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Abstract 
The rapid growth of Internet of Things (IoT) devices provides distinct challenges in preserving the 
privacy and security of interconnected systems. As cyber-attacks are more common, evolving a 
scalable and effective Intrusion Detection System (IDS) based on deep learning (DL) for IoT has 
become more complex. When handling evolving and dynamic cyberattacks, the present techniques 
are unable to balance temporal and spatial feature extraction. The lack of diversity in dataset 
employed for DL-based IDS evaluation also interferes with evolution. Besides, there is a significant 
trade-off between scalability and performance, mainly when the amount of edge devices in 
communication upsurges. To tackle these challenges, this research paper presents a horizontal DL 
method that unites Bidirectional Long-Term Short Memory (BiLSTM) and Convolutional Neural 
Network (CNN) for efficient intrusion detection. This article introduces a novel Sine Cosine 
Algorithm with Deep Learning based Zero Trust Intrusion Detection System (SCADL-ZTIDS) method 
for secure IoT Devices. The foremost intention of the SCADL-ZTIDS technique rests in the effectual 
and automated classification of zero trust IDS. In the first stage, the SCADL-ZTIDS approach endures 
a min-max scaler utilizing data pre-processing to convert the actual data into beneficial form. 
Moreover, the deep neural network (DNN) technique is employed for the identification and 
classification of intrusions. Furthermore, the sine cosine algorithm (SCA) is utilized for fine-tuning 
the parameters contained in the DNN method. To describe the heightened performance of the 
SCADL-ZTIDS approach, a wide range of empirical analyses are implemented on benchmark datasets, 
and the outcomes are examined under various features. The simulation outcomes highlighted the 
improved intrusion detection performance of the SCADL-ZTIDS approach over the recent DL 
techniques. 
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1. Introduction 

The Internet of Things (IoT) transformed digital connectivity by presenting smart 
communication techniques, resulting in more reliable, dynamic, and efficient network 
communication [1]. It enables intelligence network processes amongst manual objects using 
sensors and a communication protocol. Sensors generate a connectivity set-up by connecting 
the applicants, and the communication protocol controls the flow of data over the network [2]. 
From this perspective, the idea of zero trust turns out to be critical. Cyber experience in IoT 
creates chances for different antagonistic pursuits like malware exploits, Denial of Service (DoS) 
attacks, phishing schemes, IoT botnet infiltrations, routing manipulations, Man-in-the-Middle 
(MITM) attacks, and tasks associated with cloud securities [3].  

The zero-trust method has become progressively more widespread as administrations look 
to improve their cybersecurity posture in front of developing threats [4]. By pretentious that 
each customer, application, and network device is untrustworthy till confirmed reliable, the 
zero-trust approach can assist in reducing the attack footsteps and reduce data breaches by 
incessantly authenticating and verifying devices, applications, and users in an active 
environment [5]. The zero-trust concentrated on limiting source access and admitting access on 
the standard of the minimum privileges necessary to implement the desired task. An operative 
description of zero trust is whether it be a security approach that needs continuous 
authentication and verification of all devices, applications, and users’ earlier allowing access to 
resources [6]. Zero trust is a complete security outline and operating policies that execute the 
zero-trust method over an organization's complete networks, to reduce the threat of data 
breaches and cyberattacks [7].  

The safety of IoT networks besides cyber threats is becoming a paramount study area in 
modern years [8]. Artificial Intelligence (AI) based methodologies, particularly Federated 
Learning (FL), have stored significant attention for recommending security resolutions because 
of their privacy-preserving mechanism and reliability [9]. The FL-based Intrusion Detection 
System (IDS) functions in a systematic design except for real data interchange among the 
participant nodes and the central server; as an alternative, this method upgrade is shared among 
the communication party [10]. FL significantly supports continuous learning methods in which 
iterative cycles are executed, succeeding that the central server has distributed the universal 
approach. When training at the confined data nodes, this method upgrades were transferred 
back to the server. 

This article introduces a new Sine Cosine Algorithms with DL based Zero Trust Intrusion 
Detection System (SCADL-ZTIDS) method for secure IoT Devices. In the first stage, the SCADL-
ZTIDS approach endures min-max scaler utilizing data preprocessing to transform the actual 
data into beneficial forms. Moreover, the deep neural network (DNN) technique is employed 
for the identification and classification of intrusions. Furthermore, the sine cosine algorithm 
(SCA) is utilized for fine-tuning the parameters contained in the DNN method. To describe the 
heightened performance of the SCADL-ZTIDS approach, wide range of empirical analyses are 
implemented on benchmark datasets, and the results are studied below various features. 

