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Abstract
Passive acoustic monitoring (PAM) in avian bioacoustics enables cost-effective and extensive data collection

with minimal disruption to natural habitats. Despite advancements in computational avian bioacoustics, deep

learning models continue to encounter challenges in adapting to diverse environments in practical PAM scenarios.

This is primarily due to the scarcity of annotations, which requires labor-intensive efforts from human experts.

Active learning (AL) reduces annotation cost and speed ups adaption to diverse scenarios by querying the most

informative instances for labeling. This paper outlines a deep AL approach, introduces key challenges, and

conducts a small-scale pilot study.
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1. Introduction

Avian diversity is a key indicator of environmental health. Passive acoustic monitoring (PAM) in

avian bioacoustics leverages mobile autonomous recording units (ARUs) to gather large volumes of

soundscape recordings with minimal disruption to avian habitats. While this method is cost-effective and

minimally invasive, the analysis of these recordings is labor-intensive and requires expert annotation.

Recent advancements in deep learning (DL) primarily process these passive recordings by classifying

bird vocalizations. Particularly, feature embeddings from large bird sound classification models (e.g.,

Google’s Perch [1] or BirdNET [2]) have effectively enabled few-shot learning in scenarios with limited

training data [3]. These state-of-the-art (SOTA) models are trained using supervised learning on nearly

10,000 bird species from multi-class focal recordings that isolate individual bird sounds. However,

practical PAM scenarios involve processing diverse multi-label soundscapes with overlapping sounds

and varying background noise. Proper feature embeddings for edge deployment necessitate fine-tuning,

which relies on labeled training data that is both time-consuming and costly to obtain for soundscapes.

Deep active learning (AL) addresses this challenge by actively querying the most informative instances

to maximize performance gains [4]. However, research on deep AL in avian bioacoustics is still limited,

and the problem needs to be contextualized with comparable datasets [5]. Additionally, the domain

presents unique practical challenges, including adapting models from focals to soundscapes (i.e., multi-

class to multi-label) in imbalanced and highly diverse scenarios [6]. Consequently, we introduce the

problem of deep AL in avian bioacoustics and propose an efficient fine-tuning approach for model

deployment. Our contributions are:

Contributions

1. We introduce deep active learning (AL) to avian bioacoustics, highlighting challenges and

proposing a practical framework.

2. We conduct an initial feasibility study based on the dataset collection Birdset [6], showcas-

ing the benefits of deep AL. Additionally, we release the dataset and code.
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2. Related Work

DL has enhanced bird species recognition from vocalizations in the context of biodiversity monitoring.

Current SOTA approaches BirdNET [2], Google’s Perch [7, 1], and BirdSet [6] have set benchmarks

in bird sound classification. While initial studies focused on model performance on focal recordings,

research is increasingly shifting towards practical PAM scenarios [6]. In such environments, ARUs are

proving effective for edge deployment for continuous soundscape analysis [8]. Research indicates that

pre-trained models facilitate few-shot and transfer learning in data-scarce environments by providing

valuable feature embeddings for rapid prototyping and efficient inference [3]. While deep AL is suited

for quick model adaptation, its application in avian bioacoustics is still emerging. Bellafkir et al. [9] have

integrated AL into edge-based systems for bird species identification, employing reliability scores and

ensemble predictions to refine misclassifications through human feedback. This approach highlights the

necessity for research into the application of deep AL and multi-label classification in avian bioacoustics.

However, comparing these results is challenging because they utilize test datasets that are not publicly

available and employ custom AL strategies [9].

3. Active Learning in Bird Sound Classification

Motivation. In PAM, a feature vector x ∈ 𝒳 represents a 𝐷-dimensional instance, originating from

either a focal recording where 𝒳 = ℱ , or a soundscape recording with 𝒳 = 𝒮 . Focal recordings are

extensively available on the citizen-science platform Xeno-Canto (XC) [10] with a global collection of

over 800,000 recordings, making them particularly suitable for model training. Large-scale bird sound

classification models (e.g., BirdNET[2]) are primarily trained on focals. These multi-class recordings

feature isolated bird vocalizations where each instance x is associated with a class label 𝑦 ∈ 𝒴 , where

