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Abstract
We summarize the contents of the tutorial we present as a part of the 8th Interactive Adaptive Learning workshop.
This workshop is co-located with the ECML-PKDD conference, where it takes place on September 9th, 2024 in
Vilnius, Lithuania.
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1. Introduction

Interactive adaptive learning refers to methods that help improve the entire lifecycle of machine learning
models. This includes how the models interact with human experts or other systems and how they
adapt to different types of emerging data rather than just training them on a fixed dataset. This allows
the models to improve and adapt over time, which is critical for many real-world applications. Active
learning is the most prominent field of interactive adaptive learning [1, 2, 3]. Therefore, we explore
different aspects of active learning in this tutorial and then discuss recent advances in the field in a
workshop session.

This tutorial is divided into three main parts, which are described in detail in the following sections.
Their titles and presenters are as follows:

1. Introduction to Uncertainty-Based Active Learning (A. Tharwat),
2. Hands-on Pool-based Active Learning via scikit-activeml (M. Herde),
3. Towards Pool-based Active Learning with Error-prone Annotators (M. Herde).

2. Part I – Introduction to Uncertainty-Based Active Learning

The motivation behind active learning stems from the common scenario where large amounts of
unlabeled data are readily available and free, but the process of obtaining labeled data is time-consuming
and expensive. In many real-world applications, such as medical image analysis, document classification,
or sensor network monitoring, the cost of manual labeling or expert annotation can be prohibitively
high. Traditional passive learning approaches, where the model is trained on a fixed dataset, may not
be the most efficient use of limited labeling resources [4]. Active learning offers a solution to this
challenge by enabling the model to actively select the most informative and/or representative samples
from the unlabeled pool for labeling. By focusing the annotation effort on the most valuable data points,
active learning can achieve better model performance with fewer labeled samples compared to passive
learning [3]. There are two main strategies for querying points in active learning as follows:

• Exploration-focused query strategies: This category aims to identify representative samples
that can help the model explore the underlying data distribution more effectively. By querying
for diverse and representative data points, the model can gain a better understanding of the

IAL@ECML-PKDD’24: 8th Intl. Worksh. & Tutorial on Interactive Adaptive Learning, Sep. 9th, 2024, Vilnius, Lithuania
†
These authors contributed equally.
$ marek.herde@uni-kassel.de (M. Herde); tuan.pham@uni-kassel.de (M. T. Pham); alaa.othman@hsbi.de (A. Tharwat);
bsick@uni-kassel.de (B. Sick)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:marek.herde@uni-kassel.de
mailto:tuan.pham@uni-kassel.de
mailto:alaa.othman@hsbi.de
mailto:bsick@uni-kassel.de
https://creativecommons.org/licenses/by/4.0/deed.en


true structure of the problem domain, even with a limited labeled dataset [5]. Some common
exploration-focused query strategies include (i) Diversity-based sampling: selecting dissimilar
samples to explore different regions, (ii) Density-based sampling: prioritizing samples in dense
areas, as they are more representative, (iii) Clustering-based sampling: identifying samples
near cluster centroids to ensure coverage of data subgroups [3].

• Informativeness (or exploitation)-focused strategies: The type in which active learning em-
ploys informativeness-focused query strategies with the goal of identifying the most informative
samples, i.e., the data points that, if labeled, would provide the maximum information gain to the
model [6]. Some common exploitation-focused approaches include (i) Margin-based sampling:
prioritizing samples near the decision boundary [1], (ii) Entropy-based sampling: selecting the
most uncertain samples [7], and (iii) Variance-based sampling: prioritizing samples with high
prediction variance [7].

However, by exploiting the model’s own uncertainty about the unlabeled data, active learning can
more effectively identify the samples that, if labeled, would provide the maximum information gain
to improve the model’s performance. The key idea behind uncertainty-based active learning is that
the model’s uncertainty serves as a proxy for the informativeness of a data point. Samples with higher
uncertainty are more likely to be informative because they represent areas of the input space where the
model’s predictions are less confident or reliable [8, 9]. Common uncertainty-based approaches include

• Uncertainty sampling: Selecting the most uncertain samples, as they are likely to be the most
informative [7].

• Expected information gain: Choosing samples with the highest expected information gain [7].
• Bayesian optimization: Using a Bayesian model to quantify uncertainty and guide sample

selection [10].

Recent advances in uncertainty quantification have further extended the capabilities of active learning.
The distinction between (i) epistemic uncertainty, which occurs due to lack of knowledge, and samples
with high epistemic uncertainty are often the most informative for improving model understanding,
and (ii) aleatory uncertainty, which captures the inherent noise or randomness in the data, and samples
with high aleatory uncertainty may be less useful for model training [11, 12, 13].

By distinguishing between epistemic and aleatory uncertainty, active learning can more effectively
identify the most informative samples to improve model performance with less labeled data. The
integration of advanced uncertainty quantification with active learning strategies creates a powerful
framework for efficient and effective model training, even with large amounts of unlabeled data [9].

3. Part II – Hands-on Pool-based Active Learning via
scikit-activeml

Active learning is a versatile approach to reducing the labeling cost. Assumptions regarding data
availability and training of the classifiers can vary greatly depending on the use case. Active learning
libraries often abstract parts of active learning experiments, such as the whole experiment (AliPy [14]
and Baal [15]), the classifier training (modAL [16] and small-text [17]), and data management
(libact [18]). These abstractions help simplify active learning experiments where the use case
matches the library’s scope. However, it requires considerable work if the assumptions differ. The
scikit-activeml [19] library has been conceptualized with this in mind, with its modular design
inspired by and built on top of scikit-learn [20], a flexible general-purpose machine learning library.