2. Related Works 

Dhanya and Chitra [11] present a DL method named Autoencoder to encode the IoMT data. 
The encoding features are provided to an XGBoost Classification whose hyper-parameters are 
enhanced by utilizing the Genetic Algorithms. XGBoost classification identifies the occurrence 
of malware in the clamp and IoMT datasets by a precision correspondingly. This lightweight 
method attains the reduction of dimensionality using Autoencoder and efficiently identifies 
malware with an enhanced XGBoost classification through limited computing cost and faster 
convergence. In [12], an improved DL method based on uniting XGBoost and AutoEncoder (AE) 



method is presented. At initial, the SHapley Additive exPlanations (SHAPs) FS technique is 
utilized to choose the proper subset features. Then, the AE is trained on the preceding subsets 
to study a squeeze representation of the input feature. The latent representation produced by 
the AE is utilized as input for the XGBoost method, simultaneously, Grid Search Cross 
Validation (GSCV) is utilized to detect the optimum hyper-parameters for the AE-XGBoost. 

Zhu and Liu [13] present a new technique that leverages a single combination of ensemble 
learning and subspace clustering. This structure incorporates 3 advanced tactics: Iterative 
Feedback Loop (IFL), Two Level Decision Making (TDM), and Clustering Results as Features 
(CRFs). This method uses common data for the selection of features and uses 4 sub space 
clustering methods–, LOF, SUBCLU, PROCLUS, and CLIQUE– to generate further feature sets. 
3 base learners – XGB, NB, and LGBM– are utilized in conjunction with a Logistic Regression 
(LR) Meta learners. To tune our method, the method employs a Particle Swarm Optimizer (PSO) 
for the optimization of hyper-parameters. Cheng et al. [14] present an in vehicle IDS, which 
incorporates an integration of stream clustering and sparse regularization convolutional AE 
(SRCAE) to create a deep evolving stream clustering method, like DESC-IDS. Particularly, this 
technique encodes the constant message as a 2D data frame that is fed into the SRCAE created 
by the temporal CN (TCN) method. In [15], an optimum secure defense mechanism is presented 
for DDoS in IoT networks utilizing the feature optimization and intrusion detection system 
(OSD-IDS). The method proposes an improved ResNet structure for feature extraction that 
mines many profound features from the traces of given traffic traces. An improved quantum 
query optimizer (IQQO) method is utilized in FS. The model designs an accurate and fast 
intrusion detection mechanism, called as hybrid DL method that incorporates CNN and 
diagonal XG boosting (CNN-DigXG) methods. 

3. Methodology 

In this article, we have introduced a novel SCADL-ZTIDS method for secure IoT Devices. The 
foremost intention of the SCADL-ZTIDS technique rests in the effectual and automated 
classification of zero trust IDS. It contains three distinct processes such as preprocessing, 
classification, and parameter tuning are demonstrated in Fig. 1. 

 



 
Figure 1: Overall process of SCADL-ZTIDS method  

3.1. Min-max Scaler 

In the first stage, the SCADL-ZTIDS approach endures min-max scaler utilizing data 
preprocessing to transform the actual data into beneficial forms. The Min-Max Scaler is a vital 
data pre-processing method employed to regularize the scope of feature values [16]. By scaling 
feature to a standard range, usually [0, 1], the Min-Max Scaler certifies that every feature 
donates evenly to the method, averting any distinct feature from unevenly influencing the 
outcomes. This normalization is vital to enhance the accuracy and performance of ML 
techniques in identifying intrusions, as it permits the model to progress input data effectively 
and consistently, increasing its capability to detect latent security threats in an IoT 
environment. 

3.2. Intrusion Detection using DNN Model 

Next, the DNN technique is utilized for the identification and classifier of intrusions. A DNN is 
a novel kind of artificial neural network (ANN), which contains many layers and authorizes it 
to obtain data and appeal conclusions from wide databases [17]. DNN excels in speech and 
image detection tasks, exhibiting their skill to identify compound patterns and deliver specific 
forecasts. DNN has 3 main layers such as input, output, and hidden layer (HL). The DNN is 
organized with double HLs to easily acquire the map relation between the output and input data 
by engaging the weight fitness. Throughout the stage of training, the DNN utilizes JOA to attain 
its objectives. In the HL, the weight of the nodes was modified. Always, the neural networks 
are regulating the decision limit of the categorized training data owing to the enlarged amount 
of training iteration. To get superior identification accuracy and quicker DNN training, dual 
HLs are generated. The complete quantity of nodes in the HL is defined utilizing Eq. (1). 

