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Abstract 
The reliability of an industrial Internet of Things (IIoT) system is a significant end-user preference. 
Preserving network reliability is vital to void the loss of life. A trustworthy IIoT network incorporates 
the safety features of IT trustworthiness-security, safety, resilience, reliability, and privacy. 
Traditional security techniques and tools are not sufficient to protect the platform of IIoT owing to 
the variance in protocols, restricted upgrade opportunities, divergence in protocols, and earliest forms 
of the operating system employed in the industrial systems. With the unexpected and diversification 
behaviors of cyber-security attacks, classical cyber-attack recognition methods have some crucial 
challenges with enlarging huge data with inaccurate classification methods, unappropriated feature 
selection (FS) and extraction, and high computation time in prediction. This study develops an 
Advanced Cyberattack Detection for Industrial IoT using the Binary Salp Swarm Algorithm 
(ACDIIOT-BSSA) technique. The projected ACDIIOT-BSSA method mainly addresses the 
classification and identification of attack recognition in achieving cyber security. The first phase of 
data pre-processing is implemented to alter the input data into the relevant format. Next, the 
proposed ACDIIOT-BSSA approach achieves feature selection progress utilizing the binary salp 
swarm algorithm (BSSA) algorithm. For attack recognition, the ACDIIOT-BSSA method uses extreme 
learning machine (ELM) technique. Finally, arithmetic optimization algorithm (AOA) is deployed as 
a hyperparameter optimizer for the ELM method. To inspect the improved performance of the 
proposed ACDIIOT-BSSA approach, a wide range of experiments were done. The empirical findings 
reported a better outcome of the ACDIIOT-BSSA method over other existing techniques. 
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1. Introduction 

Cybersecurity plays a dangerous part under industrial control systems (ICSs) observant versus 
possible malicious activity and ensures the continuous functionalism of crucial national 
frameworks [1]. The requests of Industry 4.0 which is extremely automatic and has minimum 
human intrusion leads to the growth of incorporation of the Industrial Internet of Things (IIoT) 
within industrialized processes. The dependence on connected systems has developed 
significantly, then constructing industrialized network control methods more sensitive to 
cyber-attacks [2]. Therefore, the significance of executing robust cyber-security functionalism 
or protocols inside ICSs has become an imperative concern.  The smart organization in the IIoT 
environment is exposed to several cyber-attacks such as Man-in-the-Middle attacks (MiM), 
DDoS, Infiltration attacks, Backdoors, and so on. Such attacks can break the integrity and 
confidentiality of data in that network [3]. An Intrusion Detection System (IDS) can be a safety 
device for protecting data traffic. It works for the next route of safety which protects the 
networks. IDS detects the networks in all admission points and identifies some intrusion in the 
packets running into the channel event that it signals the particular authority [4]. IDS is 
normally used afterward as a firewall, and it appears as an enhanced place for its arrangement. 
IDS were well-known mostly in two groups termed Signature-based IDS (SIDS) and Anomaly-
based IDS (AIDS) [5]. SIDS mechanism with pattern toning method for example which scans 
the data packet toward malicious content with attack patterns. Having a pre-defined database 
or list of the signatures or patterns or the well-known attacks, what employ them by relating 
the data packets with them to detect the well-known attack [6]. 

Conventional cyber-security schemes safeguard users and devices via IDS firewalls, user 
authentication, anti-virus software, and data encryption [7]. The usage of a Machine Learning 
(ML) model for detecting malignant network traffic, anomalous behaviors, and challenges in 
computer schemes in an IDS becomes inadequate [8]. However, traditional MLs lack automated 
feature engineering, hold a lower detection level, and are not effective in identifying minor 
alternatives to present attacks. This has generated a deliberate DL model for improving cyber-
security schemes [9]. DL is an ML subfield, which has grown high recognition in several fields 
owing to its development in precision in difficult tasks and the latest expansions in software 
and hardware [10]. DL methods increase cyber-security schemes preventing attacks by 
detecting patterns, which are diverse from standard behavior. 

