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Abstract
Intelligent perception systems represent critical enabling technologies to bring innovation in any physical
environment and improve the quality of life tending toward what is known as an intelligent future. This
research explores the use of advanced monitoring perception systems with intelligent capabilities in
industrial contexts. By combining networks of sensors that generate multimodal data, signal and image
processing, and artificial intelligence techniques, the produced know-how can be transferred to industrial
application fields for continuously monitoring goods and people and promoting the transition to a
sustainable, human-centred, and resilient industry. A significant challenge facing monitoring systems is
their inherent complexity, often resulting in usability issues. This study seeks to address this challenge by
developing a new methodological framework to make these systems easily accessible and user-friendly
for individuals regardless of their level of technical skills. The sector of interest is that of Precision
Agriculture (PA), in detail Precision Viticulture (PV), where intelligent systems can make agricultural
production more efficient and ensure sustainable practices are adopted to increase food production and
meet growing global demand while maintaining high-quality standards. This paper provides an overview
of the PhD research proposal considering the main open problems and the main steps that must be
considered.
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1. Introduction

In today’s rapidly evolving work environment, several challenges need to be addressed to adapt
work processes to the changing landscape of technology. These challenges include managing
increasingly complex products, facing product deterioration throughout the life cycle, increasing
customer demand and intensifying international competition, which requires greater efficiency
in responding to the global market’s needs. Achieving these goals is reshaping how various
tasks and activities are performed, necessitating the acquisition of new skills and the adoption
of new working patterns. In this context, it is crucial to explore resilient and technologically
advanced workplaces where new technologies can augment the workforce by enabling workers
to make the most of their skills and abilities [1]. A key technology that contributes to this
vision is machine perception, which focuses on studying and designing systems capable of
understanding and interpreting the outside world [2]. The term perception refers to the ability
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of the human brain to organize and explain the information from external stimuli acting on
the five senses [3]. The goal of machine perception is to create intelligent systems that could
emulate the human perception process [4] to bring significant innovations in a wide range of
application sectors, providing smart solutions to improve the quality and efficiency of operations
and the welfare of workers [2, 5].

Effective target monitoring, which focuses on detecting, tracking, and analyzing specific
objects of interest within a scenario through digital images or videos, is crucial in this evolving
work environment. It provides detailed, real-time information on achieving objectives, allowing
intelligent perception systems to adapt and respond to changing situations, enhancing the
efficiency and reliability of the operations they support. In practice, target monitoring involves
the use of sensors, image processing algorithms, and Artificial Intelligence (AI) techniques to
identify and monitor objects in real-time.

These systems face various challenges, including variability in environmental conditions,
partial occlusion of objects, and changes in lighting [6]. Another issue may be represented by the
complexity of the system itself, especially when it comes to making such technologies accessible
to a wide audience [7]. These problems can manifest in various ways and can influence the
overall effectiveness of the system and its adoption by users. Indeed, addressing the complexity
of the system ensures its use by a wide range of users allowing them to fully exploit its benefits.

Intelligent systems can be applied in numerous scenarios. The application field of quality and
production monitoring is chosen. This type of monitoring refers to the process of supervising
and controlling the quality of products and the efficiency of production within a company or
production process. Real-time interpretation of multimodal data, such as images and video,
can be useful for quality and production assessment. Within these, important is the Precision
Agriculture (PA) sector where intelligent systems can support crop management, improving agri-
cultural yields and ensuring that sustainable practices are adopted to increase food production
by maintaining high-quality standards [8].

