
Customizable Knowledge Graph Visualization using
the Whyis Knowledge Explorer
Jamie P. McCusker1,*,†

1Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract
Network visualization over large knowledge graphs suffers from multiple challenges: graphs have
varying and sometimes multiple ways to represent what people expect a "link" to be - everything from
direct triples to complex chemical interactions, social constructs, and OWL property restrictions can
be considered a link. Additionally, large knowledge graphs cannot be usefully visualized as a whole
because they are simply too large and complex, an any patterns are lost in the noise when there is enough
computational ability to represent them. The Whyis Knowledge Explorer is a component of the Whyis
knowledge graph development framework that addresses these issues. It allows for fast, customizable
network visualization of large scale knowledge graphs. By providing a "starting point" with any specific
node, users can explore the graph piece by piece, building a view up by expanding selected nodes on
demand, making it easier to explore locally. By using “data views”, the component provides a consistent
user interface over a wide range of entity types that can handle both simple and complex relationships
between entities. These data views publish a consistent output from multiple templates and can be
extended through plugins as well as by the implementing Knowledge Graph App (KGApp). Entity types
can also be assigned custom styles through CSS using Cytoscape.js styling. Additionally, links can be
qualified with certainty values, showing more probable links as having greater weight. We also use the
same interface to provide a summary view of the knowledge graph by automatically generating concept
maps of instantiated types, allowing users to see and explore overall usage patterns in the knowledge
graph, highlighting both intended design and knowledge curation issues. This component has been a
key part of many Whyis-based projects and is mature and scalable.

Keywords
visualizations, web applications, knowledge graphs

1. Introduction

Current visualization strategies for knowledge graphs (KGs) either do not take into account
the graph design decisions for things like reified links or spurious links that are not relevant to
the task, or they provide a fully customized visualization that is difficult to repurpose for other
projects. In a similar vein, most overall views of knowledge graph design are usually created by
hand based on the knowledge of the KG developer and may not always reflect the state of the
current graph.

VOILA 2024: The 9th International Workshop on the Visualization and Interaction for Ontologies, Linked Data and
Knowledge Graphs co-located with the 23rd International Semantic Web Conference (ISWC 2024), Baltimore, USA,
November 11-15, 2024.
*Corresponding author.
$ mccusj2@rpi.edu (J. P. McCusker)
� https://tw.rpi.edu (J. P. McCusker)
� 0000-0003-1085-6059 (J. P. McCusker)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mccusj2@rpi.edu
https://tw.rpi.edu
https://orcid.org/0000-0003-1085-6059
https://creativecommons.org/licenses/by/4.0

We have built knowledge explorer network visualization tool in Whyis that lets developers
customize the way links from specific entities are rendered. Whyis enables software developers
to create knowledge graph applications (KGApps) using minimal modifications, allowing for
the use of code-oriented deployment and management tools like GitHub, Docker, and other
DevOps tools. This low code/no code approach allows creators of knowledge graphs to do so
without coding, but if they need to add code, it would be minimal. In a previous paper [1] we
illustrated the capabilities and structure of Whyis using a demonstration knowledge graph of
characters and their interactions from the novel Les Miserables, as originally created by Donald
Knuth and maintained by Media and Design Studio1 We extended this demo to highlight the
network visualization capabilities included in Whyis, and is available on GitHub2.

1.1. Whyis UI and Data Views

A key feature of Whyis for visualization and knowledge interaction is the use of type-driven
custom views for nodes by both the rdf:type of the node and the view URL parameter, which
drives all user interface and API interactions within Whyis. Every URL in Whyis is a node in
the knowledge graph, the URI of which can be linked data if the configured LOD prefix matches
the server URL prefix. Additionally, other nodes can be viewed by using the URI as a URL
parameter. And additional URL parameter, view, can be added to provide alternate view of the
entity, which can be configured like this:

: myCustomView r d f s : s u b C l a s s O f whyis : hasView ;
dc te rms : i d e n t i f i e r " custom " .

This creates a new view type called custom that can then be rendered. Entity types can be
registered with specific template to render particular views using a type view template triple.
For instance, below we register a default view for foaf:Person using the person_view.html
template and a custom view using the person_custom.json template:

< h t t p : / / xmlns . com / f o a f / 0 . 1 / Person > a owl : C l a s s ;
whyis : hasView " person_v iew . html " ;
: myCustomView " person_custom . j s o n " .

