities of the ML models are enhanced using multimodal feature fusion. Early approaches
in multimodal feature fusion focused on early-stage fusion where feature vectors from different
modalities are simply concatenated at the input level [25]. However, early-stage fusion methods
often face challenges that arise from the heterogeneity and varying dimensionalities of the
underlying multimodal feature spaces which limit the effectiveness of feature fusion. Late-stage
fusion techniques [26] have emerged as an alternative, where features from individual modalities
are processed separately via individual ML models whose predictions or representations are
then combined at a later stage. This approach allows for flexibility in modeling and can handle
feature spaces of varying dimensionalities and complexities. Techniques such as decision-level
fusion, score-level fusion, and feature-level fusion have been explored in the late-stage fusion
paradigm [26]. Applications of multimodal feature fusion span various domains, including multi-
media analysis, human-computer interaction, healthcare, and autonomous systems. Multimodal
feature fusion has been successfully applied in various tasks such as multimodal sentiment
analysis, audio-visual speech recognition, multimedia retrieval, and multimodal medical image
analysis [26].

3. Description of Datasets

In this work, we developed our in-house dataset consisting of ≈ 26,000 RGB images collected
from public internet sources. An 80-10-10 split among the training, validation and testing sets
was used. Per the requirements of the U.S. Army, these images were of five different army
vehicles namely; Abrams (tank), Bradley (tracked armored fighting vehicle), MRAP (mine-
resistant ambush-protected light tactical vehicle), HMMWW (high mobility multipurpose
wheeled vehicle), and Stryker (armored infantry personnel carrier) as depicted in Fig. 1.

One of the primary aims of our work is to test the proposed ZSL/LSL framework on stressed



Figure 1: Sample military vehicle images obtained from the web.

Figure 2: Images of the Bradley vehicles at 50% stress level for a variety of stressors.

images obtained from a dataset comprising of RGB images of military vehicles. Using software
packages developed by the US Army DEVCOM Analysis Center [15], we simulated some
common battlefield stressors on these images to test the robustness of our ZSL/LSL classification
models. All the stressors were applied over the target military vehicle image in 5% increments
of the image area [15]. The corrupted images resulting from the application of various stressors
were used to test the robustness of the proposed ZSL/LSL framework to the corresponding
stressed environmental conditions. The stressors chosen were those commonly encountered in
battlefield environments such as defilade, coloration, distortion, and camouflage as depicted in
Fig. 2. Additionally, a dataset of 3D CAD model renderings of military vehicles was also created.
The 3D CAD model renderings were obtained by viewing the 3D CAD model in 5𝑜increments
long the azimuth dimension, and 90𝑜 and 60𝑜 increments along the polar dimension [15]. We
refer to this dataset as the 3D model dataset, and use it to train and test our SC descriptor [1].



4. Automatic Target Recognition Methods

In order to evaluate and compare different ZSL/LSL-based ATR methods on a test dataset of im-
ages corrupted with natural and anthropogenic (i.e., human-induced) stressors, e.g., camouflage,
coloration, defilade, and distortion, we designed and implemented the following classifica-
tion schemes: (a) Pure CNN-based classification and, (b) CNN and SC descriptor fusion-based
classification.

4.1. Pure CNN-based Classification

We employed a state-of-the-art CNN that is pre-trained on the ImageNet[16] database and
specifically designed to classify images into predefined classes. Given the limited size of our
training set of images containing military vehicles and our unique classification domain, we use
transfer learning to fine-tune the pretrained CNN models. Transfer learning [22], [23] results in
significantly higher performance on a new task compared to training from scratch on a new
task using a small training dataset. We use three well-known CNN-based image classification
models: Resnet-50 [6], Inception-V3 [20] and VGG-16 [5][24]. In all of these CNN models, we
replaced the final classification head with our own classification layer during transfer learning
to enable the model to learn task- and target-specific features. Henceforth, we refer to the pure
CNN-based classifier as PureCNN.

4.2. CoNNText: CNN and SC Descriptor Fusion-based Classification

A novel model termed CoNNText is proposed for ZSL/LSL-based ATR. CoNNText employs fusion
of the SC descriptor with CNN-derived color and texture features to enhance the robustness of
target classification in the presence of stressors. The fusion of the CNN-derived deep features
and SC descriptor is expected to result in more robust classification, especially for images
wherein the target objects are occluded and/or subject to natural and human-induced stressors.