The agricultural world is facing new challenges, such as the projected increase in the world
population to 9.7 billion by 2050, according to a United Nations press release [9]. Estimates
show that current agricultural production must increase to secure food supplies for the future,
requiring adequate quantities and quality of agricultural products, intensive yet environmentally
safe production, and the sustainability of the resources involved. Additionally, the impacts of
climate change and the scarcity of resources, such as water and fertilizers, require their efficient
use to improve crop yields while reducing environmental impact. Although agricultural yields
increased in the second half of the twentieth century, disadvantages emerged related to the
request for more fertilizer, pesticides, and water increasing input costs to the farmer and creating
environmental problems. As a result, the use of intelligent systems can enable agricultural
production to be more efficient and ensure sustainable practices by applying the right treatment
in the right place at the right time [10]. In standard agricultural practice interventions are
based on the average characteristics of the soil, leading to the risk of applying resources either
insufficiently or excessively. Agricultural practices conducted with the use of intelligent systems,
on the other hand, aim to adjust timely supplies, taking into account local variability in the
physical, chemical and biological characteristics of the field, as well as application times.

An important subset of PA is that of Precision Viticulture (PV) which coincides with the
generic purposes of PA: the appropriate management of the inherent variability of crops, the



increase in economic benefits, and the reduction of environmental impact. In detail, PV aims to
identify, within a certain degree of stability, the interannual spatial variation of the yields and
quality of the grapes, identifying what are the causes that determine this variability and if they
are attributable to some specific management practices of the site [11] [12].

The vine is a perennial crop and it is important to promote the development of a framework
for the use of intelligent systems to optimize crop management practices, increase economic
benefits, minimize environmental impact and provide the farmer with detailed information
to allow better soil management and make informed decisions [13]. The control of these
crops focuses on plant phenotyping to evaluate and describe the observable characteristics
of a grapevine plant related to its physical appearance, structure, and growth characteristics
[14]. It is important to perform this characterization directly in the field because vineyards
extend over large areas, containing thousands of individual vines, each showing a slightly
distinct phenotype. Traditionally, phenotypic evaluations have relied on manual methods
which, although providing valuable information, are often labor-intensive, time-consuming,
and prone to errors [15]. These crops are difficult to monitor due to the intrinsic difficulties
associated with vineyard characteristics: having a discontinuous canopy organized in rows
requires higher resolution images to discriminate canopy from the soil and greater computing
capacity to manage vineyard spatial information before being used [16]. Therefore, there has
been growing interest in developing automated methods for plant characterization through
technological advances to provide accurate information on crop structure.

In this context, the main case study of this project is to develop a novel methodological
framework for the use of intelligent perception systems to evaluate the phenotypic variations
of vine plants over time, identify anomalies in their growth, and establish correlations with the
specific conditions that cause them. This will ensure more efficient growth control, allowing
farmers to monitor plant conditions better and predict production amounts.

The paper is structured as follows: Section 2 review the related work to provide an introduction
to the context of the research topic underlining the current problems to address, Section 3
describe the methodology used in the PhD research, Section 4 presents the research questions,
Section 5 shows the planning of the PhD during the years, Section 6 shows some of the methods
that will be used and Section 7 presents concluding remarks.

2. Related works

Researchers have explored various methodologies for the use of intelligent perception systems in
the agricultural sector. One of the most powerful tools is Remote Sensing which is a technology
that can provide a timely assessment of changes in growth by acquiring information about an
object or area without directly contacting it [17]. This technology relies on the use of sensors
mounted on different types of platforms such as satellites, aerial (aircraft and unmanned aerial
vehicles, UAVs), and ground-based (unmanned ground vehicles, UGVs) [18]. The choice of
platform is determined by specific application needs, taking into account both advantages and
limitations. Satellites, despite their capability for wide-area coverage, are influenced by weather
conditions, high costs, and challenges in distinguishing vineyard inter-row paths and vegetation.
Low-altitude platforms like manned or unmanned aerial vehicles offer high-resolution imagery,



facilitating the differentiation between vines and weeds. Manned aircraft provide superior
spatial resolution and real-time data but are costly and subject to airspace regulations. UAVs,
though more cost-effective, cover smaller areas but provide detailed imagery beneficial for
canopy analysis. Ground-based platforms, known as proximal sensing, involve sensors placed
closer to the target, offering advantages in mobility, adaptability, and control [19]. They can
be mobile, mounted on agricultural machinery or fixed using tripods. Proximal sensing meets
both small- and large-scale monitoring needs, delivering high-resolution images without flight
scheduling or weather constraints.