This study develops an Advanced Cyberattack Detection for Industrial IoT using Binary Salp 
Swarm Algorithm (ACDIIOT-BSSA) technique. The projected ACDIIOT-BSSA method mainly 
addresses the classification and identification of attack recognition in achieving cyber security. 
The first phase of data pre-processing is implemented to alter the input data into the relevant 
format. Next, the proposed ACDIIOT-BSSA approach achieves feature selection progress 
utilizing the binary salp swarm algorithm (BSSA) algorithm. For attack recognition, the 
ACDIIOT-BSSA method uses extreme learning machine (ELM) technique. Finally, arithmetic 
optimization algorithm (AOA) is deployed as a hyperparameter optimizer for the ELM method. 
The empirical findings reported a better outcome of the ACDIIOT-BSSA method over other 
existing techniques. 



2. Literature Review 

In [11], 2 different DL methods are used namely CNNsand Deep Belief Networks (DBNs) 
considered as hybrid classifications, to generate methods for identifying attacks in IoT enabled 
cyber physical methods. Also, this study aims to propose a novel hybrid optimizer method 
named “Seagull Adapted Elephant Herding Optimizer” (SAEHO) to fine-tune the hybrid 
classification weights. The “Hybrid Classification + SAEHO” method extracts the feature 
extraction datasets as input and identifies the networks as both benign or attacked. Li et al. [12] 
develop feasible solutions based on federated sequence learning (FSL) with cyberattack 
recognition abilities. In federated frameworks, FSL creates a collective global method unless 
violating local data unity. Exploitation of the local sequential model, FSL seizures the inherent 
industry time series response. In addition, data heterogeneity between distributed consumers is 
also regarded that is significant for maintaining a robust but delicate attack recognition. 
Durairaj et al. [13] use the DBNs which is one of the DL methods with few enhancements. To 
enhance the precision of the detections, a rule based recognition method is included to improve 
the recognition of intruders by utilizing DBN. The presented method is followed by the layer 
microgrid structure, which forms the system flexibility and simple towards the execution. The 
presented 2 attacks, like Denial of Service attacks and False Data Injection, are produced by 
Greedy Algorithms and are identified by the presented method. 

Mohy-Eddine [14] designed an intrusion detection method using ML and feature 
engineering for IIoT security. The method incorporates Isolation Forest (IF) through Pearson's 
Correlation Coefficient (PCC) to decrease the forecast time and computing cost. IF is used to 
identify and delete anomalies from the dataset. The method employs PCC to select the most 
proper feature. IF and PCC are used interchangeably (IFPCC and PCCIF). The RF classification 
is executed to improve IDS performance.  Kunang et al. [15] introduced a hybrid DL method. 
This method utilized unsupervised methods to mine features and data dimensions, then a neural 
network for classifications. Various methods are utilized to identify the efficacy of the DL based 
IoT IDS by 2 feature extraction scenarios. The initial stage utilized AE variations like deep AE 
(DAE), deep LSTM AE (LSTM-DAE), and deep convolutional AE. The second stage utilized stack 
methods for feature extractions, containing stacked AE and deep belief networks. 

3. Materials and Methods 

In this study, we have developed a novel ACDIIOT-BSSA technique. The projected ACDIIOT-
BSSA method mainly addresses the classification and identification of attack recognition in 
achieving cyber security. To accomplish that, the ACDIIOT-BSSA technique has data 
normalization, BSSA based FS, ELM based attack detection, and AOA based parameter selection 
are illustrated in Fig. 1. 



 

Figure 1: Workflow of ACDIIOT-BSSA technique 

3.1. Data Preprocessing 

At primary phase of data, pre-processing is implemented to alter the input data into relevant 
format. Data pre-processing utilizing Linear Scaling Normalization (LSN) is essential in cyber-
security for attack detection, as it converts values of features into a constant range, usually 
between 0 and 1. This normalization certifies that every feature pays similarly to the recognition 
method, averting any distinct feature from controlling the analysis. By standardizing the data, 
LSN improves the model's capability to exactly detect potential and anomaly threats. 

