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Abstract
Active learning plays a crucial role in black-box optimization, especially for objective functions that are expensive
to evaluate. Continuous black-box optimization has adopted an approach called surrogate modelling, where the
original black-box objective is approximated with a regression model. An active learning task in this context is
to decide which points should be evaluated using the original objective to update the surrogate model. Apart
from low-order polynomials, the first surrogate models were artificial neural networks of the kinds multilayer
perceptron and radial basis function network. In the late 2000s, neural networks have been superseded by other
kinds of surrogate models, primarily Gaussian processes. However, over the last 15 years, neural networks have
seen significant and successful development, suggesting that they once again have the potential to serve as
promising surrogate models. This paper reviews possible research directions concerning that potential, and recalls
initial results from investigations in some of these directions. Finally, it contributes to those results by investigating
the state-of-the-art black-box optimizer CMA-ES surrogate-assisted by two variants of random-activation-function
neural network ensembles.

1. Introduction

One area where active learning plays a really important role is black-box optimization (BBO), i.e., opti-
mization of objective functions for which no analytical description is provided. It employs optimization
methods that need as input only points in the search space paired with respective values of the objective
function obtained in a non-analytical way, e.g. from sensors, in experiments or through numerical
simulations. Most frequently used are evolutionary optimization approaches, such as evolution strate-
gies, genetic algorithms, and differential evolution, or other metaheuristics, such as particle swarm
optimization.

Because BBO methods receive only information about values of the objective function, they typically
need many such values. This is a problem in situations when evaluating the black-box objective
function is time-consuming and/or expensive. That is frequently the case if it is evaluated empirically
in experiments. For example, for the evolutionary optimization tasks described in the book [1], the
evaluation of a comparatively small generation of a genetic algorithm can sometimes take more than a
week and cost more than 10000 e. To deal with expensive evaluations, continuous BBO has in the late
1990s and early 2000s adopted an approach called surrogate modelling or metamodelling [2, 3, 4, 5, 6, 7, 8].
In principle, a surrogate model is any regression model that with a sufficient fidelity approximates
the original black-box objective function, restricting the necessity of its evaluation only to a small
proportion of points, whereas everywehere else, only the surrogate model is used.

Selecting the points in which the original objective function should be evaluated is a step in which
active learning is involved. However, it is not active learning of a regression model although the
surrogate model itself is a regression model. The reason is that its utility functions are not based
on the model, like are the commoly used utility functions uncertainty decrease, model performance,
diversity, or surprise-novelty. Instead, they are based on the BBO, the most common being minimizing
the objective function for a given evaluation budget, and minimizing the evaluation budget for a given
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objective-function threshold. Nevertheless, even active learning in surrogate-assisted BBO follows the
basic priciple of active learning: to actively select next model inputs according to the considered utility
function.

The earliest kinds of surrogate models in continuous BBO were low-order polynomials and artificial
neural networks (ANNs) of the kind multilayer perceptron (MLP). The former have always remained a
suitable choice in situations when enough evaluations of the original black-box objective function are
affordable for the approximation properties of polynomials to be in effect. On the other hand, surrogate
modelling for substantially less evaluations of the original objective has during the last two decades
undergone further development. MLPs were soon replaced with another kind of ANNs, radial basis
function networks (RBFs), which better fit local peculiarities of an objective function landscape. Those
networks, however, have since the late 2000s been superseded by other kinds of surrogate models,
primarily Gaussian processes (GPs), but also ranking support vector machines (RSVMs), and random
forests (RFs). GPs are currently the most successful kind of surrogate models for BBO with small
evaluation budget of functions with complicated multimodal landscapes, mainly due to their ability to
assess the uncertainty of the estimate of the original objective function in a given point, more precisely,
to provide the probability distribution of this estimate. That property of GPs allows to combine the
original BBO method, e.g. an evolutionary one, with Bayesian optimization.

Consequently, only little attention has been paid to ANN-based surrogate models in continuous BBO
during the last 15 years. This contrasts with the intense and successful development of the ANN area
during that time, which suggests that ANNs again have the potential to serve as promising surrogate
models. This paper attempts to bring a small contribution to research into that potential, presenting in
addition a review of possible directions for such a research, connected with different classes of neural
networks. Moreover, it also points out that ANNs can serve as the basis for transfer learning between
surrogate-assisted BBO of different functions.

The next section surveys important aspects and key methods concerning surrogate-assisted con-
tinuous BBO. The review of possible research directions concerning the usability of modern neural
networks in surrogate-assisted BBO is presented in Section 3. Finally, Section 4 reports an experimental
contribution to one of those research directions.

2. Surrogate-Assisted Continuous BBO

Surrogate modelling for continuous BBO relies on combination and interaction of three components:
a regression model serving as a surrogate of the original black-box objective function, a BBO method
seeking the optimum of that objective function, and a strategy when to evaluate the original objective
function and when its surrogate model. That strategy is in the context of evolutionary BBO usually
called evolution control [9, 10, 11, 12, 13]. There are two other aspects, namely observing constraints
on the feasible set of the black-box objective function (cf. e.g. [14, 15]), and generalizing surrogate
modelling from single objective to multiple objectives (cf. e.g. [16, 17]), however, we will restrict our
attention to single-objective unconstrained optimization.

