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Abstract
Predicting the difficulty of test questions is a crucial task in the field of education. Many recent studies
have proposed supervised machine learning methods that predict difficulty from question text. However,
this approach requires a large dataset of questions with known difficulties to train difficulty prediction
models. Recently, another approach was proposed that uses question-answering (QA) systems as virtual
test-takers. This method predicts question difficulty based on the correct/incorrect responses obtained
from QA systems, obviating the need to pre-collect questions with known difficulties. However, this
approach is limited by the fact that the scale of difficulty values estimated from the responses of QA
systems do not necessarily align with the scale derived from human test-takers’ responses. To overcome
this limitation, we propose a novel method that utilizes QA systems to predict question difficulty while
ensuring the difficulty scale aligns with that derived from human test-takers. Our method uses the
principle of test linking from item response theory to transform the difficulty scale predicted by QA
systems into one derived from human test-takers. Experiments using real data demonstrate that our
proposed method can achieve higher accuracy in difficulty prediction compared with conventional
methods.
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1. Introduction

Estimating the difficulty of test questions is a crucial task in the education domain. For example,
in the context of learning support, providing questions of appropriate difficulty to individual
learners enhances learning. Accordingly, such adaptive question presentation is a common
objective of intelligent tutoring systems, adaptive learning systems, and knowledge tracing
technologies [1, 2, 3, 4, 5, 6, 7]. Furthermore, in the context of educational measurement, estimat-
ing question difficulty, specifically using item response theory (IRT) [8], enables sophisticated
testing operations, including (1) adaptive testing, which enables accurate measurement of ability
in a short time by presenting questions with a difficulty tailored to each test-taker’s ability [9];
(2) uniform test assembly, which involves composing multiple test forms with equivalent diffi-
culty levels [10]; and (3) test linking, which facilitates ability estimation on a common scale for
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test-takers who have taken different test forms [11, 12]. Given these, it is evident that estimating
question difficulty plays a crucial role in various essential tasks in the educational field.

The most common approach for estimating question difficulty entails presenting target
questions to human test-takers and using the resulting correct/incorrect response data to
estimate their difficulties [11, 12, 13]. Methods for quantifying difficulty are generally divided
into two approaches: one based on classical test theory [14], which quantifies question difficulty
through the correct answer rate, and another based on IRT [15]. However, regardless of the
difficulty quantification approach, this approach necessitates prior administration of target
questions to human test-takers, thereby incurring significant costs and potentially compromising
the reliability of the test owing to exposure of its content.

Methodologies employing natural language processing technology to predict question diffi-
culty from question texts have recently attracted widespread attention as a means of overcoming
this limitation [15, 16, 17, 18, 19, 20, 21]. In this approach, a large dataset of questions with
known difficulties is assumed to be given. This dataset is compiled by presenting a large number
of questions to a specific group of test-takers and estimating their difficulties from the correct/in-
correct responses obtained. The resulting dataset, containing questions with known difficulties,
is then used to train a supervised machine learning model that is capable of predicting the
difficulties of questions from their texts.

Existing methods based on this approach can be broadly divided into feature-based and
neural-based methods [15, 21]. Typical feature-based methods include R2DE (Regressor for
Difficulty and Discrimination Estimation) [18] and its extension models (e.g., [16]). However,
these methods require meticulous feature engineering to achieve high accuracy. Neural-based
methods obviate the necessity for feature engineering by utilizing deep neural networks that
process the sequence of words in a question. Recent studies have proposed neural-based methods
that utilize pre-trained transformer models such as BERT (bidirectional encoder representations
from transformers) [22] and DistilBERT (Distilled-BERT) [23], as illustrated in Fig. 1 1 [17, 19, 20].