These templates are rendered using Jinja2 3 and can access a large collection of APIs to access
the current entity, the knowledge graph as a whole, and other functions.

1.2. Whyis Data Views are Open Contracts

Design by Contract [2] is a defensive programming strategy that encourages clearly defined
interfaces between software modules, so that users of a module know what to expect from it,
and implementers of the module know what they are expected to provide. By specifying a clear
interface, it is possible to create multiple implementations that provide the same service, which
become essentially open contracts. Data views in Whyis serve as a form of open contract. By

1Available at https://github.com/MADStudioNU/lesmiserables-character-network.
2https://github.com/whyiskg/les-mis-demo
3http://jinja.pocoo.org

https://github.com/MADStudioNU/lesmiserables-character-network
http://jinja.pocoo.org

reimplementing a named view on an entity type that is different from the reference implemen-
tation, the implementer is expected to provide a compatible data structure to the orignal. This
allows for customization of the content served from a given view for a user interface, but it also
allows other user interfaces to be created that take advantage of that same view. UI views and
data views can therefore be matrixed together in ways that would otherwise be impossible. For
instance, a 𝑙𝑎𝑏𝑒𝑙 view can be used by multiple UIs (and even other data views) as-is, because it
can be relied on to provide a human readable text string ready to be embedded in other content,
while what counts as a label might vary from entity to entity based on its type.

This paper provides the following contributions. We developed a "design by contract"-
based API using Whyis typed views for node and link traversal in a knowledge graph can
improve network visualization in those graphs. This approach can also support multiple ways
of rendering nodes and links. Finally, we also show how graph summarization algorithms can
use the same framework for visualization and exploration.

2. Approach

In order to implement a design by contract approach, we provide a general-purpose user
interface in Javascript that iteratively requests up to two views from a given entity:

outgoing Return all links for which the entity in question is a subject, or source node, in the
link.

incoming Return all links for which the entity in question is a subject, or target node, in the
link.

The user interface uses Cytoscape.js [3] to render and layout the network visualizations.
While the UI is available within the explore view, it is implemented as an AngularJS directive
and can therefore be embedded in any other view in the knowledge graph.

The incoming and outgoing views for every resource in the graph are required to imple-
ment the following JSON structure:

[
{

" a r t i c l e s " : [" [URI] " , . . .] ,
" from " : [" [URI] " , . . .] ,
" l i n k " : " [URI] " ,
" l i n k _ t y p e s " : [

{
" l a b e l " : " [s t r i n g] " ,
" u r i " : " [URI] "

}
] ,
" p r o b a b i l i t y " : [f l o a t : 0 −1] ,
" s o u r c e " : " [URI] " ,
" s o u r c e _ l a b e l " : " [s t r i n g] " ,

" s o u r c e _ t y p e s " : [" URI " , . . .] ,
" t a r g e t " : " URI " ,
" t a r g e t _ l a b e l " : " s t r i n g " ,
" t a r g e t _ t y p e s " : [" URI " , . . .]

} ,
. . .

]

The approach used here tries to keep as much of the JSON flattened to make it easier to use
as much as possible via a SPARQL query. However, this can be implemented in many different
ways, including passing off the entire JSON rendering to code outside of the template. For
instance, the default view uses a template filter called probit to provide most of the query,
while needing to provide a query fragment. For instance, this template can be used for generic
resources:

{ { ’ ’ ’ graph ? a s s e r t i o n {
{

? s o u r c e ? l i n k _ t y p e ? t a r g e t .
}

}
b ind (? a s s e r t i o n as ? l i n k)
minus { ? s o u r c e s i o : h a s P a r t | s i o : h a s A t t r i b u t e ? t a r g e t }
minus { ? t a r g e t a s i o : Term . }
f i l t e r (! sameTerm (? source , ? t a r g e t) && i s I R I (? t a r g e t))

’ ’ ’ | p r o b i t (s o u r c e = t h i s . i d e n t i f i e r) | t o j s o n | s a f e } }

The probit filter includes that query fragment in a larger query and searches for source
and target types and labels. Within the Les Miserables knowledge graph, we use the following
template, which takes advantage of the schema:InteractAction instances that we use in the graph
(see Figure 1):

{ { ’ ’ ’ graph ? a s s e r t i o n {
{

? a r t i c l e schema : p a r t i c i p a n t ? s o u r c e .
? a r t i c l e schema : p a r t i c i p a n t ? t a r g e t .
? a r t i c l e a ? l i n k _ t y p e .

