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Abstract 
Artificial Intelligence has undergone a significant revolution in recent years. The emergence and 
subsequent development of the Transformers architecture led to extensive research resulting in large 
language models (LLMs). These systems power widely used applications, such as ChatGPT, which is 
based on LLMs fine-tuned with human instructions to enhance their performance. Evidence shows 
that they surpass the results of previous models (BERT/GPT/T5 families) in terms of outcomes, even 
when they have less complex configurations. In addition, online courses and Massive Open Online 
Courses (MOOCs) experience a well-known issue: high dropout rates. Scholars aim to tackle this 
problem by introducing innovative systems and alternatives to enhance students’ learning 
experiences and prevent course abandonment. One option is to complement these courses with LLMs, 
which can incorporate chatbots or comparable systems to facilitate learning and engagement. The 
present proposal focuses on developing an automated system wherein a chatbot automatically 
produces questions related to course content. Then, learners will receive feedback on their answers 
through semantic similarity mechanisms, indicating the specific content they need to review.  
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1. Introduction 

One of the most compelling features of Massive Open Online Courses (MOOCs) is their ability 
to reach an extremely diverse set of learners. MOOC learners come from a wide range of 
demographic backgrounds, and they represent a wide variety of ages, educational backgrounds, 
and employment levels [1]. 

Furthermore, the diversity of MOOC learners is not limited to demographics. The 
motivations that learners have for participating in MOOCs can differ greatly.  Perdue identifies 
a variety of motivations that drive MOOC participation, including curiosity and exploration, 
skill acquisition, and the desire to connect with others [2]. This range of motivations leads to 
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learners interacting with MOOCs in ways which range from sampling specific course content 
of interest to engaging with all of the course material and earning a certificate of completion. 

This diversity of participants provides a unique opportunity for instructors to engage 
learners who differ substantially in background and motivation from the students in their 
university classrooms; however, it also provides a unique challenge. Meeting the needs of a 
group of learners with vastly different backgrounds, preparation, and motivations is 
challenging within the context of a single course. 

Many MOOCs, including those considered in this paper, aim to provide a university-level 
learning experience for course participants, including challenging formative and summative 
assessments. However, not all learners enter a course with the background and skills necessary 
to successfully complete these challenging assessments. Indeed, both Gütl et al. and Onah, 
Sinclair and Boyatt have identified course difficulty and lack of learner preparation as one factor 
motivating learner dropout from MOOCs [3], [4]. 

This study proposes leveraging large language models (LLMs) to help bridge this gap 
between learners’ current levels of knowledge and the knowledge required to successfully 
engage with the course assignments. Additionally, we aim to employ LLMs to create additional 
content for learners who do not aim to complete all the assessments in the course, but rather 
choose to engage with the course content in a less formal way. 

The emergence of the Transformer architecture [5] gave rise to transformer-based LLMs, 
which had a profound impact on the field of Natural Language Processing (NLP). Currently, the 
most promising approach is to align them with human instructions [6]. Consequently, research 
has been conducted to investigate the impact of instruction-based LLMs in learning. A recent 
example demonstrates that a chatbot powered by GPT-4 enhanced the performance of adopters 
on an exam in an online coding class [7]. However, the engagement of learners was reduced, 
suggesting that a different approach to integration may be required. Other examples illustrate 
other uses in MOOCs, such as a system to validate peer-assigned essay scores [8] or a GPT-4-
based system for automatically grading writing assessments [9]. These systems would be 
significantly enhanced by the incorporation of effective feedback for learners. Recent evidence 
has demonstrated the feasibility of providing constructive feedback to learners through 
ChatGPT [10]. Consequently, this study proposes a novel approach for learner assessment and 
assistance in MOOCs. 

The remaining sections are structured as follows: Section 2 presents an initial pipeline design 
for the automatic generation of test questions, and that is focused on their subsequent 
evaluation to provide valuable feedback for learners. Section 3 contains a conclusion of the 
proposal. 