However, even with these neural methods, the accuracy of difficulty prediction often remains
modest. For example, a recent study utilizing difficulty prediction models based on BERT and
DistilBERT reported that the correlation between the predicted and actual IRT-based difficulty
values was not sufficiently high, at 0.441, despite employing relatively large training instances
with around 6,700 samples [24]. This suggests that there are inherent limitations to the accuracy
of difficulty prediction using this approach, potentially due to the substantial differences between
the tasks of question difficulty prediction and general natural-language understanding. These
differences complicate the process of transferring the language understanding capability of
pre-trained models to question difficulty–prediction tasks.

On the other hand, an alternative approach has been explored that predicts difficulty using
question-answering (QA) systems as virtual test-takers [25, 26, 27], as outlined in Fig. 2. This ap-
proach constructs several QA systems in advance and predicts the difficulties of target questions

1The input for these models consists of the sequence of words in a question text, including related information, such
as the reading passage and the correct or distractor options. In the figure, 𝑤𝑡 represents the 𝑡-th word of an input
text sequence, and 𝑛 denotes the length of the input. The [CLS] symbol signifies a special token, whose output
vector serves as a distributed representation of the given text. Consequently, the model predicts a difficulty value
by converting this distributed representation vector from BERT or DistilBERT into a scalar value through a linear
layer.



Figure 1: Outline of a neural difficulty
prediction model.

Figure 2: Outline of difficulty prediction using
QA systems.

by estimating them from the correct/incorrect responses of the QA systems. For instance, Gao et
al. [25] introduced a binary classification method for question difficulty, categorizing questions
as "easy" if answered correctly by two QA systems, and "hard" if answered incorrectly by the
QA systems. Additionally, Byrd et al. [26] and Uto et al. [27] proposed estimating IRT-based
question difficulty by using the correct/incorrect responses from various QA systems. The key
premise of this approach is that natural language understanding and QA capabilities are closely
related, which makes the construction of QA systems based on pre-trained neural models easier
than that of text-based difficulty prediction models. Although this approach can provide a
difficulty prediction system without the need to pre-collect questions with known difficulties,
it is limited by the fact that the scale of difficulty values estimated from the responses of QA
systems will necessarily not align with the scale derived from human test-takers’ responses. If
these scales do not align, the difficulty values derived from QA systems may not be applicable
or meaningful for human test-takers.

To overcome this limitation, we propose a novel method for predicting question difficulty
using QA systems while ensuring the difficulty scale aligns with that derived from human test-
takers. This method leverages the principle of test linking within IRT [28, 29], a well-designed
strategy for unifying scales of IRT parameters estimated from different datasets. Specifically, our
method initially collects correct/incorrect responses to a set of questions from human test-takers
and various QA systems. IRT is then applied to this response data to estimate their ability
values. In this process, we first estimate the ability values of human test-takers using only their
response data. Subsequently, given the estimated human test-takers’ ability values, we estimate
the ability values of the QA systems with IRT using the entirety of the response data. This
enables us to map the QA systems’ ability estimates onto the scale of human test-takers. We
then estimate the difficulty of new questions based on the correct/incorrect responses from the
QA systems, using IRT given the QA systems’ ability values. Because the ability scale for QA
systems is matched to that of human test-takers, the difficulty values for new questions derived
from the QA systems are also aligned with the difficulty scale derived from human test-takers.
Experiments with real data confirm that this method outperforms conventional methods of
predicting question difficulty from question texts.



To our knowledge, this research is the first to focus on using QA systems to predict question
difficulty in alignment with the scale of human test-takers, although a similar attempt has
now been investigated [30]. Moreover, within the context of test theory, our proposed method
introduces a novel test linking technique based on QA systems. This approach could potentially
mark a significant advancement over traditional test theory methodologies, as well as in the
field of question difficulty prediction research.

2. Quantification of difficulty using IRT

This study employs IRT to quantify question difficulty because our proposed method leverages
the advantages of IRT. IRT uses statistical models, called IRT models, to define the probability
of each test-taker’s response to a question as a function of both their ability and the question’s
difficulty. This study uses the Rasch model, the simplest IRT model, which defines the probability
that test-taker 𝑗 will answer question 𝑖 correctly as

𝑝𝑖𝑗 = [1 + exp(−(𝜃𝑗 − 𝑏𝑖))]
−1 , (1)

where 𝜃𝑗 is the parameter representing the ability of test-taker 𝑗, and 𝑏𝑖 is the parameter
representing the difficulty of question 𝑖. These parameters are estimated from a collection of
correct/incorrect responses of a group of test-takers to a set of questions. In the following
sections, we assume that difficulty is quantified based on this Rasch model.

