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Abstract
The biggest challenge today regarding courier services (delivery of small to medium-sized parcels) is the problem
of Address Matching. With the expansion of geographical data and the diversity of formats in which it is received,
traditional matching methods are becoming increasingly obsolete due to the lack of conformity of delivery
information with postal address writing standards. These new constraints are affecting parcel delivery quality
in terms of deliverables, cost and environmental impact. This research focuses on courier delivery data (i.e.
postal addresses of recipients) in the context of matching French postal addresses. We introduce a new ensemble
retrieval approach to the problem through a voting system leveraging multiple k-Nearest Neighbors search
algorithms, called 𝑘NN-vote which effectively transform the Address Matching task to an Address Retrieval task.
𝑘NN-vote returns the top best normalized addresses similar to a given query (a non-normalized delivery address).
The system takes advantage of several address representations, in particular Pre-trained Transformers-Based
Sentence Embeddings. The system has been tested on a real database of French delivery addresses. The method
meets high expectations, returning exactly matched addresses with a success rate of up to 96% in top 10 as well
as 86% in top 1.

Keywords
Address matching or transport entity alignment, Recipients/consignees identification or pairing, Recovery of
recipients, Address retrieval, Ensemble 𝑘NN retrieval models.

1. Introduction

The transport Entity Alignment problem, also known as the postal Address Matching (AM) problem
is inherently an NLP task given that a postal address is mainly structured as a short sentence with a
specific arrangement of Named Entities (i.e. attributes or features like Road Name or Door Number)
which makes it fall within the scope of Entity Matching (EM). The task involves effectively processing
and comparing structural components of a pair of addresses (𝑎, 𝑏) for accurate matching (i.e. 𝑎 and 𝑏
refer to the same real world object).

Carriers identify delivery addresses received via EDI (Electronic Data Interchange) by matching them
with recipient addresses already registered in their database. Nothing could be more simple at first
glance, except that delivery addresses are increasingly received in non normalized forms. The addresses
received are often incorrect and/or noisy, thus identifying a valid address from an invalid one becomes a
very challenging task. The anomalies present in a delivery address can be: (1) Writing errors, including
typographic ones, spelling mistakes, repetition, or the absence of specific address features ; (2) Address
noise may involve personal information, such as names, phone numbers, or requests for appointments
; (3) Lastly, Semantic or contextual errors include the presence of features from unrelated addresses,
feature replacements (e.g. "avenue" instead of "street"), feature aliases, like abbreviations or acronyms as
well as polysemous1 features and finally addresses represented by their semantic synonyms, specifically
named zones or parks.

IAL@ECML-PKDD’24: 8th Intl. Worksh. & Tutorial on Interactive Adaptive Learning, Sep. 9th, 2024, Vilnius, Lithuania
$ el.moundir.faraoun@gmail.com (E. M. Faraoun); n.mellouli@iut.univ-paris8.fr (N. Mellouli); Stephane.millot@edies.fr
(S. Millot); m.lamolle@iut.univ-paris8.fr (M. Lamolle)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1Polysemy in postal addresses: a single element with multiple related meanings, associated with different locations or
recipients.

96

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:el.moundir.faraoun@gmail.com
mailto:n.mellouli@iut.univ-paris8.fr
mailto:Stephane.millot@edies.fr
mailto:m.lamolle@iut.univ-paris8.fr
https://creativecommons.org/licenses/by/4.0


Let’s take for example, the following real delivery address received by a French Carrier: "avenue du
g n ral leclerc centre commercial auchan 89200 avallon". Here the correct Road Type is "rue"
instead of "avenue" and the typographic error in "g n ral" is intended as "general". Not to mention
the absence of a Door Number in the address. We finally note that "centre commercial auchan" is a
semantic synonym for the address. These anomalies distort the structure of an address and prevent it
from being paired with a valid address record.

The AM problem is traditionally solved with a binary “Match/No Match” classification of address
pairs [1] mainly relying on neural network-based methods [2, 3, 4, 5, 1, 6]; yet, the task itself is imagined
in a scenario of matching address records between two tables or deduplicating records in a data table.
However, in the context of delivery, this correspondence is a search for information similar to a given
request (address received). Thus, we are dealing with an unsupervised Information Retrieval (IR) problem
in which each new address is treated as a query, which may be valid or incorrectly formatted, and for
which we try to find valid "candidate" addresses in the database. This formalization is very relevant
since it allows retrieved candidates for a delivery address to be sorted in terms of contextual similarity.
Furthermore, the number of "candidate" addresses is relatively small, reducing the computation time if
all reference address records have to be aligned.

Our objective in this research is to take advantage of the various possible representations of addresses,
in particular Transformer-Based Sentence Embeddings in the context of Information Retrieval. We
propose an ensemble multi-embeddings models approach based on the 𝑘-Nearest Neighbors algorithm
(𝑘NN) [7], with a voting process between multiple 𝑘NN search models.

The remainder of this paper is organized into 7 sections. Section 2 reviews the work carried out
in relation to address matching. Section 3 formalizes the Address Retrieval problem. We describe
our approach in Section 4 and present its experimental settings in Section 5. Results are detailed
and discussed in Section 6. We conclude this work by considering its limitations and prospects for
improvement in Section 7.