2. Pipeline design 

The primary objective of the proposed system is to minimize the impact of the aforementioned 
issues, with particular emphasis on engagement. As previously stated, LLM-powered solutions 
have the potential to enhance learning outcomes in MOOCs. However, it is crucial to integrate 
them carefully to avoid any adverse effects on engagement. To achieve this, learners will have 
access to tailored AI-generated questions and feedback that will assist them in determining the 
specific contents they should review. In general, this process would be laborious when 
undertaken manually. However, it is anticipated that AI will reduce human effort. The 



procedure for obtaining a robust system is illustrated in Figure 1, which outlines the following 
steps: 

1. The initial stage of the process involves the implementation of a heuristic, rule-based 
system. This first iteration is constructed upon a pipeline that is capable of 
automatically generating multiple-choice questions (MQC-AI), and which is explained 
in further detail in Subsection 2.1. Based on the content of a course, MCQ-AI will 
generate a series of questions, which will then be presented to the learner for response, 
and by comparing their answers with the ground truth, basic AI-generated 
recommendations will be provided for each failed question. As a global evaluation, 
learners will be presented with an aggregation of individual recommendations, in 
addition to a recommendation of the course contents that they should review.  

2. The second iteration will attempt to enhance the aforementioned system for automated 
feedback generation by capitalizing on the human knowledge provided by real 
instructors through playtesting. In a controlled environment, instructors will be 
presented with real examples of learner responses, which they will then provide with 
tailored feedback. Subsequently, the human-generated feedback will be used to fine-
tune an LLM to provide a global evaluation from an aggregation of individual feedback 
of failed questions. Furthermore, learners will be provided with recommendations 
regarding the course contents that they are required to review. 

3. The third step is focused on text input problems (TIP). As in the previous iterations, the 
LLM responsible for providing feedback will be enhanced with human knowledge 
through playtesting. However, it will now be used to also provide feedback for text 
input problems. In the previous iterations, multiple-choice questions were generated 
with the assistance of an LLM (MCQ-AI), but this step involves a different LLM, 
specifically fine-tuned to generate text input problems (TIP-AI). This model will 
generate question-answer pairs and will be explained in greater detail in Subsection 2.2. 
Then, embedding representation features can be used to evaluate answers through 
comparison using semantic similarity. Finally, the AI model trained for 
recommendation generation can be used to provide a global evaluation to learners. 

4. The fourth stage of this process involves the generation of mathematical problems 
using an LLM. LLMs demonstrate robust arithmetic capabilities and logical reasoning, 
yet they have limited abilities in mathematical and abstract reasoning, and fails on 
graduate-level problems [11], [12]. While these issues present a significant challenge, 
some examples have shown neural network capabilities in solving, explaining, and 
generating university-level mathematical problems [13]. A similar approach can be 
employed to fine-tune on code an LLM that has been pretrained on text. This can be 
enhanced with general scientific knowledge [14] and well-known structures on how to 
solve mathematical problems [15], as well as with prompt engineering techniques, such 
as Chain-of-Thought (CoT), which has demonstrated a favorable performance for 
mathematical problem solving and complex reasoning [16]. The resulting LLM is 
expected to generate university-level mathematical problems of different fields (e.g., 
mathematics, physics, chemistry, and programming) with a well-explained solution 
that can be used to provide recommendations to learners. 



 

Figure 1: Procedure for creating a system for Question Generation and subsequent automatic 
correction. Learners will be presented with AI-generated questions. Once they have answered, 
a customized feedback message will be generated. The models responsible for evaluation and 
feedback generation will be fine-tuned using real data obtained from playtesting.  



5. The final iteration is focused on the problem of Visual Question Generation (VQG), 
which is described as the task of asking a natural and engaging question when shown 
an image using AI models [17]. Following a similar approach, image-to-text models will 
be used to generate questions for learning environments. One example is the novel 
LLaVA-1.5, a Large Multimodal Model (LMM). LLaVA-1.5 has demonstrated efficacy in 
the field of Visual Question Answering [18], and it is anticipated that it will perform 
similarly well in the Visual Question Generation task. Then, as in previous iterations, 
the Feedback Generation system will be used to compare learners’ answers with the 
descriptions of the images.  