3. Proposed method

Our proposed method utilizes the concept of test linking based on IRT [28] to realize question
difficulty prediction using QA systems while ensuring the predicted difficulty scale aligns with
that derived from human test-takers. The detailed processes involve the following steps.

1. Construct QA systems by fine-tuning pre-trained neural models, such as BERT. The fine-
tuning process can be performed using publicly available question corpora that match
the format of the target questions, or using a small subset of the target question bank. QA
systems with varying performances need to be prepared to mimic the diverse abilities of
human test-takers, for instance, by varying the base pre-trained models or by limiting
the amount of data used for fine-tuning.

2. Administer a set of questions to human test-takers, collect correct/incorrect response data,
and apply the Rasch model to the data to estimate the ability values of each test-taker.
In the subsequent experiments, we apply expected a posterior (EAP) estimation based
on the Markov Chain Monte Carlo algorithm. Note that text-based difficulty prediction
methods also require such human response data to construct training data consisting of
questions with known difficulty.

3. Gather correct/incorrect responses from QA systems for the same questions administered
to human test-takers. Then, using the entirety of the response data collected from both
human test-takers and QA systems, estimate the ability values of the QA systems using
the Rasch model. In this process, the ability estimates of human test-takers must be given



Figure 3: Preparation phase of our proposed
method.

Figure 4: Prediction phase of our proposed method.

Figure 5: Creation of the ground-truth difficulty.

and fixed. This facilitates the alignment of the QA systems’ ability estimates with those
of human test-takers on a common scale.

4. Gather correct/incorrect responses from QA systems for new target questions and estimate
their difficulty from the response data, using the Rasch model given the QA systems’
ability estimates. Because the ability scale for QA systems is matched to that of human
test-taker abilities, the difficulty values for new questions derived from the QA systems
are also aligned with the difficulty scale derived from human test-takers. Note that this
difficulty inference is feasible for both scenarios: individual questions one by one, and all
questions simultaneously.

Fig. 3 provides conceptual diagrams for steps 2 and 3, which are preparatory phases for
difficulty prediction. Additionally, Fig. 4 provides the diagram for step 4, corresponding to the
phase of predicting difficulty for new questions.

The advantage of our method compared with conventional text-based difficulty prediction
methods is its efficiency in constructing the question difficulty prediction system. As discussed
in Section I, text-based difficulty prediction methods require a large number of questions with
known difficulty as a training dataset. This means that a vast number of human responses to
many questions are required in advance, which incurs extensive costs. The proposed method can
significantly reduce the required amount of such response data because the ability parameter
of the Rasch model can be estimated from just several dozen questions [31]. Furthermore,
QA systems based on pre-trained transformer models are expected to be constructed using a
relatively small number of questions, as discussed in Section I. They can therefore contribute
greatly to reducing the necessary data for constructing a question difficulty prediction system.

Furthermore, compared with conventional QA-based difficulty prediction methods, our
method has the advantage of being able to predict question difficulty on a scale aligned with
that derived from human test-takers’ responses, using only the QA systems.



4. Evaluation experiment

We designed an empirical experiment to evaluate the effectiveness of our method. In it, the
accuracy of predicting difficulty for new questions using our method is compared with that of
conventional text-based difficulty prediction methods.

4.1. Data

For our experiments, we utilized two publicly available datasets: EVKD (The ESL Learners’
Vocabulary Knowledge Dataset) [32, 33], which comprises English vocabulary tests, and SQuAD
(The Stanford Question Answering Dataset) [34], commonly employed as a benchmark in QA
and question generation research.