2. Related Work and State-of-the-Art

The existing solutions for Address Matching can be summed up in two approaches. An approach based
on string similarity measures or matching rules [8, 9]. However, the problem remains that these methods
are based mainly on structural comparisons between addresses, and they quickly become obsolete
when faced with addresses that are written differently but retain the same semantic meaning [4]. In
fact, textual similarity distances such as Levenshtein and others [10, 11, 12, 13, 14], are used for address
matching. These distances depend on the choice of a similarity threshold, which is generally high. This
score remains very approximate and eliminates the possibility of matching pairs below the chosen
threshold. Other methods are based on decision tree matching rules [9]. These methods improve the
matching performance but require systematic calibration of the rules by experts due to the diversity of
address writing models.

A second approach based on machine learning (ML) or deep learning architecture (DL) aims to
learn the semantic similarity between addresses [2, 3, 4, 5]. These methods mainly rely on vector
representations of address elements such as Word2Vec [15] or FastText [16] to use them as input
data of ML (e.g. Random Forest, XGBoost) or DL inference models (e.g. ESIM [4], ABLC [5]) for
classification. However, in order to get those word embeddings, a parsing step is needed, which is the
process of segmenting addresses into their essential features or elements (e.g. Road Number, Road
Name or Postal Code). Various parsing techniques were used for this task. For instance, the latter
studies used respectively CRFs [17], heuristic rules [3], Jieba2 algorithm and the Trie syntax tree
algorithm. Nonetheless, these methods often come short in the proper parsing of noisy erroneous
addresses. Furthermore, the lack of context between words in an address due to the static nature of
word embeddings suggests that these methods may fail to match certain ambiguous addresses, such as
synonymous or polysemous ones [1], and addresses that are too distorted by noise and errors.

2https://github.com/fxsjy/jieba
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Recently, the advent of pre-trained transformer encoders [18], like Roberta [19], has transformed
various tasks by introducing hyper-contextualized word embeddings [1]. This breakthrough has enabled
the achievement of state-of-the-art performances through fine-tuning these encoders for specific tasks,
particularly in Entity Matching [20, 21]. In the context of Address Matching, a model named GeoRoberta
[1] is proposed. It involves a generation of geographical knowledge for addresses by fine-tuning a
Roberta encoder for the task of address features tags detection. It also allows to obtain a textual
encoding of GoogleMaps API3 geographical coordinates of addresses based on Geohash4. It is worth
to know that GeoRoberta, is based on a pre-trained Roberta encoder as well. It generates augmented
contextualized embeddings for an address pair by combining at input, elements of both addresses and
their Geohash encodings. The output embeddings are fused afterwards with a second augmented pair
of addresses, by combining the feature tags embeddings and their Geohash tag embeddings. This final
fused representation is fed into a matching classification layer for the address matching task. The
approach integrates textual and geographical data, leveraging the power of pre-trained transformers
which allows the matching of polysemous and synonymous addresses more efficiently. However, the
generation of Geohash coordinates is based on Google geocoding, which is likely to be wrong for certain
ambiguous or excessively erroneous addresses.

We argue that the use of sentence embeddings to represent addresses in the context of similar infor-
mation retrieval is much more adapted in terms of representation quality [6]. This type of representation
uses the training of Trasformer-Based Bi-Encoders [22] for the Semantic Textual Similarity (STS) task.
It succeeds in reducing the distance between two addresses in a latent space even though they have dif-
ferent expressions. Moreover it solves the problem of synonymous addresses and allows the resolution
of Address Matching through Information Retrieval algorithms [7]. Such a solution was introduced in
[6] by fine-tuning a DistilBert [23] Bi-Encoder on address pairs and utilize it for query top "Candidate"
addresses retrieving after which a fine-tuned Cross-Encoder for address pair classification is used as
a top candidates Re-ranker. To take this idea further, we propose several types of representations,
vectors (sentence and word embeddings) and raw (textual address content). Giving rise to several lists
of 𝑘 normalized addresses candidates via the Ensemble 𝑘NN algorithms, we propose to finally re-rank
them through a vote based on the maximum number of appearances of a given candidate (i.e. Term
Frequency) among the ensemble 𝑘NN models.

3. Address Retrieval formalization

In this section, we introduce the address structure and we define its schema allowing us to formalize
the Address retrieval (AR) problem. We are focusing on French reference addresses and considering
only the French address features. Therefor, the correct structure of any address is the one that follows
the official representation model5 of French postal addresses, namely any address that contains the
basic features of the latter which makes it possible to precisely identify the geographical point of the
recipient. The features of a correct French address are described in Fig. 1.

3.1. Address model

Address structure definition: Let be a set of vocabulary 𝑉 , which includes all permissible instances
of possible features in a given address. For example, "avenue" might be an instance of the feature
RoadType. We define 𝐷𝑛𝑜𝑟𝑚 as the set of all correctly structured, normalized address sentences. A
normalized address would follow in this case the official model of a French address.