}
}
b ind (? a r t i c l e as ? l i n k)
b ind (0 . 6 as ? p r o b a b i l i t y)
f i l t e r (! sameTerm (? source , ? t a r g e t) && i s I R I (? t a r g e t))

’ ’ ’ | p r o b i t (s o u r c e = t h i s . i d e n t i f i e r) | t o j s o n } }

Conveniently, implementers can simply bind the source or the target depending on the view
being rendered.

2.1. Automated Meta-Analysis

To provide a more unified view of links between entities, we distinguish between a specific
link and the type of the link. For instance, each individual character interaction in the graph
can be seen as evidence that any two characters know each other, but any one interaction is
a weak indicator of that. Multiple interactions tend to accumulate that evidence quickly. In
many scientific domains, evidence can be collected with varying levels of confidence in the
evidence. Independent experiments that have the same finding (expressed as a link, interaction,
type assertion, or other knowledge) need to be given a way to combine that knowledge in a
meaningful way.

In Whyis, we provide a form of automated meta analysis using Stouffer’s Z Method [4]. This
method allows multiple experiments or observations with varying levels of confidence that
produce the same results reinforce each other. For each independent observation of 𝑃 (𝐴) in
𝑃 (𝐴1), 𝑃 (𝐴2), ...𝑃 (𝐴𝑘), we compute the 𝑃 (𝐴) as follows, where 𝜑 is the standard normal
cumulative distribution function and 𝜑−1 is the inverse CDF:

𝑃 (𝐴) = 𝜑

(︃∑︀𝑘
𝑖=1 𝜑

−1 (𝑃 (𝐴𝑖))√
𝑘

)︃
For example, let us say that there is an ensemble of to link predictors that provide certainty

scores of 𝑃 = 0.75, 0.9. The corresponding 𝑍 of each is 𝑍 = 0.7, 1.3, making the consensus
𝑍 = 1.41, and the corresponding 𝑃 = 0.92, a small improvement over either prediction. Adding
additional observations will provide proportionally better probabilities, allowing evidence to
accumulate.

Whyis provides the probit filter (a special form of function) that can process basic graph
patterns for multiple observations and perform this sort of automated meta-analysis. A base
rate probability is configurable in Whyis for assertions that do not have associated probabilities
so they can also provide a baseline level of evidence.

3. Evaluation

We demonstrate our visualization approach using the Les Miserables graph from [1], extending
it to provide additional sub-types for most characters. Figure 1 shows the structure we use
to express interactions between characters, where the links are reified rather than simple
(𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) triples. This reified interaction makes it easier to indicate that the
interaction is undirected or bi-directional, but also offers the opportunity to record which chapter
it occurred in, which is provided in the data. In other interaction-based knowledge graphs,
like systems biology graphs [5], it allows models to provide additional provenance like locality,
intensity, and how the interaction was determined, i.e. through prediction, measurement,
simulation, or other means.

In Figure 2, the Knowledge Explorer is shown with all of the Stouffer-method aggregated
interactions of the main characters. While completeness may be useful on a node by node basis,
overall patterns are difficult to see with networks of this size. Because of this, the Knowledge
Explorer is capable of filtering on the probability of each link. We showed in [5] that aggregate

Figure 1: Basic structure of the Les Miserables knowledge graph, using Schema.org classes and
properties.

Figure 2: All links to characters that have directly interacted with the main characters of Les Miserables.
To make graph browsing easier, Knowledge Explorer maps the relative size of displayed nodes to their
centrality in the displayed graph.

probability across multiple links is a useful way to focus on high quality results. In Figure 3
we filter out links with 𝑝 >= 0.75, resulting a useful graph of the main characters and the
minor characters that they most frequently interact with. Note that in both cases, the nodes are
color-coded by their type. The colors are auto-allocated from a 10 color palette, and adapt to
the available types in the rendered graph.

Figure 3: The network of characters that most frequently interacted with the main characters of Les
Miserables, probability of > 0.75 using a base rate of 0.6 for each interaction.