As already mentioned in the introduction, the regression models that are the most suitable kind
of surrogate models if sufficiently many evaluations of the original black-box objective function are
affordable, are low-order polynomials, typically quadratic functions [18, 19, 20, 21, 22]. For substantially
less evaluations, the most traditional kind have been MLPs [23, 9], soon replaced with RBFs [24, 25,
26, 21, 22], and since the late 2000s with GPs a.k.a. kriging [27, 28, 11, 29, 30]. Occasionally, RBFs were
used as local models in combination with GP-based global models [31]. Other kinds of surrogate models
employed during the last decade include decision trees [32], RFs [33, 34, 32], and RSVMs [35, 36]. The
last one has an exceptional property of invariance with respect to order-preserving transformations of the
objective function. This is important in situations when the BBO algorithm possesses such invariance, a
frequently encountered property of evolutionary algorithms. On the other hand, the surrogate modelling
methods proposed in [11] and [28] use GPs to perform preselection based on a partial ordering that
is also invariant with respect to order-preserving transformations. More importantly, the adaptive
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function value warping approach recently proposed in [37] aims at providing such invariance to any
surrogate model. As a final remark to different kinds of surrogate models, important works about that
topic always consider several kinds [38, 12, 39, 20, 32], to compare them and select the best among
them, and in [22, 39] also to aggregate their results, thus providing a team of surrogate models.

As to the BBO methods, not only the two most important kinds of surrogate models, i.e. low-order
polynomials [18, 19, 20], and GPs [26, 28, 11, 29, 30], but also the less common RBFs, RFs, and RSVMs
[24, 36, 33, 34] are most often combined with the Covariance matrix adaptation evolution strategy
(CMA-ES). That is not surprising because CMA-ES has already in the 2000s become a state-of-the-art
approach to single-objective unconstrained continuous BBO. Basically, the CMA-ES evolves a Gaussian
estimate of the position of the minimum of the original objective function. That evolution relies on
simultaneous adaptation of the vector mean of the Gaussian estimate, of the scalar step size, and of the
covariance matrix. For more details of this sophisticated evolution strategy, the reader is referred to
the journal papers [40, 41]. GPs were also combined with other evolutionary optimization methods
[27, 42], and GPs, polynomials, and RBFs were combined with particle swarm optimization [22] and with
memetic optimization [25]. Moreover, GPs are used in black-box optimization in two different ways. In
connection with evolutionary and similar BBO methods, they serve as a regression model evaluated
instead of the original objective function. In addition, they also play a key role in Bayesian optimization,
which then relies on GP-estimates of probability distributions of values of the original objective. Those
probability distributions enable several ways of searching for optima of that objective function, each of
them governed by a specific assessment of uncertainty of the objective function estimate, commonly
called acquisition function [43, 44, 45]. Occasionally, Bayesian optimization is combined with CMA-ES.
For example in [46], optimization switches from the most traditional Bayesian optimization method,
EGO (Efficient Global Optimization) [43], to CMA-ES.

Finally, evolution control has been since the first surrogate-assisted BBO methods performed basically
in two ways, generation-based, and individual-based. In the generation based, all points are in some
generations evaluated with the true objective function, and in the remaining generations with the
model. On the other hand, in every generation of the individual-based evolution control, based on the
evaluation of all points with the model, a preselection of points to be evaluated with the true objective
function is performed [9]. In most of the surrogate-assisted methods, however, the evolution control is
specifically tailored to the respective method. Noteworthy, the authors of [13] investigated mutually
replacing the evolution control of two important polynomial-assisted methods lmm-CMA [18, 19] and
lq-CMA-ES [20], and of two variants of the GP-assisted method DTS-CMA-ES [47, 12] with the evolution
control of the others. According to their findings, the success of those important methods is definitely
not limited to using the respective specific tailored evolution control. The surrogate-assisted black-box
optimization methods constructing several surrogate models simultaneously either aggregate them
to a team [25, 22] or complement the evolution control by a classifier selecting the most appropriate
among those models. Important examples of classifiers used in this context are ANNs [48, 49, 50],
and classification trees [51, 52]. Their learning can be viewed as metalearning because it is based on
metafeatures, i.e. properties empirically characterizing the objective function landscape and the BBO
method [21, 32, 49, 53]. Apart from classification according to the appropriateness of the surrogate
model for the considered data, metalearning can be also used for regression of model error on the
combination of values of metafeatures [54].