Within 𝐷𝑛𝑜𝑟𝑚, there exits a reference set 𝐷𝑟𝑒𝑓 such that, ∀ 𝑎 ∈ 𝐷𝑟𝑒𝑓 , 𝑎 is both normalized and
corresponds to an actual real-world location. Thus 𝐷𝑟𝑒𝑓 is the set of all normalized valid addresses
with a real geographical point.

3https://developers.google.com/maps/documentation/geocoding?hl=fr
4http://geohash.org/
5https://www.upu.int/
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Figure 1: French Postal Address Features

An address model ℳ is defined by a structure function 𝑓⪯(·). This function takes a sequence of
elements from the vocabulary 𝑉 and produces a normalized address in 𝐷𝑛𝑜𝑟𝑚. Specifically: 𝑓⪯(·) :
𝑉 𝑛 → 𝐷𝑛𝑜𝑟𝑚 where 𝑛 can be 4 or 5, representing the number of components in a address and 𝑛 = 4
being the special case where an address doesn’t need a RoadType. The components 𝑥1, ..., 𝑥𝑛 ∈ 𝑉 must
satisfy:

• 𝑥1 is an instance of DoorNumber,
• 𝑥𝑛 is an instance of CityName,
• ⪯ is a partial order relation defined on 𝑉 , that we denote (𝑉,⪯) such that for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
∃ (𝑥𝑖, 𝑥𝑗) ∈ 𝑉 × 𝑉 , and 𝑥𝑖 ⪯ 𝑥𝑗 ,

• 𝑓⪯(𝑥1, ..., 𝑥𝑛) ↦→ 𝑎 ∈ 𝐷𝑛𝑜𝑟𝑚 such that 𝑎 = 𝑥1𝑥2...𝑥𝑛.

With the following formalization framework, 𝑓⪯(·) could be assumed as a grammar allowing us to
generate address sentences that are syntactically and semantically correct. Moreover, if 𝑎 ∈ 𝐷𝑟𝑒𝑓 , 𝑎 is
a normalized address with a real-world location.

The latter definition allows us to consider any address that follows the address modelℳ as normalized.
That being said, an address can be normalized but nonexistent. The following examples of French
addresses illustrate this point:

• (i) "16 avenue jean jaures 89000 auxerre" is a normalized existing address.
• (ii) "16 rue jean jaures 89300 joigny" is a normalized address but nonexistent.

Although the second address is technically correct in its structure, a simple anomaly like features
instance replacement of RoadType, PostalCode and CityName makes it not corresponding to a real
location. In such a case, the ensemble 𝑘NN multi-embeddings models are interesting since the address
semantic context is considered.

3.2. Address retrieval

Now that the address structure formalism is defined, through the lexicographic order relation defined
on the feature instances of an address, we assume in the following of our work that an address is simply
a structured sentence with a particular context (a.k.a an address sentence). We define the problem of
Address Retrieval as a problem of semantic search of textual documents.

Address embedding definition: Let 𝑎 be an address sentence. Given a textual encoders 𝐸, An
address representation is defined as the output of 𝐸 where 𝑎 is the input. We define 𝐸0 as id(·) (i.e. the
identity function) and therefor, an address representation can be:

• raw (i.e. the textual content of the address itself) through 𝐸0

• a vector embedding through a neural encoder 𝐸.

In the rest of the paper, and for the sake of simplicity, we refer to the ensemble of raw and vector
model embeddings as multi-embeddings models.
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Contextual 𝑘NN Address Retrieval task: We want to obtain for a given address query 𝑞 and
through an encoder 𝐸, a query representation 𝑒𝑞 ∈ 𝒳𝐸 for 𝑘NN retrieval. The Neighborhood of
𝑒𝑞 is then constructed by fetching its 𝑘 nearest neighbors from a set of reference address sentence
representations 𝒳𝐷𝑟𝑒𝑓

⊂ 𝒳𝐸 according to a distance function 𝑑(·) : 𝒳 2
𝐷𝑟𝑒𝑓

→ R.
More formally, the 𝑘 nearest neighbors of 𝑒𝑞 can be obtained by:

𝒦 := {𝑖1, 𝑖2, . . . , 𝑖𝑘 | 𝑑(𝑒𝑞, 𝑒𝑖𝑗 ) are the 𝑘 smallest distances, 𝑖𝑗 ∈ [|𝒳𝐷𝑟𝑒𝑓
|]} (1)

where 𝒦 denotes the set of indices in [|𝒳𝐷𝑟𝑒𝑓
|] = {1, ..., |𝒳𝐷𝑟𝑒𝑓

|}, which points to 𝑘 neighbors with
the smallest distances close to 0.

Although a distance 𝑑 depends on the fixed encoder used for an address representation, our 𝑘NN
retrieval model is still generic. For example, if 𝐸 is a Transformer-Based Bi-Encoder model then the
distance 𝑑 would be a 𝑐𝑜𝑠𝑖𝑛𝑒-like distance. Roughly speaking, our 𝑘NN model have three parameters:
the 𝑘, the 𝐸 representation and the distance 𝑑 [24, 25, 26].

