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Abstract
Due to their versatility, conceptual maps are used in various educational settings and serve as tools
that enable educators to comprehend students’ knowledge construction. An essential component for
analyzing a concept map is its structure, which can be categorized into three distinct types: spoke,
network, and chain. Understanding the predominant structure in a map offers insights into the student’s
depth of comprehension of the subject. Therefore, this study examined 511 distinct conceptual map
structures, classifying them into one of the three types, and used statistical and descriptive information
from the maps to train multiclass classification models. As a result, we achieved an 88% accuracy in
classification using a Random Forest. This promising outcome can be employed in conceptual map
assessment systems to provide real-time feedback to the student.
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1. Introduction

Concept Maps (CM) are a robust graphical tool for organizing and representing knowledge, and
they can be used for conducting assessments [1], [2], or even as a study aid that facilitates the
observation of knowledge and potential concepts that the student may be struggling to assimilate
[3], either way, it is considered a robust test of knowledge and understanding of a topic [4]. The
assessment methods for CM are diverse, considering both qualitative and quantitative aspects of
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their construction [5]. In either form, the analysis of these maps can provide valuable insights
into the student’s level of learning, highlighting strengths and knowledge gaps. One of the
assessment techniques for concept maps, proposed by Kinchin et al. [6], involves categorizing
them based on their structure and dividing them into three distinct categories: network, chain,
or spoke. These structures proved to be a robust way [7, 8] for the educator to visualize the
different levels of understanding of a given topic by analyzing the concept map structure that
the student created [9, 4].

Hence, the relevance of conceptual maps in education is noteworthy, as they serve as a valuable
learning instrument that aids educators in the teaching process. Therefore, categorizing the CM
by their structure format is crucial to understanding students’ rationale, identifying improvement
opportunities, and optimizing the learning process. However, the manual categorization process
can be time-consuming or even impractical in scenarios with large volumes of produced maps.
Therefore, this article addresses the following research question: Can concept maps be classified
as Spoke, Chain, or Network based on their features and without relying on human visual
interpretation?

To answer this question, we manually classified over 500 hundred CM about two distinct
topics in one of the three structures. Through feature engineering, we extracted features that
characterize each map and used this information to train various machine learning models to
find one capable of identifying the maps into either a network, spoke, or chain structure with
satisfactory accuracy.

2. Conceptual Maps and their Structural types

The need to establish standards for evaluating these conceptual maps has arisen. Different
evaluation approaches emerged, including quantitative, holistic, similarity-based on a model
conceptual map, or qualitative ones [3]. Among these evaluation methods, Kinchin et al. [6]
proposed categorizing conceptual map structures into three types: spoke, network, and chain,
as illustrated in Figure 1.

An example of a spoke-type map is depicted in Figure 1 in panel A. This type of map
exhibits a circular structure in which all the related aspects of the topic are directly linked to
the core concept but not directly connected. Such a structure often indicates superficial and
underdeveloped knowledge of a subject. Although new knowledge can be more easily integrated,
it may only be accessible through reference to the core concept [4, 6]. In the same figure, panel B
illustrates a chain-type map. These structures lack linkage between nodes in different hierarchies
and tend to move through available information from start to finish quickly. Consequently,
understanding concepts in the middle of the sequence without starting from the beginning may
be challenging for students. Additionally, incorporating new knowledge, especially if it disrupts
an established sequence, can be difficult [4, 6]. Finally, panel C exemplifies a network-type
map, distinguished by its robust and adaptable cognitive typology. This structure enables the
comprehension of a diverse range of concepts through different but related routes of thought,
demonstrating students’ flexibility in understanding the concept beyond a connection to a core
concept or following a specific line of thought [4, 6].



Figure 1: Examples of concept maps in three structures: A) spoke; B) chain; C) network

Source: Kinchin et al. (2005) [7]

3. The Database

A collaboration with Goethe University provided the data from the use of Hyperchalk [10], a
digital and collaborative whiteboard, for a six-week period in secondary and high schools in the
Schleswig-Holstein state, in Germany. Preparation for analysis involved a dataset comprising a
total of 511 distinct maps with at least two links between concepts and, therefore, at least three
concepts. The maps are divided into two categories, namely 226 concept maps about the school
system and 285 concept maps about evolutionism.