𝒴 = {1, ..., 𝐶}. The focal data distribution is denoted as 𝑝Focal(x, 𝑦). However, annotations from XC

often come with weak labels, lacking precise vocalization timestamps. As noted by Van Merriënboer

et al. [11], evaluating on focals does not adequately reflect a model’s generalization performance in real-

world PAM scenarios, rendering them unsuitable for assessing deployment capabilities. Soundscape
recordings are passively recorded in specific regions, capturing the entire acoustic environment for

PAM projects using static ARUs over extended periods. For instance, the High Sierra Nevada (HSN) [2]

dataset includes long-duration soundscapes with precise labels and timestamps from multiple recording

sites. Soundscapes are treated as multi-label tasks and are valuable for assessing model deployment

in real-world PAM. Each instance x is associated with multiple class labels 𝑦 ∈ 𝒴 , represented by

a one-hot encoded multi-label vector y = [𝑦1, . . . , 𝑦𝐶 ] ∈ [0, 1]𝐶 . An instance can contain no bird

sounds, represented by a zero-vector y = 0 ∈ R𝐶
. Soundscapes’ limited scale and the extensive

annotation effort make them less suitable for large-scale model training. We denote the soundscape

data distribution as 𝑝Scape(x,y). The disparity in data distributions, 𝑝Scape(x,y) ̸= 𝑝Focal(x, 𝑦), leads

to a distribution shift that impacts the performance of SOTA bioacoustic models trained on focals

when deployed in PAM. Additionally, highly diverse deployment conditions in PAM projects - such as

background noise, recording devices, and their locations - also lead to domain differences within and

between soundscape recordings. These variations further highlight the need for compact models that

can quickly and easily adapt to changing environments. Thus, we argue that using labeled soundscapes

in novel deployment scenarios for fine-tuning the model is vital. Therefore, we propose deep AL to

enable fast model adaption to various PAM scenarios.

Our approach. Our approach is detailed in Figure 1. We leverage the BirdSet dataset collection [6]

to ensure comparability. We consider a multi-label classification problem, where we equip a model with

a pre-trained feature extractor h𝜔 : 𝒳 → R𝐷
with parameters 𝜔 that maps the inputs x to feature

embeddings h𝜔(x). Additionally, we utilize a classification head f𝜃𝑡 : R𝐷 → R𝐶
with parameters

𝜃𝑡 at cycle iteration 𝑡 that maps the feature embeddings h𝜔(x) to class probabilities via the sigmoid

function. The resulting class probabilities are denoted by p̂ = 𝜎(f𝜃𝑡(h𝜔(x)), where p̂ ∈ R𝐶
represents

the probabilities for each class in a binary classification problem. We introduce a pool-based AL setting
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Figure 1: Proposed deep AL cycle in avian bioacoustics with exemplary tasks from BirdSet[6].

with an unlabeled pool 𝒰(𝑡) ⊆ 𝒮 and a labeled pool data set ℒ(𝑡) ⊆ 𝒮 × 𝒴 . The pool consists of

soundscapes from PAM projects, allowing the model to adapt to the unique acoustic features of new

sites and improve performance across various scenarios. During each cycle iteration 𝑡, the query

strategy compiles the most informative instances into a batch ℬ(𝑡) ⊂ 𝒰(𝑡) of size 𝑏. We represent

an annotated batch as ℬ*(𝑡) ∈ 𝒮 × 𝒴 . We update the unlabeled pool 𝒰(𝑡+1) = 𝒰(𝑡) ∖ ℬ(𝑡) and the

labeled pool ℒ(𝑡+1) = ℒ(𝑡)∪ℬ*(𝑡) by adding the annotated batch. At each iteration 𝑡, the model 𝜃𝑡 is

retrained using the binary cross entropy loss 𝐿𝐵𝐶𝐸(x,y), resulting in the updated model parameters

𝜃𝑡+1. The process continues until a budget 𝐵 is exhausted.