4. Our Approach

Ensemble voting for multi-embeddings 𝑘NN models is a robust technique that exploits the strengths of
different embedding methods to improve prediction accuracy. By generating multiple embeddings for
the same data and combining the predictions of multiple 𝑘NN models through voting, we can achieve
better performance and more reliable results. This approach is particularly useful for our task in which
different embeddings capture different aspects of the addresses. In order to perform the task of correct
address retrieval, we had to undergo the subsequent steps: (1) Data pre-processing and deduplication
for both delivery and reference addresses, (2) Offline fine-tuning of different Bi-Encoders on the STS
task in order to construct multiple retrieval sets of normalized address embeddings, (3) 𝑘NN retrieval
models construction (see Fig. 2) and (4) Online aggregating of the different search results through the
design of a vote schema (see Fig. 3).

4.1. Data pre-processing

Before fine-tuning the Bi-Encoders, it was necessary to go through two word pre-processing steps then
a deduplication step:

• The first step is the cleaning of both delivery and reference addresses and it involves removing
accents and punctuation that might be present in data.

• The second step concerns the removal of interfering elements. This step is only applied to the
delivery addresses given that all reference addresses are supposed to be correct and normalized.
This step removes a set of unnecessary symbols that can be found in non-normalized addresses
(e.g. ‘+’, ‘*’, ‘&’, . . . etc.).

• The third step is the deduplication of delivery address records. By removing these exact duplicates,
we ensured that our fine-tuning process was efficient and not biased by redundant data points.

The final step is dataset creation for the Bi-Encoders fine-tuning. This step includes another cleaning
process we explained in details in 5.1.

4.2. Offline fine-tuning of Bi-Encoders

Here, we have as an input a set of (delivery, reference) address pairs. The aim of this step is to fine-tune
multiple bi-encoders to generate the address sentence vector embeddings.
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4.2.1. Bi-Encoder

Bi-Encoders are Siamese Transformers Networks generally fine-tuned on Semantic Textual Similarity
tasks for the purpose of generating meaningful sentence embeddings. Typically, a pre-trained trans-
former model is first chosen as the training base of the Bi-Encoder. We use two types of pre-trained
models:

• “Camembert-base” [27] , a model specific to the French language,
• “XLM-Roberta-base” [28], a multilingual model,

which we both adapted on a large corpus of French postal addresses by continuing their training on
the Masked Language Modeling (MLM) task. We also used the MLM objective to train a third small
Roberta-based model [19] from scratch on the same corpus.

Given an address sentence pair (𝑎, 𝑏), a forward pass of the transformer over each tokenized address
generates token embeddings for both 𝑎 and 𝑏. Mean pooling is then applied on each address token
representations resulting in two fixed length vectors which will be our address sentence embeddings.
Considering a specific STS task, the best semantic address matching performance is found through
the optimization of an objective function such as the “contrastive loss” [29] which is used mainly in
neural networks for classification and matching tasks, such as similarity learning. It is often used in
Siamese networks to train models to learn similar representations for pairs of similar samples and
dissimilar representations for pairs of dissimilar samples. Readers interested in exploring the Bi-Encoder
architecture can refer to [22].

In our case, our sentences are postal addresses that are no more than a few words long. In addition, all
addresses have, more-or-less, the same vocabulary that repeats itself, such as road types or city names.
All this reduces the diversity of context between dissimilar addresses. This constraint led us to believe
that using a basic objective function would not succeed in creating a sufficient gap in terms of distance
between dissimilar addresses. To overcome this, we decided to use the "Multiple Negative Ranking Loss"
(MNLR) objective function [30], which is often used in the context of ranking and information retrieval
tasks and therefore more suited to our similarity search task. This approach is supported by findings in
[31] which highlights that including multiple negatives in each batch enhances the model’s ability to
distinguish between dissimilar examples without the need to specifically design hard negative pairs.
Finding truly effective negative examples can be challenging and significantly impact the performance,
making MNRL’s ability to utilize multiple negatives in a straightforward manner highly advantageous
which leads to better performance and more robust embeddings.

Multiple Negative Ranking Loss definition: For a given 𝑁 address sentence embeddings pairs
[(𝑒𝑎1 , 𝑒𝑏1), ..., (𝑒𝑎𝑁 , 𝑒𝑏𝑁 )] between query-reference address sentences (𝑎1, ..., 𝑎𝑁 ) and (𝑏1, ..., 𝑏𝑁 )
where (𝑎𝑖, 𝑏𝑖) are labeled as similar, and (𝑎𝑖, 𝑏𝑗) where 𝑖 ̸= 𝑗 are labeled as not similar. The loss function
is as follows:

− 1

𝑁

𝑁∑︁
𝑖=1

⎡⎣𝑆(𝑒𝑎𝑖 , 𝑒𝑏𝑖)− 𝑙𝑜𝑔

𝑁∑︁
𝑗=1

𝑒
𝑆(𝑒𝑎𝑖 ,𝑒𝑏𝑗 )

⎤⎦ (2)

This function allows the model to consider in a given batch of positive address pairs, for one sample
(𝑎𝑖, 𝑏𝑖), using all the normalized reference addresses 𝑏𝑗 in the other positive pairs, 𝑁 − 1 negative pairs
(𝑎𝑖, 𝑏𝑗). This strategy helps the model to widen the distance between negative examples 𝑎𝑖, 𝑏𝑗 where 𝑆
is the score function (Generally 𝑆(𝑒𝑎𝑖 , 𝑒𝑏𝑖) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑒𝑎𝑖 , 𝑒𝑏𝑖)). This loss function helps reducing the
impact of the lack of context in the addresses.