EVKD comprises English vocabulary test questions that require test-takers to select the
appropriate expression to replace a specified part of a given English sentence from multiple
choices. The dataset contains 100 questions, each with question text, one correct answer
choice, and three distractor choices, along with correct/incorrect response data from 100 English
learners. In this experiment, a randomly selected subset of 50 questions was used to construct
QA systems, while the remaining 50 questions and their corresponding response data were used
to evaluate the prediction performance of both our proposed and conventional methods.

SQuAD is a dataset for reading comprehension, comprising reading passages, comprehension
questions, and reference answers. The reading passages are sourced from Wikipedia, with ques-
tions and reference answers generated by crowdworkers. Each reference answer corresponds
to a segment of the text in the reading passage. The SQuAD dataset is pre-split into 90% for
training and 10% for testing. However, it cannot be directly applied to our experiment as it lacks
correct/incorrect response data from human test-takers for the questions it contains. Thus,
for this study, we randomly selected 570 questions from the SQuAD test dataset and collected
response data from 10 human test-takers for these questions. On average each test-taker an-
swered 120 questions, guaranteeing that at least two test-takers responded to each question.
Answer correctness was verified by exact match after preprocessing the test-takers’ answers
(e.g., removing articles, standardizing case, eliminating spaces). In this experiment, the SQuAD
training dataset was used to construct QA systems, and the 570 questions with responses from
human test-takers were used to evaluate the prediction performance of both our proposed and
conventional methods.

4.2. QA systems

For each dataset, a variety of QA systems with differing abilities were developed. Specifically,
we utilized 12 pre-trained transformer models from Huggingface2: bert-base-uncased, bert-
large-uncased, roberta-base, roberta-large, microsoft/deberta-base, microsoft/deberta-large,
microsoft/deberta-v3-base, microsoft/deberta-v3-large, albert-base-v1, albert-base-v2, albert-
large-v2, and distilbert-base-uncased. We adapted the output layers of these models to align
with the question type of each dataset, and conducted model training with varying amounts of

2https://huggingface.co/



data to generate QA systems of diverse performance levels3.
For the EVKD dataset, the QA systems were designed as classifiers that process the question

text and four choice options to identify the correct answer. Specifically, the special token [CLS]
is appended to the input text, and an output classification layer is added atop the output vector
corresponding to this token. In addition to appending the [CLS] token at the beginning of
the input, a special token [SEP] is inserted as a separator between the question text and the
four choice options. As mentioned previously, the data from 50 questions was available for
constructing the QA systems. Accordingly, we trained each QA system using the entire dataset
and random subsets corresponding to 40, 30, 20, 10, and 5 questions, respectively.

For the SQuAD dataset, the QA systems were configured to predict the start and end positions
of the answer within the reading passage. The input for the models comprises the concatenation
of a passage and a question text, separated by the special token [SEP]. We trained each QA
system using the entire SQuAD training dataset and random subsets of 3000, 2400, 1800, 1200,
and 600 data points, respectively.

This procedure resulted in 72 QA systems with varying levels of ability for each dataset.

4.3. Experimental procedure

We evaluated the performance of difficulty prediction using both our proposed method with
constructed QA systems and conventional methods that predict difficulty from question texts
using supervised regression models. As detailed in Section 4.1, for performance evaluation, we
can utilize 50 questions from the EVKD dataset and 570 questions from the SQuAD dataset,
along with the respective responses from human test-takers. Thus, for each dataset we randomly
split the data into 90% and 10%. The 90% portion, denoted as 𝐷, was used to develop difficulty
predictors. Developing difficulty predictors corresponds to the process of estimating the abilities
of human test-takers and QA systems in our method as well as that of training a regression
model for difficulty prediction from question texts in the conventional method. The remaining
10%, denoted as 𝐸, was used to evaluate the accuracy of the difficulty prediction.