3. Usability of Modern Neural Networks in Surrogate-Assisted BBO

This section primarily reviews eight kinds of modern neural networks that we consider worth a research
into their ability to serve as surrogate models in BBO. A high-level overview of those kinds of ANNs
is given in Table 1, which for each of them mentions whether such research has already started. In
Subsection 3.1, two kinds integrating GPs into ANNs are recalled. Subsection 3.2 recalls three kinds of
ANNs providing the most advantageous property of GPs, their ability to estimate the distribution of
black-box objective function values. Finally, in Subsection 3.3, three well-known kinds of modern neural
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Table 1
A high-level overview of kinds of ANNs that we consider worth a research with respect to surrogate modelling
for BBO

ANNs Research into its ability
+ main references to serve as surrogate model in BBO
MLPs with a GP as the final layer [55, 56] First investigations [57, 58]
Deep GP networks [59, 60, 61, 62, 63] Not
Tangent kernel networks [64, 65] Not
Prior networks [66, 67, 68, 69, 70] First investigations [71]
Ensembles of neural networks [72, 73, 74, 75, 76] First investigations [this paper]
Variational autoencoders [77, 78] Not
Generative adversarial networks [79, 80] Not
Transformers [81, 82] Not

networks, namely variational autoencoders, transformers, and generative adversarial networks, are
recalled due to the fact that they have already proven useful in the related area of Bayesian optimization.
In addition, Subsection 3.4 is devoted to knowledge transfer in surrogate-assisted BBO, which relates to
the usability of modern neural networks through their important role in transfer learning.

3.1. Integration of GPs into ANNs

The integration of GPs into ANNs has been proposed on two different levels:

1. At the layer level – a GP serves as the final layer of an MLP [55, 56]. Integration on that level is
based on the following two assumptions:
(i) If 𝑛𝐼 denotes the number of the ANN input neurons, then the ANN computes a mapping

net of 𝑛𝐼 -dimensional input values into the set 𝒳 on which is the GP defined. Consequently,
the number 𝑛𝑂 of neurons in the last hidden layer fulfills 𝒳 ⊂ R𝑛𝑂 , and the ANN maps an
input 𝑣 into a point 𝑥 = net(𝑣) ∈ 𝒳 , corresponding to an observation 𝑓(𝑥+𝜀) governed by
the GP, where 𝜀 is a zero-mean Gaussian noise. From the point of view of the ANN inputs,
the GP is now 𝒢𝒫(𝑚GP(net(·)), 𝜅(net(·), net(·))), where 𝑚GP is the mean function, and
𝜅 is the covariance function of the GP [83].

(ii) The GP mean 𝜇 is assumed to be a known constant, thus not contributing to the GP hyperpa-
rameters, and independent of net

2. At the level of individual neurons – GPs can replace all hidden and output neurons of an MLP.
This kind of neural networks is commonly called deep Gaussian process [59, 60, 61, 62, 63, 84, 85,
86, 87, 88, 89, 90].

Integration on both levels has been developed primarily for Bayesian modelling and optimization.
Nevertheless, GPs integrated as the last layer of MLPs have been used as surrogate models in a CMA-
ES-driven BBO [57, 58]. In particular, those surrogate models incorporate GPs with five commonly
employed covariance functions linear, quadratic, rational quadratic, squared exponential, and Matérn 5

2 ,
as well as with one composite covariance function superposing the quadratic and squared exponential.
Those 6 models were compared in [57] from the point of view of regression accuracy, evaluated on a
large dataset collected during many previous runs of DTS-CMA-ES on the collection of 24 noiseless
benchmarks from the Comparing Continuous Optimizers platform [91, 92] (cf. Section 4) in dimensions
2, 3, 5, 10, and 20. Then in [58], they were compared on the same benchmarks in the same dimensions
from the point of view of the success of surrogate-assisted optimization with CMA-ES. Unfortunately,
neither of those comparisons included more traditional surrogate models nor the CMA-ES without
surrogate assistance. To our knowledge, the only comparison that included both a GP integrated as the
last layer of an MLP, and more traditional surrogate models, was the comparison from the point of view
of regression accuracy in [93]. However, it included only one such integrated surrogate model, with the
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GP using the most simple covariance function – the linear one, in addition to the traditional GP-based
surrogate models with eight different covariance functions, including the five listed above.

3.2. ANNs Estimating the Distribution of Black-Box Objective Function Values

In our opinion, the property of GPs most advantageous from the point of view of surrogate modelling
is that they estimate the whole distribution of a predicted value of the original black-box objective
function. Recall from Section 2 that due to that property also ensembles of regression trees – RFs – are
used as surrogate models [33, 34, 32]. This draws attention to those modern neural networks that also
allow estimation of such a distribution. Basically, there are three classes of them, differing in the way
how that estimate can be obtained.

1. The multivariate normal distribution underlying GPs is actually the asymptotic distribution for
network width increasing to infinity. Such results have been established for several kinds of ANNs
[94, 88, 95, 96, 97]. In addition, closely related is the infinite width limit of the neural tangent
kernel, which governs the kernel gradient of the functional cost used in MLP regression [64, 65].
Although those results have great theoretical value, there can be a serious disparity between the
infinite width results and their finite width counterparts [77]. Therefore, it is unclear whether
they can be applied to surrogate modelling.