4.2.1. Mask Generation:

Generation of the SC descriptor for an object is preceded by the computation of an accurate
object instance mask in the image that essentially captures the object silhouette. We used the
M-RCNN model [9] trained on 100 high-quality RGB images of target objects for this purpose.
The criteria for selecting the high-quality RGB images are as follows: (a) the target object in the
image should be free of occlusion, (b) the images should not contain secondary objects such as
humans, trees, and other military vehicles, and (c) the target object should not be trenched or
camouflaged in the image.

4.2.2. Feature Fusion:

The fusion of the CNN-derived deep image features and the SC descriptors is performed at an
early stage of the processing pipeline (i.e., early-stage fusion). Since the input data modalities are
fused before any significant high-level analysis or decision-making is performed, the early-stage
fusion can preserve the raw information derived from multiple modalities, and allow the model



Figure 3: Proposed CoNNText model architecture for ATR using feature fusion.

to learn jointly from different input sources by capturing both low-level details and high-level
correlations between the multiple modalities.

The schematic of the proposed early-stage fusion is shown in Fig. 3. Since the features to be
fused are both visual features, we concatenated the feature vectors obtained from the CNN and
SC descriptors before feeding them into subsequent layers or classifiers. A major challenge faced
in the early-stage fusion process stems from the heterogeneity and different dimensionalities of
the underlying feature modalities since CNN-derived deep feature vectors are 512-dimensional
whereas the SC descriptor is 6000-dimensional. Consequently, dimensionality reduction, feature
selection and feature mapping techniques need to be employed to appropriately align the feature
vectors derived from the two modalities. We employed an autoencoder [21] to map the two
input feature vectors into a shared vector space of reduced dimensionality to preserve the
most informative features from both modalities while discarding unnecessary and redundant
information. We also experimented with Principle Component Analysis (PCA), Independent
Component Analysis (ICA), and Linear Discriminate Analysis (LDA) techniques in this regard
but found the autoencoder to yield the best results.

5. Experimental Results And Discussion

We performed a holistic comparative analysis of the effect of no stress, low stress, medium stress,
and high stress on the performance of the PureCNN and CoNNText models. The PureCNN
model used the Resnet-50, Inception-V3, or VGG-16 model for target classification. Likewise,
the CoNNText model also used one of the aforementioned CNN models as the base model for
early-stage fusion followed by target classification. Both models were fed RGB images corrupted
with the presence of stressors. For each stressor type, the stress levels chosen were 0%, 25%,
50%, and 75% where 0% represents an uncorrupted (unstressed) input image. We computed



and compared the classification accuracy of both the PureCNN model and CoNNText model
for each stressor where the classification accuracy represented the proportion of correctly
classified samples out of the total number of samples in the dataset (expressed as a percentage).
In particular, we observed and analyzed how the fusion of CNN-derived image features and
shape information impacted the overall classification accuracy. We also computed the F1-scores
and AUC (area under the ROC curve) values across stressors and target classes. The results in
Figs. 4, 5 and 6 are presented as an array of bar charts where each row represents a target class
(Abrams, Bradley, HMMWW, MRAP or Stryker) and each column represents a stressor type
(defilade, distortion, vertical coloration, horizontal coloration, or camouflage). Within each bar
chart, the 𝑥-axis represents the stress levels (0% - 75%) and 𝑦-axis represents the performance
metric (F-1 score or AUC). We observe how each of the three CoNNText models (with Resnet-50,
Inception-V3, or VGG-16 as the base CNN) performs in comparison to one another in terms of
the F-1 score (Fig. 4). We also observe how the CoNNText model performs in comparison to its
corresponding PureCNN model in terms of the F-1 score and AUC metrics (Figs. 5 and 6).

Before presenting a per-stressor type and per-target class analysis of performance, we make
the following general observations: (a) The CoNNText Resnet-50 is observed to clearly outper-
form its PureCNN counterpart with the inclusion of the SC descriptor yielding higher F1-scores
across all the stressor types and stress levels. (b) The CoNNText Inception-V3 does not perform
worse than its PureCNN counterpart, exceeding the PureCNN’s F-1 score only for the Horizontal
Coloration stressor. (c) The CoNNText VGG-16 however is not able to capture the shape features
effectively to boost its F-1 score in comparison to its PureCNN counterpart.