Each of the platforms mentioned can be equipped with different types of sensors; typical
sensors are optoelectronic, such as LiDAR and RGB-D [20]. Both these types of sensors allow
3D color mapping which is crucial to quantify the geometric characteristics of plants like the
structure of the canopy, the leaf area index (LAI) and the height of the plants. While LiDAR
stands out for its robustness, accuracy, and high resolution in 3D canopy reconstruction, it
may come with higher costs, complexity, and longer imaging times. As an alternative, RGB-D
cameras have emerged as a solution. Using principles like Stereo Vision or Time-of-Flight (ToF),
these sensors offer a balance between precision and affordability. Despite being less precise in
generating 3D data compared to LiDAR, RGB-D cameras have gained popularity due to their
cost-effectiveness and ease of use. The 3D point clouds provided by both types of sensors are
invaluable in the precision agriculture sector. They allow to have a detailed view of the plant to
evaluate their health and identify problems in growth or vegetative stress. These 3D images
can be processed with computer vision and AI techniques to extract information of interest.

In literature, various works based on using remote sensing tools in precision agriculture are
presented. In most of these, UAV platforms are considered due to their advantages compared to
the other aerial platforms. For example in [21] the reliability of LAI estimation by processing
dense 3D point clouds provided by a UAV-based multispectral imagery was evaluated; in [22] the
spatial variability of biomass in a vineyard was studied using images produced by multispectral
and RGB cameras on a UAV; in [23] an approach was proposed that exploits point clouds to
detect the positions of the trunk of plants and evaluate their characteristics such as the height,
the width and the volume of the canopy by exploiting a UAV equipped first with an RGB
camera and in a second moment with a LIDAR. Although UAV technology provides detailed
information, it doesn’t have the necessary resolution to observe details such as leaves and fruits.
This problem is faced by using terrestrial platforms. For example, in [24] an RGB-D camera
system was used to reconstruct 3D models of vine plants to determine shoot volume; in [25]
a methodology was developed for the automated segmentation of bunches of grapes in color
images coming from an RGB-D camera mounted on board an agricultural vehicle; in [26] the
variation in biomass following the trimming operation within a vineyard was evaluated using
RGB-D images acquired by placing the sensor on a tripod; in [27], methods were developed for
automated vine phenotyping, to estimate canopy volume, identify and counting bunches using
an Intel RealSense RGB-D R200 imaging system. The work in [28] discusses the application
of Machine Learning (ML) techniques in viticulture which mainly focus on the detection,
counting and prediction of grape yield. Several methods in image analysis use convolutional
neural networks (CNN) for image processing, which consist of developing segmentation, shape
recognition, and feature extraction algorithms starting from natural images. For example, in
[29], an algorithm for grapevine flower counting is developed to forecast crop yield. In [30],



an approach to segmenting UAV images is proposed to map diseased areas and guarantee the
healthy state of the plant by continuous monitoring.

However despite the agricultural sector being an active research field, there is a lack of
methodological frameworks for intelligent perception systems to improve vineyard manage-
ment and final production. The current use of these types of systems faces several significant
limitations such as the high cost of sensors, the difficult set-up and use of the system, the need
for specialized personnel, the variability of crops, the reliability of the measurements provided
and the varying environmental conditions, including the impact of climate change. In this
context, this study aims to develop a new methodological framework for the use of intelligent
systems in the agricultural sector able to overcome these bottlenecks and provide real support
for farmers.