2. The distribution of a predicted value, or more precisely the parameters of such a distribution,
can be directly learned by an ANN. The best-known kind of such neural networks are the prior
networks, learning the parameters of a normal-inverse Wishart distribution, which is the conjugate
prior to a multivariate normal distribution [66, 67, 68, 69, 70, 98]. Prior networks belong to a
broader class of evidential neural networks [99, 100, 101, 102, 103]. Their name refers to the fact
that they follow the basic principle of the Dempster-Shafer theory of evidence [104] – to fall back
onto prior belief for unfamiliar data.

3. An estimate of the distribution of a predicted value is produced by an ensemble of neural networks.
Important kinds of such ensembles are ensembles obtained through diversification of training data
[105, 106], ensembles obtained through diversification of network properties [107, 108, 109], a
specific subgroup of which are ensembles in which the diversification is achieved through diverse
activation functions [76], ensembles obtained through negative correlation learning [110, 111, 112],
bagging ensembles [72, 113], boosting ensembles [114, 115] deep ensembles [73, 74, 116] including
deep echo-state network ensembles [117], and anchored ensembles [75] with a later modification
random activation function (RAF) ensembles [76]. RAF ensembles take over the principle of
anchored ensembles that regularization is performed not with respect to zero, but with respect to
the initialization values of the parameters, which are assumed normally distributed. Differently to
an anchored ensemble, however, an RAF ensemble uses varied ativation fuctions from an a priori
specified set of size 𝑛AF. From that set, the activation function is chosen randomly, apart from the
first 𝑛AF members of the ensemble, among which each activation function occurs exactly once.
We consider this last mentioned kind of ensembles as the state of the art.

To our knowledge, the only ANNs estimating the distribution of function values that have already
been used as surrogate models in BBO, are prior networks. In [71], the prediction accuracy of four
versions has been evaluated on the above mentioned dataset from previous runs of DTS-CMA-ES.
This direction of research is continued by the present paper: Section 4 reports results for CMA-ES
surrogate-assisted by two variants of RAF ensembles.

3.3. ANNs Found Useful in Bayesian Optimization

Recall from Section 2 that GPs, simultaneously with their importance as surrogate models in BBO with
non-Bayesian methods, such as CMA-ES, also play a crucial role in Bayesian optimization. That is why
this subsection lists three well-known kinds of modern neural networks that have been recently found
useful in Bayesian optimization. In our opinion, this indicates that they are worth investigating whether
they could be used also in surrogate-assisted BBO.
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1. Variational autoencoders have been utilized in Bayesian optimization because they allow for
optimization in a lower-dimensional latent space [77, 78].

2. The generative adversarial networks (GANs) paradigm has been recently shown to be applicable
to BBO: A generator proposes samples that align with the distribution of low values (or even the
optimal value) of the black-box function, while one or more discriminators classify samples based
on whether they belong to that distribution [79, 80].

3. Transformers have proven effective in estimating complex prior distributions for Bayesian opti-
mization [81, 82]. Notably, an OptFormer transformer trained on Google Vizier [118], the largest
hyperparameter optimization (HPO) database, achieved superior HPO outcomes compared to
GP-based Bayesian optimization [81]. Furthermore, the recently introduced transformer-based
Prior-data Fitted Networks [82] can mimic Gaussian Processes (GPs) and Bayesian networks,
while also incorporating additional information into the prior.

3.4. ANN-Based Transfer Learning for Surrogate-Assisted Black-Box Optimization

Obtaining accurate surrogate models in the initial stages of BBO is challenging due to the scarcity of
data points with evaluated objective function values. That can be mitigated by leveraging knowledge-
transfer learning. And a connection of modern kinds of neural networks with transfer learning is even
more obvious than with active learning. Indeed, transfer learning is nowadays one of the areas where
ANNs play most important role [119, 120, 121]. Different types of ANNs have been utilized to this end,
including convolutional [122, 123], recurrent [124], autoencoder [125, 126], GAN [127, 128, 129], and
transformer [81]. In the context of the research direction pursued in this paper, most interesting are
those that also have connections to BBO:
(i) Four ANN-based transfer learning approaches draw inspiration from the GAN paradigm. CoGAN

trains two GANs to generate the source and target, respectively, achieves a domain invariant
feature space by tying the high layers parameters of the two GANs, and performs domain
adaptation by training a classifier on the discriminator output [130]. Adversarial discriminative
domain adaptation learns first a discriminative representation using the labels in the source
domain, and then, using a domain-adversarial loss, a separate encoding that maps the target data
to the same space through an asymmetric mapping [127]. Minimax-game-based selective transfer
learning employs a selector and a discriminator to identify source domain data resembling the
target domain’s distribution, and distinguish genuine target domain data from selected source
domain data, respectively [129]. Selective adversarial network addresses negative transfer by
excluding outlier classes from the source domain selection, and maximizing the similarity between
source and target domain data distributions [128].

(ii) An autoencoder for transfer learning, described in [125, 126], incorporates embedding and label
encoding layers. The embedding layer reduces the disparity between instance distributions from
the source and target domains, while the label encoding layer utilizes a softmax regression model
to encode label information from the source domain.

(iii) The transformer OptFormer has demonstrated competitiveness with specific transfer learning
methods, although its usage leans more toward metalearning than traditional transfer learning
[81].