Specifically, in our method, the ability values of test-takers were initially estimated using the
Rasch model based on the correct/incorrect response data from human test-takers within 𝐷.
Subsequently, the ability values of the QA systems were estimated using response data from
both the 72 QA systems and human test-takers for the same questions, while fixing the ability
values of human test-takers. Finally, for each question in 𝐸, the difficulty was estimated using
the Rasch model based on responses from the QA systems, with the ability estimates of the QA
systems held fixed. These calculated values were considered as the predicted difficulty values.

In the conventional method, the difficulty of questions within 𝐷 was first estimated based
on the Rasch model using the response data from human test-takers. Subsequently, regression
models for predicting difficulty from question texts were trained using the set of questions with
estimated difficulties4. We explored two neural regression models, BERT and DistilBERT, which
were also utilized in prior research. For each question in 𝐸, the predicted difficulty values were
derived by inputting the question texts into these trained models.

3The training of the QA systems employed AdamW with a learning rate of 1e-5 and a maximum of 5 epochs. Neither
the EVKD nor the SQuAD datasets were used in the original pretraining of each transformer model.

4The training was done by AdamW with a learning rate of 1e-5 and a maximum of 10 epochs.



Table 1
Experimental results

Correlation coefficient Regression coefficient
Prop. BERT DistilBERT Prop. BERT DistilBERT

EVKD Mean 0.326 0.274 0.275 0.215 0.034 0.026
SD 0.251 0.233 0.412 0.175 0.030 0.031

SQuAD Mean 0.588 0.191 0.134 1.339 0.065 0.034
SD 0.054 0.043 0.047 0.125 0.019 0.014

Figure 6: Relationship between predicted difficulty values and ground-truth in the EVKD dataset.

Because the objective of this study was to predict difficulty values for new questions that align
with human scales, the ground-truth difficulty values for each question in 𝐸 were estimated
from the response data of human test-takers within 𝐸. In this difficulty estimation process, the
ability values of human test-takers, estimated from 𝐷, were given. The process for generating
the ground-truth difficulty values is depicted in Fig. 5.

We evaluated the accuracy of difficulty prediction by comparing the predicted difficulty for
each question in 𝐸 provided by each method to the corresponding ground-truth defined above.
Correlation coefficients and regression coefficients served as metrics for evaluating prediction
accuracy. A higher correlation approaching one and regression coefficient values nearing one
signify enhanced prediction accuracy. To improve the reliability of the experimental results, we
repeated the experiment 10 times, varying the random splits of 𝐷 and 𝐸 each time.

4.4. Experimental results

The experimental results are presented in Table 1. The rows labeled mean and SD represent the
average performance over 10 repetitions and its standard deviation, respectively. The results
demonstrate that our proposed method outperforms conventional methods in both datasets.
Notably, when examining the regression coefficients, we can see that the values for conventional
methods are nearly zero. To elucidate this phenomenon, Fig. 6 and Fig. 7 display scatter plots
of the predicted difficulty values against the ground truth for each dataset. These figures
demonstrate how conventional methods produce limited variances in predicted difficulties,
failing to accurately capture the range of difficulty.



Figure 7: Relationship between predicted difficulty values and ground-truth in the SQuAD dataset.

Table 2
Ability estimates and their PSD for human test-takers and for
each of the 12 pre-trained transformer models used in QA systems.

Ability estimates 𝜃𝑗 PSD of 𝜃𝑗
Test-takers Mean SD Mean SD
human 0.056 0.588 0.243 0.034
distilbert.base.uncased -0.189 1.602 0.133 0.017
bert.base.uncased 0.374 1.161 0.130 0.011
albert.base.v1 1.025 0.733 0.134 0.013
albert.large.v2 1.031 0.510 0.133 0.006
albert.base.v2 1.101 0.766 0.138 0.012
bert.large.uncased 1.186 0.803 0.138 0.014
roberta.base 1.375 0.814 0.140 0.015
deberta.base 1.542 0.684 0.144 0.014
deberta.v3.base 1.590 0.646 0.143 0.014
roberta.large 1.789 0.587 0.148 0.013
deberta.v3.large 1.993 0.579 0.150 0.014
deberta.large 2.028 0.384 0.152 0.010

Table 3
Ability estimates of QA systems
across various training sample
sizes.