The goal of scikit-activeml is to bridge active learning research and its application in real-world
use cases. The library is flexible enough for researchers to allow for many assumptions and promotes
reproducibility. For practitioners, it provides extensive documentation, many tutorials for different use
cases, and examples for each query strategy with animations visualizing the strategies’ behavior that
can be used as a starting ground.
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Algorithm 1 A basic active learning cycle example using scikit-activeml (v0.5.1) [19]

1 import numpy as np
2 from sklearn.gaussian_process import GaussianProcessClassifier
3 from sklearn.datasets import make_blobs
4 from skactiveml.pool import UncertaintySampling
5 from skactiveml.utils import unlabeled_indices, MISSING_LABEL
6 from skactiveml.classifier import SklearnClassifier
7
8 # Generate data set.
9 X, y_true = make_blobs(n_samples=200, centers=4, random_state=0)

10 y = np.full(shape=y_true.shape, fill_value=MISSING_LABEL)
11
12 # Use the first 10 samples as initial training data.
13 y[:10] = y_true[:10]
14
15 # Create classifier and query strategy.
16 clf = SklearnClassifier(
17 GaussianProcessClassifier(random_state=0),
18 classes=np.unique(y_true),
19 random_state=0
20 )
21 qs = UncertaintySampling(method=’entropy’, random_state=0)
22
23 # Execute active learning cycle.
24 n_cycles = 30
25 for c in range(n_cycles):
26 query_idx = qs.query(X=X, y=y, clf=clf)
27 y[query_idx] = y_true[query_idx]
28
29 # Fit final classifier.
30 clf.fit(X, y)

scikit-activeml provides query strategies for pool-based active learning in classification and
regression with single or multiple annotators with varying batch sizes. Stream-based active learning [21]
for classification is also supported for single annotator scenarios. In this tutorial, we focus on pool-based
active learning. Algorithm 1 shows a small pool-based active learning script using scikit-activeml.
Labeled and unlabeled data are stored together in X (samples) and y (labels), where unlabeled data
is marked with a user-specified MISSING_LABEL constant (cf. lines 9–13). The classifier and query
strategy are initialized independently and support using random seeds to ensure reproducibility (cf.
lines 16–21). The for-loop shows the active learning cycle, where sample indices are queried (cf. line
26), and their corresponding missing label is replaced with the ground truth (cf. line 27). Figure 1 shows
the fitted classifier, labeled, and unlabeled data after 10 and 30 cycles. Additionally, areas where it is
beneficial to query more labels, according to uncertainty sampling, are highlighted in dark green.

Starting from such a basic learning cycle with uncertainty sampling as the employed query strategy,
this tutorial’s part outlines other popular and state-of-the-art query strategies for pool-based active
learning, e.g., core set [22], batch active learning by diverse gradient embeddings (BADGE) [23], typical
clustering (TypiClust) [24], probability coverage (ProbCover) [25], clustering uncertainty-weighted em-
beddings (CLUE) [26], and contrastive active learning (CAL) [27]. Specifically, we analyze these query
strategies regarding informativeness, representativeness, and batch diversity as central concepts in
pool-based active learning (cf. Section 2). Further, we introduce the differentiation between low- and
high-budget active learning scenarios. Depending on the scenario, the importance of the aforementioned
concepts changes. Throughout this tutorial’s part, illustrations of synthetic two-dimensional datasets (cf.
Fig. 1) provide a more intuitive understanding of the query strategies’ main ideas and sample selection
behaviors. Beyond such toy examples, we also present an empirical evaluation study as a potential
application for scikt-activeml, where we compare query strategies’ performances across tabular,
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Figure 1: Visualization of the results from basic active learning cycle in Algorithm 1.

image, and text data. In doing so, we leverage feature representations (embeddings) learned by the
pre-trained model self-distillation with no labels (DINOv2) [28] for the image and bidirectional encoder
representations from transformers (BERT) [29] for the text data. This tutorial’s part concludes with a
hands-on session, where participants can access a Jupyter notebook to apply their newly acquired
knowledge by implementing their own active learning experiment via scikit-activeml.

4. Part III – Towards Pool-based Active Learning with Error-prone
Annotators

In pool-based active learning, a common assumption is that the queried class labels originate from a
single omniscient annotator [30]. However, many annotation campaigns involve querying class labels
from multiple humans, e.g., crowdworkers, who are prone to error for various reasons, e.g., lack of
expertise, tiredness, or missing motivation [31]. As a result, the queried class labels are subject to noise.
Training with such noisy class labels can strongly deteriorate the classifier’s performance. With a
focus on neural networks, numerous techniques have been proposed to improve the robustness against
noisy class labels [32]. A common approach is the joint training of the classifier and an annotator
performance model, which corrects the noisy class labels by modeling each annotator’s individual
performance [33]. Depending on the assumptions about the annotators’ noise patterns, confusion
matrices are estimated per annotator [34] or even for each sample-annotator pair [35], for example.
Such techniques are typically employed to train a neural network after completing an annotation
campaign. Yet, the annotators’ performance estimates could be used to guide the annotator selection
during an ongoing annotation campaign. In conjunction with intelligent sample selection, we refer
to this scenario as pool-based active learning with multiple error-prone annotators. Corresponding
query strategies [36, 37] must also balance the added exploration-exploitation trade-off when assigning
annotators to provide class labels for given instances. The goal of this tutorial’s part is to give a basic
understanding of such challenges and outline potential baselines, which leverage common pool-based
query strategies for the sample selection and performance estimates for the annotator selection.
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