4. Experimental Evaluation of RAF Ensembles

This section describes a small experimental contribution to one of the above surveyed possible research
directions: RAF ensembles are experimentally evaluated as surrogate models for CMA-ES. The experi-
ments were performed on the probably most commonly used platform for experimenting in continuous
optimization – COCO ( Comparing Continuous Optimizers) [92]. COCO contains severeal suites of
benchmark functions, our evaluation was performed with the most traditional suite, which is the bbob
suite [92]. It consists of 24 dimension-scalable noiseless benchmark functions, the definitions of which
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have been given in [91]. Each function is used in 15 differently rotated and/or translated instances. The
employed benchmarks forming the bobo suite are surveyed in Appendix A.

4.1. Considered Variants of RAF Ensembles

As activation functions forming an RAF ensemble, we employed those included in the implementation
[131], to which the RAF paper refers [76]. They are listed in Appendix B. We used them in two variants
of RAF ensembles:

1. An RAF ensemble of size 5 trained directly using the above mentioned implementation [131], and
aggregated by the empirical mean. In the results, it will be denoted simply RAF.

2. An ensemble of size 5, in which the differences of values of the original black-box objective
function with respect to its median are first transformed to their logarithms before using [131] in
the logarithmic scale to train the ensemble. This transformation attempts to deal with situations
when the function returns in many points values close to the median. The aggregation function
is again the empirical mean, which in terms of the data before the logarithmic transformation
actually corresponds to the empirical geometric mean. That version will be in the results denoted
RAF-log.

4.2. Considered CMA-ES Variants for Comparison

CMA-ES surrogate-assisted by the above mentioned two variants of RAF ensembles was compared
with CMA-ES without surrogate modelling, as well as with two earlier surrogate-assisted variants of
CMA-ES:

3. CMA-ES without surrogate modelling was used in an implementation that is in the COCO data
archive [132] called default-CMA-ES, and described as "default CMA-ES from the pycma module,
version 3.3.0". Here, it will be in the results denoted simply default.

4. DTS-CMA-ES [12], using a surrogate GP with the covariance function Matérn 5
2 . In the results, it

will be denoted simply DTS.
5. lq-CMA-ES [20], which will be in the results denoted simply lq.

4.3. Evolution Control

Whereas DTS-CMA-ES and lq-CMA-ES have each their own evolution control, for the two variants of
RAF ensembles was necessary to propose when to evaluate a given point 𝑥 by the original black-box
objective function 𝐹bb, and when by its surrogate model 𝐹sm. We decided to use a modification of the
lq-CMA-ES evolution control. That modification is described below in Algorithm 1 using the notation
𝜏((𝑦1, . . . , 𝑦𝑘), (𝑧1, . . . , 𝑧𝑘)) for the Kendall correlation coefficient between the sequences (𝑦1, . . . , 𝑦𝑘)
and (𝑧1, . . . , 𝑧𝑘), and the notation 𝜌 for the ranking function on R𝑑, i.e.,

𝜌 : R𝑑 → Π(𝑑) with Π(𝑑) denoting the set of permutations of {1, . . . , 𝑑}
such that ∀𝑦 ∈ R𝑑 : (𝜌(𝑦))𝑖 < (𝜌(𝑦))𝑗 ⇒ 𝑦𝑖 ≤ 𝑦𝑗 . (1)

4.4. Results

In Tables 2–3, the two considered variants of RAF ensembles, and three considered other CMA-ES
variants, are compared based on the difference between the optimal value of the objective function,
and its value achieved for a given evaluation budget. The achieved values were averaged over the
15 instances provided by the COCO benchmark suite in each dimension for each of the 24 noiseless
functions listed in Appendix A. The comparisons were performed separately for each of the five above
described groups of those functions, and subsequently also for all 24 of them, each time including the
instances in dimensions 2, 3, 5, 10, and 20. For each evaluation budget, hence, six evaluations were
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Table 2
Comparison of CMA-ES surrogate-assisted by RAF, and by RAF-log, with CMA-ES without surrogate modelling,
with lq-CMA-ES, and with DTS-CMA-ES, for evaluation budget 3×dimension. Each cell of each sub-table records
the number of function-dimension combinations, for which the method in the row achieved with the evaluation
budget a lower value, averaged over the 15 COCO instances, than the method in the column. Ties within
the considered precision are halved between both methods. If the Friedman test rejected the hypothesis of
equivalence of all methods, and according to the subsequent Wilcoxon signed-rank test with Holm correction,
the method in the row is significantly better than the method in the column, the number in the cell is in bold
with * for the familywise level 5 %, and with ** for the familywise level 1 %.