5.1. Detailed Per Stressor Type Analysis

For the defilade stress, at 25% and 50% stress levels, CoNNText performs better than its PureCNN
counterpart (Figs. 5 and 6). In the case of the MRAP class, CoNNText shows considerable
improvement over PureCNN owing to MRAP’s unique shape and structure. In the case of MRAP
and Bradley, CoNNText shows consistently better performance over its PureCNN counterpart
(Figs. 5 and 6). At the 75% stress level, CoNNText exhibits a drop in F-1 score for the MRAP
class. Since both, HMMWW and MRAP have boxy shapes, CoNNText, which relies on the SC
descriptor-based shape information, predicts some instances of MRAP as HMMWW. Although
there is a distinct difference between the MRAP and HMMWW shapes (HMMWW has more
straight edges and flat surfaces whereas MRAP has a more angular and curved shape) during
a defilade stress test, most object parts are obscured resulting in the confusion between the
two classes. Additional auxiliary information would be needed to resolve this confusion under
defilade stress.

For the distortion stress, at 25% stress level, we observe that CoNNText performs almost the
same as PureCNN for all classes, with better CoNNText F-1 scores in the case of MRAP and
Bradley and slightly lower CoNNText F-1 scores (0.02% - 0.04%) for the other classes (Fig. 5).
At 50% and 75% stress levels, CoNNText has a 0.08% - 0.10% lower score for the Abrams class
(Fig. 5). The reason is that Bradley has a prominent shape and a distinct silhouette, with a larger
turret size and an elevated turret position on the hull. Abrams has a similar shape to Bradley but
with a smaller turret and a less prominent shape and silhouette. Distortion affects the Abrams
silhouette contours resulting in some Abrams instances being misclassified as Bradley.



Figure 4: F1-score comparison of the CoNNText models with different base CNNs (Inception-V3, Resnet-
50 and VGG-16). The top row to bottom row represents target classes: Abrams, Bradley, HMMWW,
MRAP, and Stryker, respectively. The left column to right column represents stressor types: Defilade,
Distortion, Vertical Coloration, Horizontal Coloration, and Camouflage, respectively. Within each bar
chart: 𝑥-axis represents the stress levels - 0%, 25%, 50%, and 75%, respectively; 𝑦-axis represents the
F1-score. Blue bar: Inception-V3, Orange bar: Resnet50, Green Bar: VGG16.

In the case of the coloration stressor, CoNNText performs better than or the same as the
PureCNN (Fig. 5). PureCNN is observed to exhibit a bias towards the Abrams class characterized
by low precision and high recall. At the 75% stress level, CoNNText yields better F-1 scores
than PureCNN in the case of Abrams and Bradley for horizontal coloration stress since the
discrimination between Abrams and Bradley is more dependent on the differences in silhouette



shapes. In the presence of high coloration stress which render the PureCNN features less
effective, the SC descriptor derived from the silhouette shapes aids in effective target recognition.

For the camouflage stress, the CoNNText outperforms PureCNN in the presence of camouflage
stress across all stress levels and classes (Figs. 4, 5, and 6) except for HMMWW (which we discuss
further when we analyze the results on a per class basis). The results show the importance
of shape-based features (i.e., the SC descriptor) in addressing camouflage stress where RGB
image-derived features are rendered less effective.

5.2. Detailed Per Class Analysis

For Abrams, at 25% stress level, Abrams is classified with a high F-1 score by CoNNText
compared to PureCNN for all base CNNs and for most stressors except distortion (Fig. 5). A
possible explanation is that Abrams, Bradley, and Stryker are the target vehicle classes with
mounted guns or turrets on top. The confusion matrix reveals that the incorrect class assigned
to Abrams at 25% distortion stress level is mainly Bradley since the difference between these
two vehicles is the length of the gun, with the Bradley having a larger gun. Likewise defilade
and camouflage are the stressors for which Abrams is misclassfied by CoNNText but only at a
higher (75%) stress level.