4.2.2. Retrieval set creation

Having a dataset of normalized reference address sentences 𝐷𝑟𝑒𝑓 and a fine-tuned Bi-Encoder 𝐸, we
can generate a retrieval sentence embedding set 𝒳𝐷𝑟𝑒𝑓

through a forward pass over all address instances
of 𝐷𝑟𝑒𝑓 . This embedding set would be later used at inference time for the retrieval of a given query
nearest neighbors.
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4.3. 𝑘NN retrieval models

𝑘NN-vote is an Ensemble Information Retrieval system based on the search results of multi 𝑘NN
models, all similar in their operations but very different in their basis of representations of the searched
addresses. In general, an individual 𝑘NN search model is a 𝑘-Nearest Neighbor algorithm which
takes as a parameter a distance 𝑑 specific to the type of representation of the searched points (e.g.
a Levenshtein or Jaccard distance for a raw textual representation). The algorithm computes all the
distances between a query and the search points previously pre-registered in the retrieval reference set
𝒳𝐷𝑟𝑒𝑓

(𝒳𝐷𝑟𝑒𝑓
= 𝐷𝑟𝑒𝑓 for raw textual representation) and returns the list of the 𝑘 most similar points

having the smallest distance with the query. Table 1 shows the different combinations of (encodings,
similarities) that can be used in a 𝑘NN search model (𝑘NN Retriever) within the voting system. The
table illustrate the possible types of address representation previously mentioned in Section 3.2, That is,
the raw textual representation through which we will have different 𝑘NN search models each with a
well-defined type of string distance (see Table 1); and (2) vector representation divided into two types:

• traditional embeddings built by way of mean pooling the static word embeddings of address
elements such as Word2Vec,

• contextual sentence embeddings, fine-tuned for textual similarity, of postal addresses.

Table 1
Different Combinations used for 𝑘NN Retriever

Representation Encoding Similarity

Raw Textual content Jaro, Jaro-Winkle,
Levenshtein, Jaccard,
Damerau-Levenshtein,
Ratio, Token set ratio,
Token sort ratio,
Partial ratio, Set ratio,
Seq ratio

Vector Csent (Camembert Bi-Encoder) Cosinus
XLMsent (Xlm Roberta Bi-Encoder) Euclidean
Rsent (Roberta custom Bi-Encoder) Correlation
wvavg (Word2Vec word embeddings averaged) Cityblock
ftavg (fastText word embeddings averaged)

Without any a priori hypotheses about the origin of the errors, we have carried out an empirical
search for the best address representation spaces with the appropriate similarity measures. We simply
applied the various representations and similarity measures in the literature and compared eleven string
similarity measures for the raw representations and four vector similarity measures for the static and
dynamic embedding. representations (see Table 1). Some of the string similarity measures, such as
"Ratio" or "Token_set_ratio," are taken from the fuzzywuzzy library6 as they enable more robust and
flexible comparisons by incorporating tokenization and sorting mechanisms. Unlike traditional metrics
like Levenshtein and Jaro, which focus solely on character-level edits, fuzzywuzzy’s methods account
for word order and partial matches, making them more suitable for real-world text data. The chosen
sentence embedding models are considered (see Section 4.2), hence we had a total of 31 𝑘NN models.
The advantage here is to allow us to have a maximum of individual candidate lists of retrieved addresses
in order to compare, firstly, the performance of each 𝑘NN Retriever model and, secondly, use them
to draw the candidates in common between the lists as the most similar candidates. Fig. 2 shows the
architecture of a single 𝑘NN Retriever. We finally define the similarity search process as follows: (1)
we convert a query 𝑞 by the desired representation type to have 𝑒𝑞 ; (2) 𝑒𝑞 is then passed into the 𝑘NN
Retriever which will be responsible for computing the distances between 𝑒𝑞 and all the representations

6https://github.com/seatgeek/fuzzywuzzy
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in the retrieval set in order to return the 𝑘 address indices most similar to 𝑞 ranked according to the
smallest distance.

Figure 2: 𝑘NN Search Model Architecture.

4.4. Ensemble voting retrieval system

The system is termed "multi-embeddings models" due to its dual approach, leveraging both raw address
representations and advanced deep learning (DL) techniques for vector text representations in address
matching. The core functionality of the system involves returning a final list of 𝑚 similar candidate
addresses through a voting process. Among the 𝑘NN ensemble models, the voting process is based
on the maximum number of occurrences of a candidate address for a given query. It should be noted
that this system needs two types of important values: (1) the number of repetitions of each candidate
address 𝑖 in the different 𝑘-lists; (2) the different similarity scores of a pair (𝑞,𝑖) for which 𝑖 appeared
with different 𝑘NN models.