Separable functions
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 10.5 7 0 13.5
RAF-log 14.5 - 10 0.5 13.5
DTS-CMA-ES 18 15 - 1 17.5
lq-CMA-ES 25** 24.5** 24** - 23**
default CMA-ES 11.5 11.5 7.5 2 -

Functions with low or moderate conditioning
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 10 3.5 2 6.5
RAF-log 10 - 4.5 3.5 7
DTS-CMA-ES 16.5* 15.5 - 8 15*
lq-CMA-ES 18** 16.5 12 - 16**
default CMA-ES 13.5 13 5 4 -

Unimodal functions with high conditioning
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 12.5 4 2 10.5
RAF-log 12.5 - 9.5 5 12
DTS-CMA-ES 21* 15.5 - 10 16
lq-CMA-ES 23** 20* 15 - 18.5
default CMA-ES 14.5 13 9 6.5 -

Multi-modal functions with adequate global structure
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 16 9.5 9 10
RAF-log 9 - 8.5 8.5 6.5
DTS-CMA-ES 15.5 16.5 - 14.5 15
lq-CMA-ES 16 17 10.5 - 13
default CMA-ES 15 18.5 10 12 -

Multi-modal functions with weak global structure
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 11 5.5 5 6.5
RAF-log 14 - 8.5 5 6
DTS-CMA-ES 19.5 16.5 - 13.5 15
lq-CMA-ES 20* 20 11.5 - 15.5
default CMA-ES 18.5 18 10 9.5 -

All noiseless benchmark functions
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 60 29.5 18 47
RAF-log 60 - 41 22 45
DTS-CMA-ES 90.5** 79** - 47 78.5**
lq-CMA-ES 102** 98** 73 - 86**
default CMA-ES 73 75 41.5 34 -
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Table 3
Comparison of CMA-ES surrogate-assisted by RAF, and by RAF-log, with CMA-ES without surrogate modelling,
with lq-CMA-ES, and with DTS-CMA-ES, for evaluation budget 50×dimension. Each cell of each sub-table
records the number of function-dimension combinations, for which the method in the row achieved with the
evaluation budget a lower value, averaged over the 15 COCO instances, than the method in the column. Ties
within the considered precision are halved between both methods. If the Friedman test rejected the hypothesis
of equivalence of all methods, and according to the subsequent Wilcoxon signed-rank test with Holm correction,
the method in the row is significantly better than the method in the column, the number in the cell is in bold
with * for the familywise level 5 %, and with ** for the familywise level 1 %.

Separable functions
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 7 4 1.5 11
RAF-log 18 - 6 0.5 12
DTS-CMA-ES 21** 19 - 7.5 19
lq-CMA-ES 23.5** 24.5** 17.5 - 22.5**
default CMA-ES 14 13 6 2.5 -

Functions with low or moderate conditioning
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 15.5 6 0.5 4.5
RAF-log 4.5 - 6 0 2
DTS-CMA-ES 14 14 - 11.5 14
lq-CMA-ES 19.5** 20** 8.5 - 18.5*
default CMA-ES 15.5 18** 6 1.5 -

Unimodal functions with high conditioning
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 21* 0 0 4
RAF-log 4 - 0 0 1
DTS-CMA-ES 25** 25** - 7.5 25**
lq-CMA-ES 25** 25** 17.5* - 25**
default CMA-ES 21 24** 0 0 -

Multi-modal functions with adequate global structure
RAF RAF-log DTS-CMA-ES lq-CMA-ES CMA-ES alone

RAF - 15 13 10 11.5
RAF-log 10 - 11.5 9 12
DTS-CMA-ES 12 13.5 - 13.5 15
lq-CMA-ES 15 16 11.5 - 13
default CMA-ES 13.5 13 10 12 -

Multi-modal functions with weak global structure
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 9 3.5 8 14
RAF-log 16 - 6.5 12 18.5
DTS-CMA-ES 21.5 18.5 - 20 23**
lq-CMA-ES 17 13 5 - 20*
default CMA-ES 11 6.5 2 5 -

All noiseless benchmark functions
RAF RAF-log DTS-CMA-ES lq-CMA-ES default CMA-ES

RAF - 67.5 26.5 20 45
RAF-log 52.5 - 30 21.5 45.5
DTS-CMA-ES 93.5** 90** - 60 96**
lq-CMA-ES 100** 98.5** 60 - 99**
default CMA-ES 75 74.5 24 21 -
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Algorithm 1 Evolution control used for RAF and RAF-log ensembles.

Require: points 𝑥1, . . . , 𝑥𝜆 ∈ R𝑑, in which the surrogate model 𝐹sm trained on some archive 𝐴 has
been evaluated; thus 𝜆 is the population size

1: Set 𝑘 = ⌊1 + max(0.02𝜆, 4)⌋; the number of 𝐹bb evaluations
2: Set 𝑄 = {𝑥𝑗 |(𝜌(𝐹sm(𝑥1), . . . , 𝐹sm(𝑥𝜆)))𝑗 ≤ 𝑘}; points with the 𝑘 smallest 𝐹sm values
3: In 𝑥 ∈ 𝑄 for which 𝐹bb(𝑥) is not yet known, evaluate 𝐹bb(𝑥)
4: Order the elements of 𝑄 as (𝑥1𝑄, . . . , 𝑥

𝑘
𝑄) decreasingly with respect to their 𝐹bb(𝑥) values

5: Set ℓ = max(1, ⌊𝑘+1−max(15, 0.75𝜆)⌋); the lower index for computing 𝜏 between 𝐹bb and 𝐹sm