3.2. Feature Selection Process 

Next, the proposed ACDIIOT-BSSA approach achieves feature selection progress utilizing the 
BSSA algorithm. Mirjalili et al. presented the SSA based on the group behavior of salps in the 
ocean [16]. In SSA, the swarm of salps forages and moves in a chain structure, and the leader 
and follower are two different roles of salps. The individual at the forefront of the sales chain 
serves as a leader, whereas the others serve as followers. The leaders lead the salp chain 
direction, whereas the follower follows the preceding leader. Thereby, the leader explores the 
food source, and follower moves to the leader. This enables the salp chain to have stronger local 



exploitation and global exploration capabilities. Similar to other swarm‐based techniques, the 
salp position can be described by a 𝑑‐dimensional vector, where 𝑑 is the dimension number of 
optimization problems. Next, the swarm of salps is described by a 𝑁x𝑑 matrix, where 𝑁 is the 
size of swarm.  
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The leader used to update the location by using the following expression 

𝑥%! = 4
𝐹% + 𝑐! 89𝑢𝑏% − 𝑙𝑏%>𝑐" + 𝑙𝑏%? 	𝑖𝑓	𝑐& ≥ 0.5
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In Eq. (2), 𝑥%! is the 𝑗'( dimension vector of first salp position, viz., leader of salps. 𝐹 denotes 
the food source position. 𝑐! is a crucial parameter. It has the function of balancing exploration 
and exploitation capability of SSA. 𝑐" and 𝑐&, that define the stepsize and movement direction 
of the leader, correspondingly, are two randomly generated values within [0,1]. 𝑢𝑏% and 𝑙𝑏% are 
the upper and the lower boundaries of the 𝑗'( dimension, correspondingly. 
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Where 𝑙 and 𝐿 are the existing and the maximum iteration count. 
A follower is used to update the location using the following equation: 

𝑥%/ =
1
2
9𝑥%/ + 𝑥%/)!>																																																							(4) 

In Eq. (4), 𝑥%/ is the 𝑗'( dimension vector of 𝑖'( follower salp position.  
The SSA was initially introduced to resolve the optimization problems. Meanwhile, FS is a 

discrete optimization problem, and SSA could not efficiently handle it. To overcome these 
issues, BSSA was introduced. In BSSA, the component of position vector should be mapped to 
0 or 1 after all the iterations. The mapping model of location vector is given below: 

𝑆9𝑥%/> =
1

1 + exp)0"
# 																																																						(5) 

𝑛𝑒𝑤𝑥%/ = U1			𝑖𝑓	𝑟𝑎𝑛𝑑	 ≥ 𝑆9𝑥%/>
0			𝑒𝑙𝑠𝑒

																																				(6) 

Where 𝑥%/ is the 𝑗1( dimension vector of location representing 𝑖'( salp; 𝑟𝑎𝑛𝑑 shows the 
uniformly distributed random number within [0,1]; sigmoid function 𝑆 is the possibility of 
choosing a candidate features; 𝑛𝑒𝑤𝑥%/ indicates the 𝑗'( vector dimension of 𝑖'( salp position. 

The fitness function (FF) examines the classifier precision and the chosen feature numbers. 
It maximizes the classification precision and minimizes the chosen feature set sizes. Hence, the 
subsequent FF is utilized to compute a particular solution, as presented in Eq. (7). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗ 	𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹
#𝐴𝑙𝑙_𝐹

																										(7) 

Where 𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑒 indicates the classifier error rate utilizing the chosen features. 
𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒	Is computed as the ratio of wrong classified to the number of classifiers produced, 
represented as a value among 0 and 1. (𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 Is complementary of the classifier precision), 



#𝑆𝐹 indicates the amount of chosen features and #𝐴𝑙𝑙_𝐹 indicates the entire amount of features 
in the novel dataset. 𝛼 is utilized to manage the significance of classifier subset length and 
quality. In our experimentations, the value 𝛼 is 0.9. 