Sample Ability estimates 𝜃𝑗
size Mean SD
300 0.136 1.197
600 0.816 0.747
900 1.194 0.609
1200 1.362 0.610
1500 1.516 0.563
full 2.398 0.403

4.5. Additional analysis

This section analyzes the ability estimates of the QA systems constructed for our method.
Specifically, we investigated the estimated abilities of the 72 QA systems and the human test-
takers, which were obtained from the experiments conducted using the SQuAD dataset. Because
the experiments yielded ability estimates for each of the 10 repetitions, we first confirmed the
correlations and root mean squared errors (RMSEs) in the estimates among all pairs of the 10
repetitions. We found that the average correlation was 0.995 with an SD of 0.001, while the
average RMSE was 0.102 with an SD of 0.014. These results suggest that the ability estimates
are strongly consistent among the repetitions.

Thus, we subsequently investigated the ability estimates obtained from the first repetitions.
Table 2 shows the statistics corresponding to the ability estimates for human test-takers and for
each of the 12 pre-trained transformer models used in the 72 QA systems. The statistics include
the average and SD of the ability estimates as well as those of the posterior standard deviations



(PSDs) for the ability estimates. This table reveals some reasonable trends. Specifically, variants
of the DeBERTa model, one of the latest models, exhibit higher average abilities, while the
distilBERT, a simplified version of BERT, shows the lowest average abilities. Furthermore, when
comparing the sizes of each model, the larger models tend to provide higher abilities. Table 2
also indicates that the PSDs are low for all test-takers, including humans and QA systems,
suggesting that the accuracy of ability estimation would be acceptable.

Furthermore, Table 3 shows the average and SD of the ability estimates of the QA systems
across the various training sample sizes, demonstrating that an increase in training sample size
leads to an increase in ability estimates, which is also a reasonable trend.

Finally, the analysis of Tables 2 and 3 indicates that the developed QA systems tend to have
higher abilities than the human test-takers, suggesting a mismatch in the ability distribution
between QA systems and human test-takers. This discrepancy can potentially lead to a dete-
rioration in difficulty estimation, especially over the small difficulty value range. Therefore,
filtering the QA systems or adding relatively weak QA systems could be beneficial for improving
the performance of difficulty estimation, a task we intend to focus on in future studies.

5. Conclusion

In this study, we introduced an IRT-based question difficulty prediction method that uses QA
systems as virtual test-takers, while ensuring alignment of the difficulty scale with that derived
from human test-takers. Through experiments with real data, we showed that our proposed
method outperforms traditional text-based difficulty prediction methods.

This study has some limitations. The first is the scarcity of detailed experiments, which is
due primarily to the limited availability of open datasets that include both question data and
human test-takers’ responses. Future work that evaluates the effectiveness of the proposed
method across a broader range of datasets in various educational domains to identify necessary
adaptations. Furthermore, possible further investigations based on our data, such as examining
if larger difficulty estimation errors are typically made against lower-difficulty questions, will
also be part of our future research.

Second, the proposed method necessitates collecting questions for training QA systems in
addition to those that include human test-takers’ responses. We assume that it is generally easier
to collect questions without human responses than those with, and a relatively small dataset may
suffice for training QA systems. However, the feasibility of this data collection process and the
amount of data required for training should be examined in future investigations. Furthermore,
a recent study proposes a method that considers the uncertainty of predictions from a QA
system as the difficulty for multiple-choice questions [35]. This idea might be integrated with
our approach to enhance its effectiveness.

Finally, it is anticipated that the proposed method will require significantly fewer questions
with human responses compared with the conventional text-based difficulty prediction approach.
This is because the proposed method uses the response data primarily to estimate a small number
of parameters in an IRT model, whereas the conventional approach uses these data to train
a large neural model on a complex task. Future work will explore the extent to which the
proposed method can reduce the amount of data required and the corresponding costs.
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