6: while 𝑘 < 𝜆 & 𝜏((𝐹bb(𝑥ℓ), . . . , 𝐹bb(𝑥𝑘)), (𝐹sm(𝑥ℓ), . . . , 𝐹sm(𝑥𝑘))) < 0.85 do
7: Update 𝑄 = 𝑄 ∪ {𝑥𝑗 |(𝜌(𝐹sm(𝑥1), . . . , 𝐹sm(𝑥𝜆)))𝑗 ≤ ⌈1.5𝑘⌉}
8: In 𝑥 ∈ 𝑄 for which 𝐹bb(𝑥) is not yet known, evaluate 𝐹bb(𝑥)
9: Update 𝑘 = ⌈1.5𝑘⌉, ℓ = max(1, ⌊𝑘 + 1−max(15, 0.75𝜆)⌋)

10: Order the elements of 𝑄 as (𝑥1𝑄, . . . , 𝑥
𝑘
𝑄) decreasingly with respect to their 𝐹bb(𝑥) values

11: end while
12: Update 𝐴 = 𝐴 ∪ {𝑥𝑗 |𝐹bb(𝑥) has been evaluated in 𝑥𝑗}
13: if 𝑘 = 𝜆 then
14: Return 𝐴 and {(𝑥1, 𝐹bb(𝑥1)), . . . , (𝑥𝜆), 𝐹bb(𝑥𝜆))}
15: else
16: Return 𝐴 and {(𝑥𝑖, 𝐹bb(𝑥𝑖))|𝑥𝑖 ∈ 𝑄} ∪ {(𝑥𝑖, 𝐹sm(𝑥𝑖))|𝑖 = 1, . . . , 𝜆, 𝑥𝑖 ̸∈ 𝑄}
17: end if

performed. The comparisons in Table 2 were conducted for the evaluation budget 3×dimension, while
the comparisons in Table 3 were conducted for the evaluation budget 50×dimension.

The results of each of those 12 comparisons were subsequently assessed for statistical significance.
First, the hypothesis that all five considered methods are equivalent was tested by the Friedman test.
With the exception of both comparisons for multi-modal functions with adequate global structure,
the test rejected that hypothesis on the familywise significance level 5%, using the Holm procedure
for multiple-hypothesis correction [133]. This rejection justified testing the equivalence of any two
among the five methods. We adopted the arguments of [134] that, in machine learning, the Wilcoxon
signed-rank test is more appropriate for this purpose than the post-hoc tests presented in [135] and
[133]. If for particular two methods, the Wilcoxon signed-rank test rejected the hypothesis that they
are equivalent, then in the respective table, their comparison in the row corresponding to the method
that was more frequently better is shown in bold italics.

The results in Tables 2–3 primarily confirm the superior performance of the methods lq-CMA-ES,
and DTS-CM-ES. In the two comparisons based on all 120 noiseless benchmark functions, each of
them is for both considered budgets significantly better not only than default CMA-ES, but also than
CMA-ES surrogate-assisted by the two variants of RAF ensembles. Moreover, lq-CMA-ES is also among
the 10 comparisons based on individual groups of functions 6 times significantly better than default
CMA-ES, and 7 times, respectively 5 times significantly better than CMA-ES surrogate-assisted by RAF,
respectively by RAF-log. For DTS-CMA-ES, the results of the 10 comparisons based on individual groups
of functions are less convincing: 3 times significantly better than default CMA-ES, 3 times than CMA-ES
surrogate-assisted by RAF, and only once than CMA-ES assisted by RAF-log. As to a comparison
between the two variants of RAF ensembles, the differences among them were not significant apart from
unimodal functions with high conditioning, for which CMA-ES achieves significantly better results if
assisted by RAF than if assisted by RAF-log.

The different progress of optimization performed by each of the compared methods is illustrated,
always in three particular dimensions, by means of optimization-progress plots. They show the average
difference Δ𝑓 between the optimal and achieved value of the objective function over the 15 COCO
instances. For that illustration, we have chosen the functions 𝑓9 (Figure 1), 𝑓18 (Figure 2), and 𝑓20
(Figure 3). We can see that optimisation using CMA-ES surrogate-assisted by RAF or RAF-log sometimes
leads to similarly fast decrease of the objective function as, or even faster than, optimization using
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Figure 1: Progress of optimization by the compared methods up to the budget 250×dimension for the benchmark
function 𝑓9 – Rosenbrock rotated. Each curve is the average of the 15 COCO instances of this function.

the state-of-the-art methods DTS-CMA-ES or lq-CMA-ES. In Figure 1, this is the case for RAF-log in
dimension 2. In Figure 2, dimesnion 3, CMA-ES surrogate-assisted by RAF reaches lower values of
the objective function than any other of the compared methods, whereas in dimension 2, CMA-ES
surrogate-assisted by any of RAF or RAF-log leads to a similarly fast decrease of 𝑓18 as DTS-CMA-ES
but slower than lq-CMA-ES. Finally, in Figure 3, dimensions 3 and 5, CMA-ES surrogate-assisted by any
of RAF or RAF-log leads to a similarly fast decrease of 𝑓18 as lq-CMA-ES, but slower than DTS-CMA-ES.
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Figure 2: Progress of optimization by the compared methods up to the budget 250×dimension for the benchmark
function 𝑓18 – Schaffers F7 function, moderately ill-conditioned. Each curve is the average of the 15 COCO
instances of this function.