3.3. Attack Detection using ELM Classifier  

For attack recognition, the ACDIIOT-BSSA method uses ELM technique. The proposed ELM 
technique aims to resolve the slower training problems with classical FFNN model [17]. The 
slow training problems are tracked back to the iterative training owing to its gradient‐based 
learning algorithm. Rather than training the network through iterative training, ELM arbitrarily 
selects the nodes in the HL of single hidden layer feedforward neural network (SHFN) and later 
defines the output weight through the analysis. Thus, the training time can be considerably 
decreased while providing better generalizability, though the architecture of NN remains the 
same. 

Consider (𝑥/ , 𝑦/), a set of observable samples 𝑋 and the expected output	𝑌, thus 𝑥/ =
[𝑥/!, ⋯ , 𝑥/2]1 ∈ ℝ2 and 𝑦% = [𝑦/!, ⋯ , 𝑦/3]1 ∈ ℝ3. 𝑁 is the number of the observations, 𝑠(𝑥) is 
the activation function, and	ℎ is the amount of hidden nodes. 

o% =iℎ
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In Eq. (8), o% refers to the output of 𝑗'( nodes at the output layer, 𝑗 = 1,⋯ ,𝑁,𝑤/ =
[𝑤/!, ⋯ ,𝑤/2]1 indicates the weight vectors between𝑖'( hidden nodes and the input nodes. 𝛼/ =
[𝛼/!, ⋯ , 𝛼/6]1 and 𝑡ℎ/ are the threshold values of 𝑖'( hidden nodes. The symbol ⋅ denotes the 
inner product of 𝑤/ and 𝑥/ . The SHFN can calculate the desired output of 𝑁 samples with zero 
means using 
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𝑌 = 𝐵𝛼, 
Where 𝐵 refers to the output matrix of HL.  
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The parameters such as 𝑊, the vector form of 𝑤/ , 𝛼, and 𝑏 are updated iteratively to reduce 
the error from gradient‐based algorithm,  

𝑊$ = 𝑊$)! − 𝛽
𝜕𝐸(𝑊)
𝜕𝑊

																																																					(11) 

Where 𝛽 refers to the learning rate. Usually, Backpropagation is utilized as a learning model 
thus errors are forwarded back to parameter optimization. If 𝛽 is small, then it takes long time 
for the learning model to be converged. On the other hand, a large 𝛽 might result in divergence 
or instability. Other perplexing issues are gradient‐based learning and Local minima. The 
dissimilarity between backpropagation and ELM algorithms lies mainly in the technique for 
updating parameters. For ELM, the neuron count in the HL is the primary factor that defines 
the ELM performance. 



3.4. Hyperparameter Optimizer 

Finally, the AOA is deployed as a hyperparameter optimizer for the ELM method. The AOA is 
a new metaheuristic algorithm based on the statistical properties of the four basic arithmetical 
operators such as multiplication (𝑀), division (𝐷), subtraction (𝑆), and addition (𝐴) [18]. The 
two processes that constitute optimization algorithms in AOA are exploitation and exploration 
of mathematical modeling of AOA. The hierarchy of arithmetical operations together with the 
domination from the external to inside. The Math Optimizer Accelerated (𝑀𝑂𝐴) operator is a 
coefficient in the search process. 

𝑀𝑂𝐴(𝐶89:;) = Min + 𝐶<9:; ∗ x
Max − Min
𝑀<':;

z																														(12) 

Where 𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) is the function value at 𝑡'( iterations. 𝐶89:; is the existing iteration, 
ranging from 1 to the maximal value. “𝑀𝑖𝑛” and “𝑀𝑎𝑥” are the minimal and maximal values 
correspondingly. 

The exploration operator of 𝐴𝑂𝐴 explores the search region randomly on different 
approaches and areas to search for the best solution according to the (𝐷) and (𝑀) search 
strategies.  

𝑥/%(𝐶<':; + 1) = 4
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𝑥//(𝐶<':; + 1) is the 𝑖'( solution in 𝑖'(position at the existing iteration, and (𝑥𝑗) is the 𝑗'( 
location in the optimum solution. 𝑈𝐵𝑗 and 𝐿𝐵𝑗 are the upper and lower boundaries of the 𝑗'( 
position and is a small integer number. The search process can be transformed by 𝐶 where it 
denotes the existing iteration, 𝐼𝑡𝑒𝑟 refers to the setting of the control parameter set as 0.5. 