The following subsections provide a detailed description of the Multiple-Choice Question 
generation system (MCQ-AI), the Text Input Problem generation system (TIP-AI), and the 
Feedback Generation system (FG-AI). 

2.1. Multiple-Choice Question generation system (MCQ-AI) 

MCQ-AI comprises a series of Deep Learning models, arranged in sequence, which are used to 
generate multiple-choice questions. At the beginning, T5 models were employed to solve the 
problem in English [19], and then they were subsequently replaced by mT5 models to 
implement the pipeline in Spanish [20]. 

These LLMs, designated as instruction-based models, demonstrate superior performance 
when compared to previous models (e.g., BERT/GPT/T5 families) in terms of outcomes, even 
when they have less complex configurations [6]. The ability of these models to replace the ones 
used in the pipeline will be studied accordingly. The initial pipeline operates as follows: 

1. The course content will be divided into different paragraphs. Initially, they were 
obtained using sent_tokenize, a library for dividing text into sentences. However, this 
approach is not optimal. The issue will be addressed by means of semantic chunking, 
which entails dividing a text into sentences, comparing the semantic similarity (e.g., 
cosine similarity) of each sentence with the others, and then grouping sentences with 
the most similar embeddings together. As a result, meaningful chunks are obtained. 

2. From each paragraph, answers are extracted using a T5 model (T5-AE). Subsequently, a 
second T5 model (T5-QG) is employed to generate the corresponding questions based 
on the same paragraph and the related answers. Finally, a third T5 model (T5-DG) is 
utilized to generate the distractors, i.e., the incorrect answers in multiple-choice 
questions. 

Although the pipeline is effective, instruction-based LLMs have demonstrated superior 
performance, suggesting that their use will result in a simplification and improvement of the 
original pipeline. To fine-tune models such as GPT-4 [21] or LLaMA 2 [22], different datasets 
will be employed, including SQuAD [23], which is focused on enhancing learners’ reading 
comprehension, and HotpotQA [24], to improve reasoning across course contents. 
In this preliminary study, we were granted access to LLaMA 3 [25]. The efficacy of this LLM 
can be assessed by examining Figure 2, where a prototype of the MCQ system is presented. 



Figure 2: A preliminary model of the MCQ system, implemented with LLaMA 3. 

2.2. Text Input Problem generation system (TIP-AI) 

TIP-AI is similar to the MCQ-AI system previously described. In this case, the system is focused 
on Text Input Problem generation. The TIP-AI system structure is as follows: 

1. The initial step is analogous to MCQ-AI Step 1. 
2. An LLM will generate a series of questions related to each semantic chunk. 

Subsequently, the real answer (semantic chunk) will be stored in a vector representation 
(embeddings), along with each question generated for the chunk. This results in the 
creation of different question-answer pairs. Embeddings allow comparisons between the 
real answer and learners’ answers, which is required to determine whether an answer 
is correct or, alternatively, whether the learner needs further feedback. 

To achieve this, instruction-based LLMs fine-tuned with datasets such as TQA [26] will be 
employed. TQA contains a variety of materials, suitable for the text input problem generation 
task, as well as for others, including mathematical and visual question generation tasks.  

2.3. Feedback Generation system (FG-AI) 

FG-AI is designed to assist users in their learning process and to guide them in reviewing course 
content where they may have performed less effectively. Upon receipt of an answer from a 
learner to a question of the types mentioned above, the following process will be initiated: 

1. An automated correction system will evaluate the answer and determine its correctness. 
This system may be rule-based (e.g., MCQ), or it may employ a more complex 
evaluation method, such as semantic similarity (e.g., TIP). If the answer is not entirely 
accurate, an LLM will generate tailored feedback based on the failed question. The 
model will take into consideration the question, context, correct answer, and 



distractors, when applicable, as well as the learner’s answer. It will then evaluate why 
the answer is not entirely correct and provide some concept clarification for the learner. 
An overview of the various potential evaluation and feedback generation frameworks 
are given below.   