In addition to the modeling used for character interactions, we created an agent that can
summarize links between entities of different types to show how patterns are actually used in
knowledge graphs. Called Concept Maps [6], they have been used for a long time to express
graph patterns among different entity types in knowledge graphs. They have most commonly
been used to plan out the structure of knowledge graphs. In this case, we invert the use
case of concept maps and create them from the observed relationships between entities. We
created a Whyis agent that creates a set of Relation objects in a nascent Knowledge Graph
Modeling Ontology (KGMO). For each owl:Class, it looks at the frequency that its instances are
connected to other instances of other classes via a given predicate. Future versions of this agent
may be configured to analyze subclass relations for abstraction of these summaries, property
paths, and other complex constructions. That frequency is recorded as a sio:has-attribute of the
kgmo:Relation of type kgmo:SyllogismConfidence. Figure 4 provides more details of kgmo:Relation
structures, including links to the subject type (kgmo:hasSourceType), predicate (kgmo:property),
and object type (kgmo:hasTargetType). The resulting kgmo:Relation objects are then treated as
links between classes in the knowledge graph (in addition to rdfs:subClassOf links), resulting in
the summary visualization in Figure 4.

4. Related Work

Knowledge graph visualization using network tools has a long but varied history. Here we only
consider tools that focus on network visualization in large scale query-able knowledge graphs,
although there are graph visualization techniques from both Linked Data and ontologies [7].

Figure 4: Structure of a KGMO relation.

Figure 5: The types of characters that each one interacts with the most. For a link to be shown, at least
half of all characters of the source type have interacted with a character of the target type.

Neo4J Browser allows developers to query the graph and visualize the results. However, it
requires users to provide the query, limiting the potential audience [8]. Conversely, LODLive
[9] provides a general purpose graph visualization tool, but it does not allow users to customize
links based on their types. Since it is focused on traversing Linked Data, it also does not
support aggregated knowledge graphs. ReDrugS [5] supports complex link types, but it was

hard-coded to a specific domain. This is typical of most KG visualization approaches, and the
Whyis approach was created to provide a generalized solution to this.

5. Discussion, Limitations, and Future Work

By implementing a Design by Contract API, the knowledge graph can enforce structured
interactions with its data, ensuring consistency and reliability in how information is accessed
and manipulated. This structured approach extends to visualization, where typed views for node
and link traversal can enhance the clarity and usability of network representations. For example
different stakeholders or applications can visualize the same graph in ways that suit their
specific needs (e.g., emphasizing different types of nodes or relationships), although complex
interactions would require development of new queries to support them (and therefore need
expertise in SPARQL). Users can also define and utilize tailored views of the graph, optimizing
visualization for their particular analytical tasks.

The use of graph summarization algorithms introduces another layer of utility. Algorithms
can summarize large, complex graphs into more manageable forms without losing critical
information, facilitating efficient exploration and analysis. Summarization results can also
be visualized using the same framework as instance data, allowing users to grasp high-level
insights quickly before delving into detailed exploration.

We plan to improve the Whyis Knowledge Explorer in a number of ways. First, we plan to
incorporate the multi-hop searches for entity links that were available in ReDrugS [5]. This will
be useful for systems biology analysis, but also any sort of analysis of multi-hop links between
entities in general. Currently, the knowledge explorer is limited to a single, hard coded layout
strategy. We hope to be able to let users select and configure layouts, and selectively apply
them to nodes. This can allow for more interesting visual analyses. We also hope to explore
more how shape constraints in both the knowledge graph using SHACL [10] and in data views
using OpenAPI [11]. Finally we hope to provide more visual approaches on top of the existing
incoming and outgoing data views, especially ones that hybridize network and quantitative
visualization.

6. Conclusion

The Whyis Knowledge Explorer represents an advancement in the visualization and exploration
of large-scale knowledge graphs. By addressing the challenges associated with graph represen-
tation and navigation, this tool offers a robust framework for developers and researchers alike.
The ability to customize link rendering and employ type-driven views enhances usability and
flexibility, accommodating both simple and complex relationships within the graph. Through
its integration of design by contract API and sophisticated graph summarization algorithms,
Whyis facilitates not only detailed node and link traversal but also insightful high-level analysis.
This approach not only enhances the clarity of graph visualizations but also supports informed
decision-making by stakeholders across various domains.

6.1. Availability

The Whyis Knowledge Explorer is a component of the Whyis knowledge graph development
framework and is available through the Python Package Index and Dockerhub.