𝑀𝑂𝑃	(𝐶<':;) = 1 −
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In Eq. (14), 𝐶/':; indicates the existing iteration, (𝑀_𝑖𝑡𝑒𝑟) shows the maximal iteration 
number and 𝑀𝑂𝑃 (Math Optimizer Probability) is a coefficient. 𝑀𝑂𝑃 (𝐶<':;) is the function 
value at the 𝑡'( iteration. The delicate parameter 𝛼 is the exploitation accuracy through the 
iteration at 5. 

The (𝑆) and (𝐴) search strategies are utilized by the exploitation operators of AOA to 
exhaustively explore the search area in the dense places and approach to search for the best 
solution.  

𝑥𝑖, 𝑗(𝐶<':; + 1) = �
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The fitness selection is the significant feature affecting the presentation of the AOA. The 
hyper-parameter selection model covers the solution encode method to compute the candidate 
solution efficiency. In this study, the AOA finds precision as the main criterion to develop the 
FF which could be expressed as follows.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠	 = 	max	(𝑃)																																																						(16) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
																																																																(17) 

From the formulation, TP and FP represent true and false positive values respectively. 



4. Performance Validation 

The experimental validation outcomes of the ACDIIOT-BSSA approach are examined using 
EdgeIIoTset dataset [19]. The dataset comprises 10500 samples under seven class labels defined 
in Table 1. 

Table 1 : Details of dataset 

IoT Traffic Type of Event Data Record 

Normal Normal 1500 

Attack 

DDoS-UDP 1500 

SQL-injection 1500 

DDoS-TCP 1500 

Password 1500 

Port-scanning 1500 

Ransomware 1500 

Total Number of Record 10500 

 
In Table 2 and Fig. 2, the overall cyberattack detection results of the ACDIIOT-BSSA model 

under 70%TRAP and 30%TESP are demonstrated. The table values stated that the ACDIIOT-
BSSA method can find the samples proficiently. With 70%TRAP, the ACDIIOT-BSSA 
methodology offers average 𝑎𝑐𝑐𝑢? of 95.00%, 𝑝𝑟𝑒𝑐$ of 82.53%, 𝑟𝑒𝑐𝑎, of 82.51%, 𝐹@AB;: of 82.51%, 
and 𝐺6:C@2;: of 82.51%. Followed by, with 30%TESP, the ACDIIOT-BSSA technique provides 
average 𝑎𝑐𝑐𝑢? of 95.56%, 𝑝𝑟𝑒𝑐$ of 84.47%, 𝑟𝑒𝑐𝑎, of 84.45%, 𝐹@AB;: of 84.43%, and 𝐺6:C@2;: of 
84.45%.   

In Fig. 3, the training and validation accuracy outcomes of the ACDIIOT-BSSA approach can 
be exhibited. The precision values are calculated for 0-25 epoch counts. This figure emphasized 
that the training and validation accuracy values display reliable trend that indicated the 
capability of the ACDIIOT-BSSA method with better performance over numerous iterations. In 
addition, the training accuracy and validation accuracy stay nearer over the epoch count that 
denoted less minimum overfitting and shows superior performance of the ACDIIOT-BSSA 
technique, ensuring continuous prediction on hidden instances. 

Table 2 
Cyberattack detection outcome of ACDIIOT-BSSA model under 70%TRAP and 30%TESP  

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 



TRAP (70%) 

Normal 95.52 84.27 84.51 84.39 84.39 

DDoS-UDP 95.51 82.99 85.71 84.33 84.34 

SQL-Injection 94.65 81.01 81.40 81.21 81.21 

DDoS-TCP 95.46 85.64 81.70 83.63 83.65 

Password 94.99 82.21 83.89 83.04 83.05 

Port-Scanning 94.79 81.78 80.91 81.34 81.35 

Ransomware 94.08 79.79 79.42 79.61 79.61 

Average 95.00 82.53 82.51 82.51 82.51 

TESP (30%) 