𝑗 = √𝑀 +𝑁 + 𝐵																																																													(1) 
The input and output layers have 𝑀 and 𝑁 nodes, respectively. The HL has 𝑗 nodes, which 

refers to a constant value between 1 and 10, and is signified as 𝐵. 



In the HL of DNN, an activation function is comprised to allow non‐linear fitness capability. 
Then the sigmoid is applied as an activation function. 

𝐴 −
1

1 + 𝑒!"
																																																																					(2) 

𝑃 denotes the input data and is activated by the map function 𝐾# . 
𝐾# − 𝑠𝑖𝑔𝑚(𝛼$𝑃 + 𝛾$)																																																										(3) 

The matrix of weight and bias among the layer of output and HL were signified by 𝑃 and 𝑁, 
correspondingly. 

To make sure the interior neuron of a DNN, we intend a supervised 𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛%&!%'. 
This model utilizes labeled data samples. Particularly, we have a data sample (𝑃, 𝑙), which is 
labeled theoretically for an HL, so we can compute the function of loss. 

𝑉(𝑊(, 𝑁(; 𝑝, 𝑙) =
1
2𝑠
F‖
)

*+,

𝑂*(𝑊(, 𝑁(; 𝑃) − 𝑙*‖%%																											(4) 

𝑊( and 𝑁(	are the sub-sets of biases; the amount of neurons in the HL is represented as 𝑆. 

 

Figure 2: DNN structure  

The DNN utilizes cross entropy for both testing and training uses as its loss function. This 
is the major development in the performance of SoftMax and sigmoid output methods. The 
formulation of cross entropy loss is expressed in Eq. (11). 

𝑅- =
1
𝑗
F[
.

/+,

𝐷/log𝐷Q0 + (1 − 𝐷/)	log	(1 − 𝐷Q/)]																													(5) 

Where 𝑗 denotes the integer of training sample, 𝐷/ and 𝑘12 expresses the 𝑘12 output of training 
and testing sets, respectively. Fig. 2 depicts the infrastructure of DNN. 

3.3. Parameter Tuning 

Eventually, the SCA is utilized for fine-tuning the parameters contained in the DNN method. 
The SCA is a population‐based optimization algorithm that randomly produces many promising 
solutions for the optimization problem [18]. It exploits the mathematical equation of Sin‐Cos to 
oscillate away from or towards the optimum solution, highlighting exploration and exploitation 
to find a global optimum solution in the search range.  



Compared to another population‐based approach, SCA has shown its maximum 
effectiveness in reaching global optimal solution. It explores various milestones in the search 
range when the sin and cos functions produce values below or beyond the one. This can be 
mathematically formulated as follows: 

𝑋$13, = 𝑋$1 + 𝑟,sin(𝑟%) ∗ [𝑟&𝑃$1 − 𝑋$1[																																			(6) 
𝑋$13, = 𝑋$1 + 𝑟,cos(𝑟%) ∗ [𝑟&𝑃$1 − 𝑋$1[																																					(7) 

Where, 𝑋$1 and	𝑃$1 are the current and best candidate locations in the 𝑖12 dimension at 𝑡12 
iterations.	𝑟,, 𝑟%, 𝑟&, and 𝑟4 are the random integers.  

𝑋$13, = _
𝑋$1 + 𝑟, ∗ sin(𝑟%) ∗ [𝑟&𝑃$1 − 𝑋$1[, 𝑟4 < 0.5
𝑋$1 + 𝑟, ∗ cos(𝑟%) ∗ [𝑟&𝑃$1 − 𝑋$1[, 𝑟4 ≥ 0.5

																								(8) 

In Eq. (8), 𝑟,, defines whether the search range stays within or extends beyond the solution 
space. 𝑟%, define the extent of this deviance from the destination. 𝑟& presents a random weight 
to the destination, de‐emphasizing ((𝑟&) < 1) or emphasizing d(𝑟&) > 1f its influence on the 
distance. Finally, 𝑟4 smoothly alternates between the sin and cos components. During the search 
process, Eq. (9) dynamically fine‐tunes 𝑟, to balance exploration and exploitation. 