Python Package Index: whyis

License: Apache 2.0 License

Documentation URL: https://whyis.readthedocs.io

Docker pull command: docker pull tetherlessworld/whyis

Source Code URL: https://github.com/tetherless-world/whyis

Example Project URL: https://github.com/whyiskg/les-mis-demo

Acknowledgments

This work was funded by National Science Foundation (NSF) Award DMR-1310292, the Defense
Advanced Research Projects Agency (DARPA) under Program #HR001122S0052 (ECOLE), the
Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via the HIATUS Program #2022-22072200002, the National Institute of Envi-
ronmental Health Sciences (NIEHS) Award 0255-0236-4609 / 1U2CES026555-01, IBM Research
AI through the AI Horizons Network, the National Spectrum Consortium (NSC) project number
NSC-17-7030, and by the Gates Foundation through Healthy Birth, Growth, and Development
knowledge integration (HBGDki). Any opinions, findings and conclusions or recommendations
expressed in this material are those the authors and do not necessarily reflect the views of
AFRL, IBM, the Gates Foundation, ODNI, IARPA, DARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References

[1] J. McCusker, D. L. McGuinness, Whyis 2: An open source framework for knowledge graph
development and research, in: European Semantic Web Conference, Springer, 2023, pp.
538–554.

[2] B. Meyer, Applying’design by contract’, Computer 25 (1992) 40–51.
[3] M. Franz, C. T. Lopes, D. Fong, M. Kucera, M. Cheung, M. C. Siper, G. Huck, Y. Dong,

O. Sumer, G. D. Bader, Cytoscape. js 2023 update: a graph theory library for visualization
and analysis, Bioinformatics 39 (2023) btad031.

[4] S. C. Kim, S. J. Lee, W. J. Lee, Y. N. Yum, J. H. Kim, S. Sohn, J. H. Park, J. Lee, J. Lim, S. W.
Kwon, Stouffer’s test in a large scale simultaneous hypothesis testing, Plos one 8 (2013)
e63290.

https://whyis.readthedocs.io
https://github.com/tetherless-world/whyis
https://github.com/whyiskg/les-mis-demo

[5] J. P. McCusker, M. Dumontier, R. Yan, S. He, J. S. Dordick, D. L. McGuinness, Finding
melanoma drugs through a probabilistic knowledge graph, PeerJ Computer Science 3
(2017) e106. URL: https://doi.org/10.7717/peerj-cs.106. doi:10.7717/peerj-cs.106.

[6] P. Hayes, T. C. Eskridge, M. Mehrotra, D. Bobrovnikoff, T. Reichherzer, R. Saavedra,
Coe: Tools for collaborative ontology development and reuse, in: Knowledge Capture
Conference (K-CAP), volume 2005, 2005.

[7] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, E. Giannopoulou, Ontology visualization
methods—a survey, ACM Computing Surveys (CSUR) 39 (2007) 10–es.

[8] J. Baton, R. Van Bruggen, Learning Neo4j 3. x: Effective data modeling, performance tuning
and data visualization techniques in Neo4j, Packt Publishing Ltd, 2017.

[9] D. V. Camarda, S. Mazzini, A. Antonuccio, Lodlive, exploring the web of data, in: Proceed-
ings of the 8th International Conference on Semantic Systems, 2012, pp. 197–200.

[10] J. Corman, J. L. Reutter, O. Savković, Semantics and validation of recursive shacl, in: The
Semantic Web–ISWC 2018: 17th International Semantic Web Conference, Monterey, CA,
USA, October 8–12, 2018, Proceedings, Part I 17, Springer, 2018, pp. 318–336.

[11] S. Casas, D. Cruz, G. Vidal, M. Constanzo, Uses and applications of the openapi/swagger
specification: a systematic mapping of the literature, in: 2021 40th International Conference
of the Chilean Computer Science Society (SCCC), IEEE, 2021, pp. 1–8.

https://doi.org/10.7717/peerj-cs.106
http://dx.doi.org/10.7717/peerj-cs.106

	1 Introduction
	1.1 Whyis UI and Data Views
	1.2 Whyis Data Views are Open Contracts

	2 Approach
	2.1 Automated Meta-Analysis

	3 Evaluation
	4 Related Work
	5 Discussion, Limitations, and Future Work
	6 Conclusion
	6.1 Availability