4.4.1. Retrieval Flow

1. Candidate address lists retrieval: The system begins by retrieving the 𝑘-lists of candidate addresses
using the ensemble 𝑘NN retrieving pipeline. Each model in the ensemble provides a list of address
indices for a given query.

2. Voting process:

• Repetition counting: The first step in the voting process is to count the number of repetitions
of each candidate address 𝑖 across the different 𝑘-lists.

• Grouping and sorting: Candidates indices are then grouped based on their repetition counts.
This creates "bags" of indices, where each bag contains one or more indices pointing to
associated addresses. Then the bags are sorted by the maximum number of repetitions.

• In-bag max pooling of similarity scores: Within each bag, the system collects the similarity
scores for each address from the different 𝑘NN models in which they appeared. Max pooling
is then applied to these scores to determine the maximum similarity score for each address
within the bag.

• In-bag Ranking: The addresses are then sorted within each bag based on their maximum
similarity scores.

3. Final address list retrieval:

• Final output: All the bags are concatenated resulting in a sorted list of addresses where the
top candidate address has been repeated the most times and possesses the highest similarity
score.

• Cut-off value choice: The system sets the value of 𝑚 (the number of neighbors to return)
and computes performance metrics to evaluate the effectiveness of the address matching
process. The value of 𝑚 is not necessarily the same as 𝑘 since the voting process ultimately
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is ranking all the candidates of the 𝑘-lists combined which would naturally produces k-plus
candidates depending on how heterogeneous the k-lists are.

Figure 3: Ensemble Vote Process.

5. Experimental Settings

5.1. Data description

In our experiments, we use real private postal address data made available by a carrier in the region of
Yonne, France. This data consists of two database tables, a table of approximately 1M non-normalized
addresses of deliveries received via EDI and another table of registered recipients of more than 42K
normalized postal addresses. After the de-duplication step mentioned above, and due to the presence of
large number of identical delivery instances, just over 85% of all delivery address instances have been
de-duplicated, mainly because most deliveries are business addresses. As a result, we are left with just
over 147K distinct delivery addresses.

Dataset creation: We are in an offline training set up (i.e. our ensemble 𝑘NN retriever doesn’t need
training but rather takes advantage of the different representations, vector or raw, of postal addresses
in order to search for the most similar addresses). That said, the creation of a dataset of address pairs
(i.e. non-normalized query-address, normalized reference-address) is necessary for two reasons: (1)
the offline fine-tuning of the different sentence representation models for the addresses and (2) using
the dataset in the final performance test of the 𝑘NN-vote system. To do this, we use the recipient keys
associated with the records in the two tables to create a dataset of over 147K address pairs. The dataset
is then divided between training data and test data with respective proportions of 90% and 10%. The
same test data will be used to evaluate 𝑘NN-vote. A second cleaning is carried out on the training
dataset to eliminate certain non-normalized entry addresses likely to reduce the learning quality of the
Bi-Encoder such as addresses having only the postal code and the city name. These type of addresses
lacks completely the context linking them to their supposed normalized counterparts. Around 0.8% of
the training data was impacted by this second cleaning. The Table 2 shows some examples of this kind
of addresses.

5.2. Bi-encoders fine-tuning parameters

5.2.1. Fine-tuning Base

The Three chosen base transformers were trained on a corpus of approximately 950K official French
postal addresses from the Yonne region, France and adjacent regions taken from the official governmental
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Table 2
Examples of Delivery Address Deletion

Received address Normalized address Justification for deletion

trichey 89430 trichey 4 rue maillet 89430 trichey This address only have the postal code and
the name of the city

89160 89160 sambourg 11 rue d argenteuil 89160 Here another example where door number
sambourg and road name are missing

xxxx 89240 pourrain 30 route d aillant 89240 In this example, ’xxxx’ is used as a placeholder
pourrain because the expediter only had the recipient’s

name and needed to fill in something for
the incomplete address

website7. The complete training of the three encoders was carried out during 5 iterations and no
parameter optimization was done. The aim here was simply to adapt the three language models to the
postal addresses and have them as a basis for fine-tuning the Bi-Encoders. The “transformers” package
from HuggingFace8 was used to train these language models.

5.2.2. Bi-encoders fine-tuning

The three Bi-Encoders were fine-tuned according to the best combination of hyper-parameters presented
in Table 3. Both Camembert-base and XLM-Roberta-base architectures used for the first two Bi-Encoders
fine-tuning can be explored in details in [27, 28] as for the third one, a custom pre-trained Roberta-small
architecture (6-layers, 128-hidden, 8-heads and 8 million parameters) is used. The three Bi-Encoders
were adjusted on a local server with an NVIDIA Tesla A100 graphics card (20 GB) via the SBERT9

“sentences-transformers” package.