For Bradley, the CoNNText yields good classification results for Bradley across all stres-
sor types except for defilade at 75% stress level, which is when the turret (Bradley’s most
distinguishing feature) is obscured (Figs. 4 and 5).

The HMMWW class does not show much improvement with the addition of the shape features
via CoNNText since it has no distinguishing shape features (Figs. 5 and 6). Since the HMMWW
is a multipurpose vehicle, the HMMWW class exhibits several structural variations making it
more difficult to discriminate based on shape features.

The MRAP class shows the most promise for our CoNNText model, due to its unique structure.
The MRAP has an unique shape with a high ground clearance and V-shaped hull at the back
making the SC descriptor an effective discriminator (Figs. 5 and 6).

The Stryker class shows good results with CoNNText for 50% horizontal coloration stress
(Figs. 5 and 6). As in the case of Abrams and Bradley, the turret is the most distinguishing
feature of the Stryker class and is captured well by the SC descriptor even in the presence of
horizontal coloration stress resulting in higher CoNNText performance.

The proposed CoNNText framework offers an alternative way of improving ATR performance
for tasks which require a robust classifier that is immune to environmental noise and distor-
tions. Such a robust classifier would aid a human in real-time decision making. These results
demonstrate that low-shot learning with auxiliary information on a domain specific task can
aid in target recognition under environmentally stressed conditions. This research also paves
the way for further research using additional information like textual data and domain-specific
3D point cloud information to further enhance the robustness of the classifier.

6. Conclusions and Future Work

We proposed a novel ZSL/LSL-based model termed CoNNText for the fusion of CNN-derived
feature vectors and SC descriptors as auxiliary information in the context of ATR for military



Figure 5: F1-score comparison between CoNNText and PureCNN with Resnet-50 as the base CNN.
The top row to bottom row represents target classes: Abrams, Bradley, HMMWW, MRAP, and Stryker,
respectively. The left column to the right column represents stressor types: Defilade, Distortion, Vertical
Coloration, Horizontal Coloration, and Camouflage, respectively. Within each bar chart: 𝑥-axis repre-
sents the stress levels - 0%, 25%, 50%, and 75%, respectively; 𝑦-axis represents the F1-score. Blue bar:
PureCNN, Orange bar: CoNNText.

vehicles under environmental and human-induced stressors.
The CoNNText model showed improved classification accuracy over pure CNN-based ap-

proaches and offered an alternative way of improving ATR performance in the presence of
environmental and human-induced stressors. The feature fusion was observed to work best in
the case of Resnet-50 and least in the case of VGG-16. The CoNNText model yielded improved



Figure 6: AUC score comparison between CoNNText and PureCNN with Resnet-50 as the base CNN.
The top row to bottom row represents target classes: Abrams, Bradley, HMMWW, MRAP, and Stryker,
respectively. The left column to the right column represents stressor types: Defilade, Distortion, Vertical
Coloration, Horizontal Coloration, and Camouflage, respectively. Within each bar chart: 𝑥-axis repre-
sents the stress levels - 0%, 25%, 50%, and 75%, respectively; 𝑦-axis represents the F1-score. Blue bar:
PureCNN, Orange bar: CoNNText

accuracy on a dataset of stressed images from the target classes: Abrams, Bradley, HMMWW,
MRAP and Stryker. The improvement in accuracy was 10% - 12% for distortion, camouflage,
horizontal coloration and defilade stressors at 50% stress level and 12% for a 50% defilade stressed
image. We see a significant increase in accuracy ranging from 36% to 64% on a 75% horizontal
coloration stressed image in our CoNNText model with a Resnet-50 base CNN.



Additionally, we experimented with dimensionality reduction techniques such as PCA, ICA,
and LDA. We found minor accuracy improvements with ICA and PCA techniques applied to
the ResNet-50 architecture. In future, we plan to implement more effective feature selection
methods that would yield better classification accuracy. In addition to more effective feature
dimensionality reduction, a potential future direction would be to improve the shape descriptor,
by focusing on contour extraction rather than instance segmentation. In addition to using shape
information, we plan to use attribute and textual information on the target classes, and 3D point
cloud estimates as auxiliary information sources in our future LSL/ZSL-based ATR frameworks.
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