3. Research Methodology

The PhD proposal uses as research methodology the Design Science Research (DSR) one [31]
which includes five main activities shown in Figure 1. This approach is tailored to address
challenges and promote innovative solutions through an iterative process of designing, devel-
oping, evaluating, and improving artefacts. In this case, the artefact is represented by a novel
methodological framework for intelligent plant monitoring that can provide robust and reliable de-
cision support to farmers. The core of the proposed framework (Figure 1) focuses on overcoming
inefficiencies and inaccuracies related to traditional vineyard management practices. Among the
main objectives, it is important to integrate control over climate change and environmental pa-
rameters, while promoting sustainability practices. Fundamentals are also the cost-effectiveness,
the ease of installation and use. The DSR ensures a continuous improvement cycle where at
each iteration there is further refinement, based on practical tests in real scenarios and constant
input from experts, such as agronomists. These experts contribute with baseline measurements
and detailed feedback, which are essential for the evolution and validation of the framework.

Figure 1: Design Science Research (DSR) methodology proposed in [31] and the proposed framework
for its application.



4. Research questions

As stated in Section 3, the main artefact of this research proposal is to develop a new method-
ological framework for the improvement of plant monitoring by exploiting the multimodality
of sensors and emerging artificial intelligence techniques. The methodology wants to enhance
the ability to identify problems both in vegetation and fruits early, allowing timely and tar-
geted interventions. This will not only help to quickly identify anomalies but will also try to
understand the causes of problems, enhancing the ability to adequately respond to agricultural
challenges and improve crop yields. Another important achievement is making the monitoring
system more accessible to farmers, regardless of their technological skills, allowing all to use
it without the need for specialized personnel and large economic investments. For example,
the idea is based on the possibility of integrating low-cost sensors on agricultural machinery,
e.g. tractors, which farmers own and use daily within the vineyard. In this way, the system
is cost-effective and simple to set up, which is important for agricultural industries facing
economic and operational obstacles. In this scenario, the following main research question is:
What framework can be developed to model and support the use of intelligent plant
monitoring systems to provide robust and reliable decision-making in the precision
viticulture sector?
The answer to this question, is split into research sub-questions (RQs):

• RQ.1 What are the key requirements for developing a low-cost and user-friendly frame-
work that supports the heterogeneous nature of vineyards?

• RQ.2 Which existing platforms and sensors are most suitable for integration into the
framework to collect data on the phenotypic characteristics of vine plants?

• RQ.3 What methods can be employed to effectively integrate and process multimodal
data within the framework to support decision-making?

• RQ.4 How can the framework be designed to address seasonal and environmental varia-
tions in vineyards through adaptive data processing techniques?

• RQ.5 How can the effectiveness of the entire framework be evaluated in accurately
describing the phenotypic characteristics of vine plants compared to traditional evaluation
methods?

5. Research planning

During the PhD, the study will be divided into different phases. Six Work Packages (WP) have
been identified, shown in the Gantt diagram in Figure 2. The next subsections will detail the
planning of the three years.

5.1. First year: exploration and definition

The first year, which is ongoing, is dedicated to studying the state of the art of intelligent
systems for target monitoring, with attention to the agricultural sector. This phase will provide
a comprehensive overview of current technologies and research methods. Based on this analysis,
the goal is to define the performance objectives of the monitoring system in alignment with the



desired outcomes. Furthermore, during this initial period, an in-depth analysis is conducted on
the sensors available on the market to identify the most suitable ones for specific requirements.
Scientific papers are currently being collected to write a review of the literature on intelligent
systems developed for the agricultural sector, aiming to better define the context in which the
PhD project falls.

5.2. Second year: development and implementation

During the second year, based on the performance objectives defined in the first year, the
study will move to the development and implementation phase of the system within the
laboratory. The primary goal will be to establish the setup for data acquisition. Following
this, the implementation phase will extend to real-world contexts, such as an agricultural field,
planning an acquisition campaign to identify key moments for plant growth analysis. The
idea is to collect data simultaneously with agronomists, enabling the comparison of the data
acquired by the system with that of experts to validate the effectiveness of the system itself.
Once data acquisition is completed, the focus will shift to processing in order to define the most
appropriate techniques for extracting useful information and highlighting particular issues.