Table 3
Best Found Fine-tuning Hyper-parameters for Bi-Encoders

Bi-Encoder

Parameter Camemebert XLM Roberta Roberta from scratch

epochs 19 19 20

batch size 32

Optimizer AdamW

Learning Rate 2e-5 2e-5 2e-3
Scheduler WarmupLinear

Warmup Steps 100

Weight Decay 0.01

Loss MNR Loss

Base Transformer Camembert-base XLM-roberta-base Roberta-custom

5.3. Models evaluation

For the evaluation of the proposed voting approach, we compare it with our different individual 𝑘NN
models in addition to the bi-encoder (BI_DistilBert) model proposed by Duarte et al. [6], where they

7https://adresse.data.gouv.fr/
8https://huggingface.co/docs/transformers/index
9https://www.sbert.net/
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use DistilBert Multilingual as a basis for fine-tuning their model. To remain consistent with the cited
research, we consider a value of 𝑘 neighbors equal to 10 but we take the time to test other values of
𝑘 with respect to our individual systems. The models were evaluated based on two metrics: (1) The
existence ratio (ER), which is the proportion of correctly predicted positive pairs out of all pairs in the
test data set, and (2) the MRR, i.e. the Mean Reciprocal Rank, which is a measure used to evaluate the
quality of the appearance ranks of correct query responses via information retrieval systems. For a
sample of queries 𝑄 and 𝑟𝑎𝑛𝑘𝑖, i.e. the position of the correct searched address for a query 𝑞𝑖 ∈ 𝑄 with
𝑖 = 1, ..., |𝑄|, the MRR formula can be defined as follows:

𝑀𝑅𝑅 =
1

|𝑄|

|𝑄|∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘𝑖
, (3)

The primary objective of the models is to achieve a maximum ER at the exact matching level (i.e. the
predicted address is exactly the address sought for the query). In addition, two types of ER are computed:
(1) The ER of the correct predictions in the first rank (top 1) and (2) the ER of the correct predictions
among the 𝑘 address candidates (top k). We are also interested in the matching ER at the road level (i.e.
the predicted address is at least in the correct road of the searched address). This type of ER is all the
more important since in practical cases, carriers will generally be able to successfully deliver parcels as
long as they are in the same lane of the delivery address[6].

6. Results

6.1. Comparison of individual 𝑘NN models

Our first intent was to compare individual 𝑘NN systems in order to identify the best performing model
in terms of top k ER at the exact search level (top k exact). The results illustrated in Fig. 4a show the
superiority of 𝑘NN models based on the different sentence representations and this comes down to
the quality of the hyper contextualized embeddings in comparison for example with word embeddings
like Word2Vec or FastText. We also note that models based on raw representations are generally
more efficient than Word2Vec and FastText. The reason is probably because of the enormous loss
of information in the static embeddings due to the mean pooling used to create the address vectors.
Increasing the value of 𝑘 positively impacts the existence ratio overall the models because the larger
the list of neighbors, the greater the chance of more difficult addresses to be retrieved. However, the
increasing levels of the existence ratio vary between 5% for sentence embedding, 11% for raw embedding
and 26% for static embedding with a 𝑘 value between 5 and 120, as shown in Figure 4a. This can be
explained by the level of accuracy of the sentence embedding, as the majority of positive pairs are
already identified within the first 5 candidate addresses. In contrast, the raw and static embedding
models require a very high 𝑘 value of up to 120. In terms of MRR, the results in Figure 4b are consistent
with the existence ratios, as the best models should have the highest MRR at the lowest possible 𝑘
value. The dynamic finetunner sentence 𝑘NN embedding models retrieve the searched addresses at
the highest ranks compared to the other models. Furthermore, they remain stable as 𝑘 increases, thus
demonstrating their strong retrieval ability even with the earliest candidates thanks to their ability to
capture address context. This was expected as well, as the very purpose of sentence transformers is
to learn how to reduce the distance between vectors of positive address pairs, even if they are very
different syntactically, whereas models based on string similarity distances only perform well when the
addresses are relatively similar syntactically.

6.2. kNN multi-embeddings models experiment results

6.2.1. Multi-embeddings models instances

We wanted to test the performance of the voting system using the set of individual 𝑘NN models while
having the flexibility to select different subsets to maximize the voting efficiency. Fig. 5 illustrates the
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(a) 𝑘NN’s top k exact ERs

(b) 𝑘NN’s top k exact MRRs

Figure 4: Evaluation of Individual 𝑘NN models with regards to metrics: ER and MRR

results of the ERs top k exact of the chosen subsets that had the overall better performance. We observe
that the subset of sentence only models performs generally better. If we further exclude from the latter
the 𝑘NN models based on Roberta from scratch (camembert + XLM), we see a small increase in ERs
at k values of 5 and 10. This increasing aspect is due to the original pre-training of Camembert and
XLM_Roberta. It shows the extent that language models (pre-trained on large language corpora) have
in terms of performance quality when used in other tasks such as the STS task. The voting system
with all models is the least efficient and this can be explained by the large differences between the
neighbor lists returned by the sentence models and the other models. In other words, it is natural
that 𝑘NN retrivers with the most mistakes in predicting positive pairs impact the ability of the vote to
systematically propose a high number of repetitions to the sought-after addresses. This explanation
remains even more coherent when we remove the static vectors models from the vote (sentence + raw).
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Figure 5: 𝑘NN-vote top k exact ERs

Figure 6: 𝑘NN-vote top k exact MRRs

We notice a clear improvement in ERs. As for the MRR results, we observe in Fig. 6 that in general,
voting systems based on sentence models succeed in recovering more positive normalized addresses at
the highest ranks.