Normal 95.65 83.73 86.16 84.93 84.94 

DDoS-UDP 96.03 85.84 87.50 86.66 86.66 

SQL-Injection 95.68 85.91 84.03 84.96 84.96 

DDoS-TCP 96.92 90.34 88.16 89.23 89.24 

Password 94.76 78.81 83.80 81.23 81.27 

Port-Scanning 95.21 86.27 80.56 83.31 83.36 

Ransomware 94.70 80.41 80.97 80.69 80.69 

Average 95.56 84.47 84.45 84.43 84.45 

  



 

Figure 2: Average outcome of ACDIIOT-BSSA model under 70%TRAP and 30%TESP  

 

Figure 3: 𝐴𝑐𝑐𝑢? curve of ACDIIOT-BSSA model 

In Fig. 4, the training and validation loss graph of the ACDIIOT-BSSA technique was 
demonstrated. The loss values are calculated for 0-25 epoch counts. It is depicted that the 
training and validation accuracy values indicated a reducing trend that announced the capacity 
of the ACDIIOT-BSSA technique to balance a trade-off between generalization and data fitting.  
The consistent decrease in loss values also assurances the better performance of the ACDIIOT-
BSSA approach and tuning of the prediction outcomes on time. 



 

Figure 4: Loss curve of ACDIIOT-BSSA model 

In Table 3 and Fig. 5, an overall comparative analysis of the ACDIIOT-BSSA approach is 
noticeably portrayed [20] compared with recent techniques [21-22]. The outcomes depicted 
that the RF, SVM, and KNN techniques have demonstrated ineffectual recognition outcomes 
with least 𝑎𝑐𝑐𝑢? of 80.83%, 73.01%, and 69.33%, respectively. Meanwhile, the DNN 
methodology has displayed significant performance with 𝑎𝑐𝑐𝑢? of 94.67%, 𝑝𝑟𝑒𝑐$ of 75.81%, 
𝑟𝑒𝑐𝑎, of 73.80%, and 𝐹@AB;: of 70.08%. In addition, the Inception time technique has successfully 
performed reasonable results with 𝑎𝑐𝑐𝑢? of 94.94%, 𝑝𝑟𝑒𝑐$ of 70.24%, 𝑟𝑒𝑐𝑎, of 74.20%, and 
𝐹@AB;: of 68.27%. Lastly, the ACDIIOT-BSSA method exhibits better performance with 
improved	𝑎𝑐𝑐𝑢? of 95.56%, 𝑝𝑟𝑒𝑐$ of 84.47%, 𝑟𝑒𝑐𝑎, of 84.45%, and 𝐹@AB;: of 84.43%. Therefore, 
the ACDIIOT-BSSA approach was used for superior cyberattack recognition in the IIoT 
environment.  

Table 3 
Comparison outcome of ACDIIOT-BSSA method with other models  

Model 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 
𝑭𝑺𝒄𝒐𝒓𝒆 

Random Forest 80.83 73.01 69.33 77.72 

SVM Model 77.61 76.66 76.31 77.63 

KNN Classifier 79.18 71.33 75.04 75.09 

DNN Algorithm 94.67 75.81 73.80 70.08 

Inception Time 94.94 70.24 74.20 68.27 



ACDIIOT-BSSA 95.56 84.47 84.45 84.43 

 

Figure 5: Comparison outcome of ACDIIOT-BSSA model with other models 

5. Conclusion 

In this study, we have developed a novel ACDIIOT-BSSA technique. The projected ACDIIOT-
BSSA method mainly addresses the classification and identification of attack recognition in 
achieving cyber security. The first phase of data pre-processing is implemented to alter the 
input data into the relevant format. Next, the proposed ACDIIOT-BSSA approach achieves 
feature selection progress utilizing the BSSA algorithm. For attack recognition, the ACDIIOT-
BSSA method uses ELM technique. Finally, the AOA is deployed as a hyperparameter optimizer 
for the ELM method. To inspect the improved performance of the proposed ACDIIOT-BSSA 
approach, a wide range of experiments were done. The empirical findings reported a better 
outcome of the ACDIIOT-BSSA method over other existing techniques 
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