5.3. Third year: validation and optimization

The last year of the PhD program will be dedicated to the validation of the results obtained. This
process will involve various activities aimed at confirming the robustness and reliability of the
developed system, as well as the consistency of the results with respect to the pre-established
objective. In parallel, it will be important to outline any limitations or points of improvement
of the systems, to identify areas where changes or upgrades can be made to optimize overall
performance. This phase will represent a fundamental moment, as it will provide a fundamental
verification of the practical usefulness of the developed system.

Figure 2: Gantt diagram of the PhD research project.



6. Research methods

In this section, some of the research methods that will be used in the study are explored. An
integrated approach combining advanced technologies is expected to be used to improve the
precision and effectiveness of vineyard monitoring and management. The following sections
will address these methods.

6.1. Data acquisition

In the first six months of the PhD, ground-based platforms were investigated to pursue the
outlined specific objectives. The capability of these platforms to provide close views of plants is
particularly crucial for monitoring plant changes over time. This modality in data acquisition
enables a detailed examination of plant growth dynamics, allowing for a more precise under-
standing of biomass variations throughout the monitoring period. Consequently, the chosen
ground-based approach aligns with the project’s goal of closely tracking and analyzing the
evolving biomass of vine plants.

RGB-D cameras were investigated because of their advantages compared to LiDAR. They can
capture color information like standard RGB cameras and also depth information using infrared
sensors to measure the distance between the camera and each pixel in the image. These devices
can operate on two principles:

• Stereoscopic Vision (SV): try to mimic human vision by using two cameras facing the scene
with some distance between them. The two images produced from these two sensors are
compared and, since the distance between the sensors is known, these comparisons give
depth information. An example is the Intel Realsense D435 [32] which is a USB-powered
camera that has attracted increasing interest for its cost-effectiveness and its wide field of
view, which allows to acquire information by analyzing a large section of the space under
consideration, with a range of 10 m. This camera can operate in a variety of ambient light
conditions and is particularly suited to systems operating at high motion speeds.

• Time Of Flight (ToF): the camera uses the speed of light to calculate depth. A light emitted
by the device is swept over the scene and the time required by the light to get back to the
camera is then used to estimate the depth. An example is the Microsoft Kinect Azure [33]
which is a camera for 3D modeling of environments, supported by advanced artificial
intelligence algorithms and a series of additional software (SDK) that allow extending
its functionality. It has seven microphones arranged in a circle, as well as the rich image
function of two cameras (depth sensor camera and RGB camera) that can measure the
colour and depth of the subject.

Comparing the Intel RealSense D435 and the Microsoft Azure Kinect, the latter better pur-
sues the research objective. One significant distinction between the two cameras lies in their
resolution. The Azure Kinect has a depth sensor resolution of 640×576 pixels, whereas the
RealSense D435 features a higher depth resolution of 1280×720 pixels. However, the RealSense
D435 captures more detailed but noisy and less accurate depth information compared to the
Kinect, highlighting the latter’s superior performance despite its lower resolution. Regarding
the RGB sensor, the RealSense D435 has a resolution of 1920×1080 pixels, whereas the Kinect



Azure of 2048×1536 pixels. Another distinction is the orientation of their depth sensors: the
RealSense D435 captures depth information vertically, while the Kinect Azure does the same
horizontally. The field of view (FOV) varies between the RealSense D435 and Kinect Azure
cameras, particularly concerning the RGB sensor:

• RealSense D435: Horizontal FOV of 42 degrees and a vertical FOV of 69 degrees.
• Kinect Azure: Horizontal FOV of 74.3 degrees and a vertical FOV of 90 degrees.

It is essential to note that FOV significantly impacts camera selection for specific applications as
it influences the camera’s vision range. A larger FOV enables more efficient image capture with
increased data content, requiring fewer images to cover the entire sample. However, adjustments
to FOV may impact other factors like resolution and imaging speed, necessitating a balanced
consideration of these specifications. After this preliminary study, the Microsoft Azure Kinect
has been selected for its robust depth-sensing technology and expansive field of view which
can help to increase the precision and efficiency of image acquisition for grapevine analysis
and management. This choice will not preclude the possibility of investigating or integrating
further sensory technologies that can complement or enhance the intelligent system, providing
additional layers of information and deeper insights.