6.2.2. Discussion

We put ourselves in comparison with BI_DistilBert. We take into account the addresses found at the
road level and we also consider the top 1 results. We remain consistent regarding the value of 𝑘 = 10.
Table 4 illustrates the best individual 𝑘NN models and voting systems in comparison with BI_DistilBert.
We find that BI_DistilBert performs better than the raw models. However, it remains below the ER
results of the individual 𝑘NN sentence models and this is due to two main reasons. First, the base of
the model, which is multilingual DistilBert, was not pre-trained on a corpus of postal addresses before
fine-tuning its Bi_Encoder. However, we believe that it is important that basic language models learn the
structure of a postal address independently of the similarity task. Second, the additional difficulty that
our dataset brings. Indeed, our addresses are much more difficult in terms of the errors and noise likely
to occur. 𝑘NN-vote systems are better overall, supporting our intuition that aggregating results from
multiple sources significantly improves similarity search performance. We do, however, note exceptions
to the rule. Some individual 𝑘NN models such as (A) and (B) come before the (G) and (H) vote systems.
This decrease in ERs confirms to us that aggregation alone does not always guarantee better results and
that a high and heterogeneous number of models used in the voting process negatively impacts the
prediction quality. This is why the individual performance of the models used in the vote must also
be taken into account. More specifically, the vote will be more likely to have superior results if it uses
as its aggregation sources, search models that are the least wrong in their predictions. (I) manages to
compete with the two best individual 𝑘NN sentence models but adds no improvement and in particular
in the top 1 exact. It is undoubtedly the participation of Rsent models in the vote that prevents it from
standing out from the other search systems, since Rsent is significantly less efficient than Csent and
XLMsent. In conclusion, the best vote is the one that uses the Csent and XLMsent models with a ER top
1 exact of 86.2% and a ER top 10 exact of 96% thus demonstrating the ability of the voting system to
retrieve more positive address pairs in the top 1.

Inference time: We measured the retrieval time for 100 address queries to compare the various
solutions, as shown in Table 4. Retrieval times for voting systems (between 51s and 173s) are notably
longer than individual 𝑘NN models. Despite being conducted without optimization in an experimental
setup, we find these times acceptable for business applications.
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Table 4
Existence Ratios of the Best Methods

System Top 1 exact Top 1 Top 10 exact Top 10 MRR Time (100 𝑞𝑢𝑒𝑟𝑖𝑒𝑠)

(A) Csent_cosine 0.857 0.916 0.959 0.970 0.895 12
(B) XLMsent_cosine 0.856 0.917 0.954 0.968 0.893 13

(C) Rsent_cosine 0.799 0.879 0.930 0.956 0.847 6

(D) Token_set_ratio 0.740 0.829 0.866 0.889 0.791 8
(E) Ratio 0.730 0.834 0.871 0.891 0.785 5

(F) BI_DisilBert 0.763 0.793 0.918 0.939 0.826 10

(G) all models 0.760 0.872 0.950 0.962 0.830 173
(H) sentence + raw 0.801 0.896 0.957 0.967 0.859 144
(I) sentence only 0.852 0.920 0.959 0.972 0.894 69

(J) camembert + XLM 0.862 0.921 0.960 0.972 0.900 51

7. Conclusions

In this work we focused on the problem of matching postal addresses. We first showed that this task can
be simply formalised as an information retrieval problem where models such as 𝑘NN have been shown
to be efficient in both computation time and accuracy. For this purpose, we have assumed that an address
is a sentence described with a set of entities and, consequently, it could contain erroneous elements or
noisy elements. However, the positions of the entities have an impact on address recognition. For these
reasons, we have proposed using different address representation spaces, such as the word embedding
space or the sentence embedding space with a pre-trained transformer. Each representation contributes
in part to the search for the closest address in that space. In order to aggregate the contribution of the
different spaces, we proposed a 𝑘NN ensemble models based on a voting system called 𝑘NN-vote. The
experimental results show that our system performs very well, achieving an accuracy of around 96% in
the top 10 and 86.2% in the top 1. This system shows its value for this type of task, even though the
voting algorithm is still very naive for the time being. In fact, the algorithm favours addresses with a
maximum number of repetitions and re-ranks them solely on the basis of the highest similarity score.
Hence the impact of the number of voters on the number of appearances. In addition, the system’s
focus on the highest score of the address, without taking into account the overall quality of the scores,
can lead to the dominance of a single score, even if other scores are more indicative. As a perspective,
we are improving the voting process in order to consider and reinforce the potential effectiveness of a
model with a lower but more significant score.
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