𝑟, = 𝑎 − 𝑡
𝑎
𝑇
																																																											(9) 

Where 𝑇 is the optimum iteration counter, 𝑡 is the existing iteration and 𝑎 is a constant value. 
The SCA is harnessed for optimizing the learning rate of Patch GAN discriminator and the 

generator. The learning rate considerably influences performance of the model. The algorithm 
finds the optimum value configuration that increases a performance measure. It modifies the 
learning rate iteratively through a metaheuristic algorithm that seeks the configuration that 
leads to effective generation of real images. This ensures that the generator has been 
instrumental in the overall image quality. 

𝑥$(𝑡 + 1) = 𝑥$(𝑡) + 𝑟,(𝑡) ⋅ sin(𝜔𝑡) ⋅ |𝑝56)1(𝑡) − 𝑥$(𝑡)| 
+𝑟%(𝑡) ⋅ cos(𝜔𝑡) ⋅ |𝑔56)1(𝑡) − 𝑥$(𝑡)|																																						(10) 

In Eq. (10), 𝑋(𝑡) refers to the location of 𝑖12	particles at 𝑡12 iteration. 𝑝56)1(𝑡) and 𝑔56)1(𝑡) 
are the optimum location and the global optimum location of each particle. 𝜔 shows the angular 
frequency. 𝑟(𝑡) and 𝑟(𝑡) are two random values within [0,1]. Thus, the update of learning rate 
can be formulated as follows: 

l𝑒𝑎𝑚𝑖𝑛𝑔7816 = l𝑏 + 0.5 ⋅ (𝑢𝑏 − 𝑙𝑏) ⋅ d1 + sin(𝑎)f																											(11) 
In Eq. (11), 𝑙𝑏 and 𝑢𝑏	are the lower and upper boundaries of learning rates. The parameter	𝑎 

differs with all the iterations as follows: 

𝑎 =
2𝜋𝑡

max$167
																																																																(12) 

In Eq. (12), 𝑡 and max$167 are the existing and the maximal iteration counters. 𝜋 indicates 
the mathematical constant 𝑝𝑖. The variable 𝑎 is adjusted according to the 𝑡12 existing iteration 
to the max$167 . This makes a smooth changing variable that proportionally increases with the 
iteration count. The 2𝜋 term proposes a full cycle, hence the parameter 𝑎 differs over the full 
cycle as the process repeats from 1 to max$167 . 

The SCA obtains a FF to achieve enhanced classifier performances. It defines a positive 
integer to express the best performances of the candidate solution. In this research, the 
reduction of the classifier rate of error is examined as the FF, as provided in Eq. (13).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥$) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥$) 

=
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100																		(13) 



4.  Result Analysis and Discussion 

In this section, the stimulation validation analysis of the SCADL-ZTIDS method is tested 
using UNSW-NB18 dataset [19], which contains 2500 sample records under five classes are 
represented in Table 1. 

Table 1 
 Details on Dataset 

Type of Attacks Data Record 

Normal 500 

Generic 500 

Exploits 500 

Fuzzers 500 

DoS 500 

Total Record 2500 

Fig. 3 depicts the classifier outcomes of the SCADL-ZTIDS model under the test database. Figs. 
3a-3b shows the confusion matrix with correct classification and identification of all 5 classes 
on a 70:30 TRAP/TESP. Fig. 3c represents the analysis of PR, pointing out superior performance 
over all class labels. Finally, Fig. 3d denoted the analysis of ROC and portrayed efficient 
outcomes with greater values of ROC for different classes. 

 

Figure 3: Classifier outcomes of (a-b) Confusion Matrices and (c-d) PR and ROC curves 



Table 2 represents the detection results of the SCADL-ZTIDS approach with 70%TRAP and 
30%TESP. The results inferred that the SCADL-ZTIDS model has appropriately identified five 
classes. With 70%TRAP, the SCADL-ZTIDS methodology gains an average 𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , 
𝐹1)<=76 , and MCC of 96.07%, 90.28%, 90.12%, 90.05%, and 87.72%, respectively. Moreover, with 
30%TESP, the SCADL-ZTIDS approach obtains average 𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , 𝐹1)<=76 , and MCC 
of 96.48%, 91.31%, 91.21%, 91.19%, and 89.04%, accordingly.     