6.2. Data processing

The acquired data will be processed at a software level to extract the most discriminating
characteristics. This is accomplished through the use of signal and image pre-processing and
processing algorithms. These algorithms play a crucial role in preparing the data to be suitable
for the application of AI techniques. Indeed, machine learning and deep learning algorithms
often require well-prepared input data containing relevant features. Depending on the type
of sensor taken into consideration, in this case, the RGB-D camera Azure Kinect produced by
Microsoft, it is also possible to have a representation of 3D space through point clouds which
consist of a set of points in three-dimensional space that represent the surface of an object or
an environment. Generally, to take full advantage of the information within them, they require
careful pre-processing that includes several operations, depending on the application’s specific
needs, such as filtering and registration. The latter is a fundamental process for data analysis
as it allows for the combination of multiple acquisitions of 3D data from different positions or
points of view. This process is crucial for obtaining an accurate and complete representation
of the object or environment under investigation. This research aims to combine the depth
data captured on field and deep learning techniques to have a complete and detailed study of
the vine plant canopy and the estimation of volume changes over time. The processing of the
data coming from the sensors will be realized using different tools and programming languages,
such as:

• MATLAB: specialized software, that provides several tools particularly useful for applying
preprocessing, processing, and machine learning algorithms to data.

• C++: programming language that provides a wide range of features that make it suitable
for developing high-performance applications and implementing complex algorithms.
Important is the Point Cloud Library (PCL) which is an open-source library for working
with point clouds.



• Python: programming language in the field of machine learning. Thanks to its specialized
libraries, such as PyTorch, it offers powerful tools for creating, training, and implementing
neural networks to process data from sensors.

• Cloud Compare: open-source software for managing 3D meshes, equipped with tools
specifically tailored for analyzing point clouds.

In conclusion, the joint use of sensor multimodality, processing algorithm and machine learning
opens many possibilities for obtaining detailed and useful information based on the specific
application context. The continuous evolution of these technologies offers interesting prospects
for the future, allowing for the development of increasingly intelligent systems capable of
understanding and interacting with the world around them.

6.3. Decision support

The decision support is fundamental in the development of powerful intelligent systems for
monitoring objectives. This method represents the keystone to guaranteeing an accurate and
reliable analysis of the results obtained from the previous stages. The comparative analysis
of data and results will be done to ensure a complete understanding of how the intelligent
system works and its generalization abilities. This knowledge involves different insights such
as performance metrics evaluation, the influence of different data sources, different features
and models. In addition, the validation of results is a critical step in ensuring the quality of
the system. Reference measurements and feedback from domain experts such as agronomists
can help validate the system outputs. This validation step can establish the reliability and
effectiveness of the framework compared to traditional practices, thereby enhancing its utility
and impact in real-world applications.

In conclusion, the decision support method translates the findings into useful and relevant
information for agricultural experts. The validity and reliability of the results are fundamental
to helping build confidence in the plant monitoring system among stakeholders and end-users
in the precision agriculture sector.

7. Conclusion

Intelligent perception systems are a key technology to improve significantly production pro-
cesses in various fields. This PhD proposal aims to develop a novel methodological framework
for target monitoring within the precision viticulture sector that could support farmers in
vineyard maintenance operations and making predictions about the harvest. The core of this
study stands in the in-depth analysis of how data have to be acquired, processed, and modelled
to provide decision support and achieve the specific objectives of the considered context. The
comprehension of the entire decision-making mechanisms and the relations between the data
(in terms of their quality, and quantity) and the chosen architectures for data processing, are
fundamental to understanding the applicability of these perception systems in real contexts.
The whole approach can be extended beyond the considered application environment, offering
monitoring possibilities in other contexts as well.
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