4. Experiments

Setup. We employ Google’s Perch as the pre-trained feature extractor with a feature dimensionality of

𝐷 = 1280, following Ghani et al. [3]. Each iteration of the AL cycle involves initializing and training

the last DNN layer for 200 epochs using the Rectified Adam optimizer [12] (batch size: 128, learning

rate: 0.05, weight decay: 0.0001) with a cosine annealing scheduler [13]. The hyperparameters are

empirically determined with convergence on random train samples as done in [14]. We utilize the HSN

dataset [15] from BirdSet [6], consisting of 5, 280 5-second soundscape segments from the initial

three days of recordings for our unlabeled pool. Thus, we simulate practical deployment scenario

where we initially collect data from various recording sites that we want to quickly adapt the model

to and reduce annotation effort. Subsequently, we utilize 6, 720 segments from the last two days for

testing model performance. Initially, 10 instances are selected randomly, followed by 50 iterations

of 𝑏=10 acquisitions each, totaling a budget of 𝐵=510. We benchmark against Random acquisitions

and use Typiclust [16] and Badge[17] as diversity-based and hybrid strategies, respectively. As an

uncertainty-based strategy, we employ the mean Entropy of all binary predictions. The effectiveness

of each strategy is assessed by analyzing the learning curves through a collection of threshold-free

metrics [6]: T1-accuracy, class-based mean average precision (cmAP), and area under the receiver

operating characteristic curve (AUROC). The metrics are computed on the test dataset post-training in

each cycle, with learning curve improvements averaged over ten repetitions for consistency.

Results. We present the improvement curves for the metric collection in Figure 2. The results

demonstrate that no single strategy is universally superior across all metrics. However, nearly all

metrics show enhanced performance compared to Random. Notably, Typiclust displays strong

performance across all metrics at the start of the deep AL cycle, supporting the findings of [16] that

a diverse selection is beneficial at the cycle’s onset. However, its effectiveness diminishes over time

when diversity becomes less crucial. Conversely, except for the AUROC metric where Entropy initially

performs poorly but strongly improves over time, Entropy outperforms in all iterations for cmAP and

T1-Acc, showing a consistent improvement over Random of up to 15%.

5. Open Challenges and Limitations

This pilot study explores the use of deep AL to tailor avian bioacoustic models for various deployment

scenarios in PAM. Although the initial results are encouraging, they remain preliminary. Several key
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Figure 2: Improvement curves of deep AL selection strategies Badge, Entropy, and Typiclust over
Random with the metric collection a) AUROC, b) cmAP and c) T1-Acc. The results are averaged over ten
randomly initialized repetitions to ensure consistency and the standard deviation is displayed.

challenges, which are outlined below, need to be addressed to fully realize the potential of deep AL in

this field.

Pool creation. The limited availability of soundscape data, which is primarily used for model evaluation

[6], poses challenges in creating pool datasets for deep AL. The process of generating a fine-tuning

training pool can affect class balance and raises concerns about the composition methodology. Addi-

tionally, in scenarios where data are sourced from PAM projects, the variability in recording sites is

often not disclosed in publicly available datasets. This lack of information makes it challenging to create

a diverse and representative training pool that takes recording locations into account. To effectively

investigate deep AL, a transparent approach to dataset generation is essential.

Deployment in practice. Deploying deep AL in real-world PAM environments requires addressing

several practical considerations. These include determining optimal batch sizes for data annotation

and effectively allocating the total budget. The labor-intensive and costly process of labeling PAM

recordings, which requires human expertise [18], highlights the need for accurately estimating the

expected annotation effort. Additionally, exploring various deployment settings and tasks can reveal

the versatility and potential challenges of applying deep AL, leading to more effective and scalable

solutions for avian bioacoustics. For instance, tasks might involve not only classifying bird species but

also identifying specific call densities [19], which would require modifications to the model evaluation

process.

Evaluation. Traditional metrics such as AUROC, cmAP, and T1-Acc offer a general overview of model

performance but may be inadequate in practice-specific scenarios, such as ensuring a high recall of a

specific species or identifying bird call density [19]. A more nuanced approach to evaluating deep AL

models involves customizing metrics to align with practical objectives, such as consistently identifying

specific species. Enhancing evaluation methodologies to capture these specialized requirements is

crucial for advancing the effectiveness of deep AL in real-world PAM applications.

6. Conclusion

In this work, we demonstrated the potential of deep active learning (AL) in computational avian

bioacoustics. We showed how deep AL can be integrated into real-world passive acoustic monitoring

by utilizing BirdSet, where a rapid model adaption through fine-tuning on soundscape recordings

is advantageous for the identification of bird species. Our results indicate that employing selection

strategies in deep AL enhances model performance and accelerates adaptation compared to random

sampling. For future work, we aim to expand the implementation of deep AL in avian bioacoustics

utilizing all datasets from the BirdSet dataset collection to provide more robust performance insights

and explore additional query strategies [13, 20].
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