In Fig. 4, the training and validation accuracy outcomes of the SCADL-ZTIDS method are 
established. The precision values are calculated for 0-25 epoch counts. This figure underlined 
that the training and validation accuracy values display a growing trend that informed the 
capability of the SCADL-ZTIDS technique with enhanced performance across numerous 
iterations. Moreover, the training accuracy and validation accuracy stay nearer over the epoch 
counts which specifies less minimum overfitting and shows greater performance of the SCADL-
ZTIDS systems, assuring continuous prediction on hidden instances. 

 

Table 2 
Detection outcomes of SCADL-ZTIDS approach at70%TRAP and 30%TESP  

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 MCC 

TRAP (70%) 

Normal 95.89 91.94 87.25 89.53 87.02 

Generic 94.91 92.48 81.09 86.41 83.57 

Exploits 97.60 90.82 98.34 94.43 93.02 

Fuzzers 95.89 86.63 93.64 90.00 87.52 

DoS 96.06 89.50 90.29 89.90 87.45 

Average 96.07 90.28 90.12 90.05 87.72 

TESP (30%) 

Normal 96.40 93.48 87.76 90.53 88.37 

Generic 95.73 92.20 86.09 89.04 86.47 

Exploits 97.47 91.61 94.93 93.24 91.70 

Fuzzers 96.13 88.34 93.51 90.85 88.46 

DoS 96.67 90.91 93.75 92.31 90.20 

Average 96.48 91.31 91.21 91.19 89.04 

  



 

Figure 4: 𝐴𝑐𝑐𝑢9 curve of the SCADL-ZTIDS approach 

In Fig. 5, the training and validation loss graph of the SCADL-ZTIDS approach is presented. 
The loss values are calculated throughout 0-25 epoch counts. It is portrayed that the training 
and validation accuracy values demonstrate the lowest trend that reported the capacity of the 
SCADL-ZTIDS technique to balance a trade-off between generalization and data fitting.  The 
consistent decrease in loss values also promises better performance of the SCADL-ZTIDS 
methodology and tuning of the prediction outcomes in time. 

 

Figure 5: Loss curve of the SCADL-ZTIDS approach 

Table 3 
 Comparative outcome of SCADL-ZTIDS approach with existing models 

Research 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 

SCADL-ZTIDS 96.48 91.31 91.21 91.19 

Random Forest 95.43 85.89 89.73 83.01 

Decision Tree 94.20 81.94 89.13 81.29 

CNN Classifier 96.00 82.84 86.71 85.28 



MLP Algorithm 84.24 83.60 84.24 82.85 

KNN Model 75.62 79.92 75.61 76.58 

Densely-ResNet 73.93 80.94 76.68 88.11 

In Table 3 and Fig. 6, the performance outcomes of the SCADL-ZTIDS method with the 
existing technique are provided [20-22]. These outcomes display that the Densely-ResNet 
approach showed inferior performance with 𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , and 𝐹1)<=76 of 73.93%, 
80.94%, 76.68%, and 88.11%, correspondingly. Simultaneously, the KNN methodology has 
attained marginally improved results with 𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , and 𝐹1)<=76 of 75.62%, 79.92%, 
75.61%, and 76.58%, appropriately. Further, the MLP, CNN, and DT techniques have achieved 
reasonably adjacent performance. In the meantime, the RF approach has caused significant 
results with𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , and 𝐹1)<=76 of 95.43%, 85.89%, 89.73%, and 83.01%, 
proportionately. Then the SCADL-ZTIDS model exceeds the other technique with 
greater𝑎𝑐𝑐𝑢9, 𝑝𝑟𝑒𝑐:, 𝑟𝑒𝑐𝑎; , and 𝐹1)<=76 of 96.48%, 91.31%, 91.21%, and 91.19%, correspondingly 
[21].  

 

Figure 6: Comparative outcome of SCADL-ZTIDS approach with existing models 

5. Conclusion  

In this article, we have introduced a novel SCADL-ZTIDS method for secure IoT Devices. 
The foremost intention of the SCADL-ZTIDS technique rests in the effectual and automated 
classification of zero trust IDS. In the first stage, the SCADL-ZTIDS approach endures min-max 
scaler utilizing data pre-processing to convert the actual data into beneficial form. Moreover, 
the DNN technique is employed for the identification and classification of intrusions. 
Furthermore, the SCA is utilized for fine-tuning the parameters contained in the DNN method. 
To describe the heightened performance of the SCADL-ZTIDS approach, wide range of 
empirical analyses are implemented on benchmark datasets, and the outcomes are examined 
under various features. The simulation outcomes highlighted the improved intrusion detection 
performance of the SCADL-ZTIDS approach over the recent DL techniques. 
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