3.1. Data preparation and cleaning

The dataset underwent a transformation process to turn the nodes and edges connections
into a directed graph structure, allowing the extraction of statistics data about the number of
connections which node had. There was also a feature engineering procedure whereby each
map was compiled within a single row of the dataset containing the following information:

• Map identification: the file name that contained the entire concept map;
• Number of nodes: the sum of all nodes in the concept map;
• Number of edges: the sum of all edges in the concept map;
• Ratio between nodes and edges: calculated by dividing the number of edges by the number

of nodes in that map. This variable indicates the overall connectivity of a concept map;
• Mean number of edges per node: the mean number of edges that the nodes have, it

represents the mean number of connections by node;
• Standard deviation of edges per node: the expected variation from the mean number of

connections by node;



• First, second, and third quartile: the number of connections a node has, below which 25%,
50% and 75% of the smallest number of connections by node lie, respectively;

• Maximum number of edges per node: the maximum number of edges connected to a
node that happens in the concept map.

3.2. Classification among structures types

After transforming the data into graph structures, each map was plotted as a directed graph
using the igraph library [11], omitting all labels and thus retaining only the general format of
the map, for that reason, the maps’ topic didn’t influence the classification. Each image was
analyzed and classified as a spoke, chain, or network. To accomplish this, we analyzed the most
predominant structure of the graph for classification, and at the end of the classification process,
87 CM were classified as chain, 307 as network, and 117 as spoke.

Figure 2: Examples of spoke, chain, and network structures found in the maps

Figure 2 shows some examples of those structures found, in which the first row presents three
examples of cases considered as spoke-type structures, with the middle one being the most
traditional. The images on the right and left exhibit the main characteristic of spoke structures,
featuring key concepts to which various other concepts are connected. However, unlike the
traditional image, they have more than one key concept. Similar to the traditional structure,
the concepts linked to a key concept lack interconnections among themselves. The second
row presents some examples of structures considered chains, with the middle one being the
closest to the classic chain structure. The figures on the right and left exhibit the same pattern
of having a node connected to the others through a single chain connection. Although these
structures deviate from the classic one by having nodes with more ramifications, these nodes
are few, and the main characteristic of the lack of connection between concepts at different
hierarchical levels is maintained. Finally, the third row presents examples of network structures,
where highly connected nodes prevail in all cases, without a well-defined hierarchical structure.



In the dataset, there are several examples of networks with varying degrees of connectivity, and
structures that do not exhibit a prevalence of chain or spoke characteristics were considered as
networks.

4. Automatic Concept Map Structure Classification

To address the research question, the prepared dataset was divided into two parts and balanced
to have 100 random samples of each class, with 20% of the data used as a validation dataset and
the remainder used for model training. Subsequently, five multiclass classification models were
selected, as presented in Table 1. The models were implemented using the Scikit-learn library
[12], with the default settings for each model. Then, the accuracy was evaluated for each model
using cross-validation with the default 5-fold cross-validation method and the F1-Score for each
class. Table 1 shows that the Random Forest model outperforms in all the metrics, making it
the best choice for this particular case. The Permutation Importance method showed that the
five most important features were, in descending order of importance: standard deviation of
edges per node, mean number of edges per node, third quartile, maximum number of edges per
node, and number of edges.

Table 1
Model results for classification in chain, spoke or network structure

Classifier Model Accuracy F1-Score Chain F1-Score Network F1-Score Spoke
Decision Tree 0.78 0.79 0.75 0.85
Random Forest 0.88 0.91 0.82 0.95
Logistic Regression 0.85 0.78 0.73 0.83
K Neighbors 0.78 0.78 0.65 0.88
Gradient Boosting 0.85 0.88 0.65 0.87

5. Discussion

This work addressed the research question presented in Section 1: Can concept maps be classified
as Spoke, Chain, or Network based on their features and without relying on human visual interpre-
tation? To achieve this, a thorough cleaning and feature engineering process was employed
on the available dataset. As a result, various multiclass classification models were tested, with
Random Forest achieving the highest accuracy of 88% for classifying a map into the spoke,
chain, or network structures.

The results obtained are promising for integrating automated conceptual map evaluation
systems, which could improve educators’ routines in utilizing these resources. They could also
provide real-time feedback to students regarding the structure of their maps, guiding learning
toward further depth. A major challenge of this research lies in the manual classification of
maps, as we found no robust guideline to differentiate maps that exhibit characteristics of
more than one structure. Therefore, in future work, we suggest a thorough discussion of these
classification patterns through detailed analysis of the generated structures, as this may further
improve the accuracy and F1-Score results obtained by the models.
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