5. Conclusion

The paper was motivated by our opinion that the intense and successful development of artificial
neural networks during the last 15 years suggests that they again have the potential to be important
for active learning in surrogate-assisted BBO. It surveyed possible directions of research into that
potential, including closely connected research into neural-network-based transfer learning for surrogate
modelling. Moreover, it recalled the first published investigations in some of those directions, and added
a new contribution to the emerging mosaic of those investigations.
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Figure 3: Progress of optimization by the compared methods up to the budget 250×dimension for the benchmark
function 𝑓20 – Schwefel. Each curve is the average of the 15 COCO instances of this function.

The fact that the main purpose of the experimental section of the paper is to contribute to the mosaic
of emerging investigations should be epmhasized especially in context of the obtained experimental
results. It justifiess that there is no significant difference between using CMA-ES surrogate-assisted by
RAF ensembles and using it alone, as well as that results with RAF-ensemble-based surrogate models are
significantly worse than results with the state-of-the-art surrogate-assisted CMA-ES variants, lq-CMA-
ES, and DTS-CMA-ES. This is an obvious limitation not only of RAF ensembles, but of all above surveyed
kinds of neural networks that have been so far investigated as surrogate models for CMA-ES. On the
other hand, as the survey has shown, there are many more other possibilities for such investigations
within future research.
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A. Employed Benchmarks

The functions in the bbob suite are divided into five groups:

1. Separable functions (Figure 4).

• 𝑓1: sphere;
• 𝑓2: ellipsoidal;
• 𝑓3: Rastrigin;
• 𝑓4: Büche-Rastrigin;
• 𝑓5: linear slope.

2. Functions with low or moderate conditioning (Figure 5).

• 𝑓6: attractive sector;
• 𝑓7: step ellipsoidal;
• 𝑓8: Rosenbrock;
• 𝑓8: Rosenbrock rotated.

3. Unimodal functions with high conditioning (Figure 6).

• 𝑓10: ellipsoidal;
• 𝑓11: discus;
• 𝑓12: bent cigar;
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Figure 4: Separable functions. From left to right: sphere, ellipsoidal, Rastrigin, Büche-Rastrigin, maximized
linear slope.

Figure 5: Functions with low or moderate conditioning. From left to right: attractive sector, step ellipsoidal,
Rosenbrock, Rosenbrock rotated.

Figure 6: Unimodal functions with high conditioning. From left to right: ellipsoidal, discus, bent cigar,
sharp ridge, different powers.

• 𝑓13: sharp ridge;
• 𝑓14: different powers.

4. Multi-modal functions with adequate global structure (Figure 7).

• 𝑓15: Rastrigin;
• 𝑓16: Weierstrass;
• 𝑓17: Schaffers F7 function;
• 𝑓18: Schaffers F7 function, moderately ill-conditioned;
• 𝑓19: composite Griewank-Rosenbrock function F8F2.

Figure 7: Multi-modal functions with adequate global structure. From left to right: Rastrigin, Weierstrass,
Schaffers F7 function, moderately ill-conditioned Schaffers F7 function, composite Griewank-Rosenbrock
function F8F2.
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5. Multi-modal functions with weak global structure (Figure 8).

• 𝑓20: Schwefel;
• 𝑓21: Gallagher’s Gaussian 101-me peaks;
• 𝑓22: Gallagher’s Gaussian 21-hi peaks;
• 𝑓23: Katsuura;
• 𝑓24: Lunacek bi-Rastrigin.

Figure 8: Multi-modal functions with weak global structure. From left to right: Schwefel, Gallagher’s
Gaussian 101-me peaks, Gallagher’s Gaussian 21-hi peaks, Katsuura, Lunacek bi-Rastrigin.

B. Activation Functions Employed to Form an RAF Ensemble

• Gauss error function

erf(𝑥) =

{︃∫︀ 𝑥
0 e−𝑡2d𝑡 if 𝑥 ≥ 0,

−
∫︀ −𝑥
0 e−𝑡2d𝑡 if 𝑥 < 0.

(2)

• Gaussian error linear unit

gelu(𝑥) =
𝑥

2
(1 + erf(

𝑥√
2
)). (3)

• Scaled exponential linear unit

selu(𝑥) =

{︃
𝑐𝑥 if 𝑥 ≥ 0,

𝑐𝛼(e − 1),
(4)

where 𝑐, 𝛼 > 0. In the employed Tensorflow implementation, 𝑐 = 1.05070098, 𝛼 = 1.67326324.
• Softsign activation function

softsign(𝑥) =
𝑥

|𝑥|+ 1
. (5)

• Hyperbolic tangent

tanh(𝑥) =
e𝑥 − e−𝑥

e𝑥 + e−𝑥
. (6)
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