a. The rule-based system is relatively straightforward. Thanks to prompt 
engineering techniques, a prompt can be developed to generate MCQs with a 
structured format. This allows the question, possible answers and the correct 
answer to be processed programmatically. The system then displays the 
question, allowing the learner to interact with it. This is demonstrated in the 
example of Figure 2. Then, the result of the interaction can be compared to the 
correct answer. If the response is correct, no further feedback is needed. 
Otherwise, an LLM will receive the context, the question, the correct answer, 
and the learner’s response. Based on this information, the LLM will generate 
tailored feedback for the incorrect response. Figure 3 illustrates a preliminary 
test of this concept. 

b. Evaluation and feedback generation for TIP cannot be addressed in the same 
manner as that of MCQs. In this case, it is not as straightforward to provide an 
accurate response as in the previous instance, since the same idea can be 
expressed in a variety of ways with natural language. To address the evaluation 
and feedback generation problem, three possible solutions can be considered: 

i. Semantic similarity mechanisms: as previously stated, semantic 
similarity mechanisms, such as cosine similarity, can be employed to 
compare a given answer to the ground truth. Based on the model’s 
confidence, an LLM will generate recommendations for the learner. 

ii. Template-based recommendations: Swope et al. propose the 
creation of templates based on a scale to evaluate learners’ answers 
[27]. Each step involves the examination of different features within 
the learner’s answer to ascertain whether they align with the 
characteristics in the question. An illustrative example is provided 
below: 
1: The response provided by the learner is not related to the topic at 
hand. 
2: The response provided by the learner is partially related to the topic, 
but lacks some key aspects (key aspect 1, key aspect 2, …, key aspect n). 
3: The response provided by the learner is directly related to the topic 
and provides a comprehensive overview of the key aspects. 

iii. FACTSCORE: FACTSCORE is a novel evaluation method which 
breaks texts into a series of atomic facts to facilitate comparison [28]. 
By leveraging the neural mechanisms elucidated in the work, atomic 
facts can be generated to evaluate learners’ answers and provide 
valuable feedback from those atomic facts.  

c. With regard to the mathematical problems and questions generated from 
images, the current state of the analysis is still in an initial stage. Consequently, 
further investigation is required to develop a framework that will prove to be 
of value.  



 
Figure 3: The example illustrates the process of generating feedback based on MCQs. In this 
case, the data from a real test will be recollected and transformed into a prompt for the 
generation of valuable feedback. In other cases, the process is analogous but involves alterations 
in the required data and the manner of its processing, which ultimately yields a prompt suitable 
for providing feedback. For instance, in the case of TIPs, the data processing step could involve 
transforming the FACTSCORE into a template that the LLM can use to validate the result.  



2. Upon completion of a learning unit, every feedback generated during that specific unit 
for the learner will be gathered and processed by an LLM to identify critical 
misconceptions. The LLM will then provide a global evaluation and suggest to the 
learner the content that is required to review. The goal of this process is to increase 
engagement and improve the learning experience of learners, prompting them to 
interact with MOOCs. 

To operationalize this concept, instruction-based LLMs will be employed, which will be fine-
tuned with existing data from several courses. In addition, other sources will be used, such as 
data obtained through playtesting with real instructors. 

3. Conclusions 

The enhancement of learners’ learning processes in MOOCs is a topic that has been the subject 
of intense study. Advances in Artificial Intelligence offer the potential for significant 
improvements, as evidenced by previous examples. However, there is still much room for 
improvement. The system proposed is expected to enhance existing results and provide a 
valuable AI-powered tool for various courses, improving engagement and learning experience. 
Nevertheless, due to the central role of Artificial Intelligence in this solution, the deployment 
of a system similar to the one proposed in this paper requires careful consideration. It is well-
documented that artificial intelligence is prone to hallucination, despite the efforts of 
researchers to avoid this behavior. This implies that false positives and non-desired outputs 
may be generated. In addition, to enhance accessibility and usability, learners must have the 
option of skipping questions generated by this system and also to report incorrect generated 
recommendations. This will help to ensure that they remain engaged with the learning material, 
even when they encounter erroneous AI-generated content.  
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