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Abstract 
At present, phishing attacks have developed as the most noticeable social network attacks controlled 
by government, public internet users, and businesses. Phishing websites is a cyberattack that mainly 
targets online user to steal their confidential data including banking details and login credentials. The 
websites phishing arise identical to their equal legitimate websites for appealing wide range of 
Internet users. The attacker cheats the user by suggesting the covered webpage as reliable or 
legitimate to recover its significant data. Numerous solutions for phishing websites attack had been 
introduced like heuristics, whitelisting or blacklisting, and Machine Learning (ML) based models. This 
study focuses on the design of Chicken Swarm Optimization with Explainable Artificial Intelligence 
using Phishing Detection and Classification (CSOXAI-PDC) techniques on Cyber-Physical Systems. 
The projected CSOXAI-PDC method emphasizes the effectual classification and recognition of 
phishing based on CPS. To attain this, the developed CSOXAI-PDC technique first executes the data 
normalization method. Next, the classification of phishing recognition occurs utilizing deep Q 
network (DQN) classifier. For enhancing the classification performance of DQN classifier, the 
hyperparameter tuning method can be done using the chicken swarm optimization (CSO) algorithm. 
Eventually, the CSOXAI-PDC method incorporates the XAI method LIME for superior clarification 
and perception of the black-box procedure for accurate identification of intrusions. The experimental 
analysis of the CSOXAI-PDC method is executed against real dataset and the outcomes establish the 
improvement of the projected method over existing techniques. 
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1. Introduction 

Criminals engaging in Internet fraud are growing in number and professionality. Cyber-attacks 
are different, cultured, and common. Internet fraud usually involves the confidential theft of 
data from an individual or organization for blackmail intentions, generating important tasks for 
cybersecurity authorities [1]. The latest study has effectively identified phishing attacks on the 
internet. Phishing is the challenge to snip private data like passwords, credit card numbers, and 
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usernames (and, indirectly, money) by imitating a truthful object in electrical contact, normally 
for dangerous tenacities [2]. Since the usage of bait to latch a victim is equivalent, these words 
were coined as a fishing homophone [3]. Phishing is normally performed with direct messaging 
or e-mail spoofing, and it repeatedly craves the public to provide private data on a wrong 
webpage that look-alike the same as the genuine one [4]. Victims are regularly tempted through 
communications that seem from banks, social media platforms, IT administrators, auction sites, 
or online payment computers [5]. Numerous websites have established auxiliary machines to 
applications like game maps, still, they must be visibly labeled as to who assembled them, and 
customers should not apply similar passwords over the internet. 

Machine learning (ML) and modern Artificial Intelligence (AI) methods became well-active 
in some human life applications, and various earlier investigators applied ML in safety domains 
[6]. Computer security attacks were categorized into three kinds: semantic attacks, physical 
attacks, and synthetic attacks [7]. Phishing is the major semantic attack type. This technique 
can be learned to differentiate between harmful and benign activities by seeing a range of 
indicators and attributes [8]. These are trained on various data sets that hold phishing and 
legitimate incidents together. By robotically recognizing related features from rare data inputs, 
deep learning (DL) models namely recurrent neural network (RNN) and Convolutional Neural 
Networks (CNNs) accept its ability next step [9]. CNNs are appropriate for examining the web 
page's content, photographs, and other visual evidence linked to phishing challenges then they 
are experts at developing hierarchical depictions from graphical inputs. Nevertheless, RNNs are 
trained at modeling consecutive information that permits for identifying time-based trends and 
user activities that can specify phishing work [10]. 

This study focuses on the design of Chicken Swarm Optimization with Explainable Artificial 
Intelligence using Phishing Detection and Classification (CSOXAI-PDC) techniques on Cyber-
Physical Systems. To attain this, the developed CSOXAI-PDC technique first executes data 
normalization method. Next, the classification of phishing recognition occurs utilizing deep Q 
network (DQN) classifier. For enhancing the classification performance of DQN classifier, the 
hyperparameter tuning method can be done using the chicken swarm optimization (CSO) 
algorithm. Eventually, the CSOXAI-PDC method incorporates the XAI method LIME for 
superior clarification and perception of the black-box procedure for accurate identification of 
intrusions. The experimental analysis of the CSOXAI-PDC method is executed against real 
dataset and the outcomes establish the improvement of the projected method over recent 
techniques. 

2. Literature Survey 

Alotaibi et al. [11] propose an adaptive mongoose optimization algorithm with a DL based 
ID (AMOA-DLID) technique in IoT helped UAV network. In the introduced AMOA-DLID 
method, AMOA is first employed for the process of FS. The next sparse AE (SAE) method could 
be used for intrusion identifications. At last, the SAE method recognition rate could be enhanced 
by using the Harris Hawks optimization (HHO) method. Ramachandran et al. [12] 
development and design of an efficient security methods. An improved principal component 
analysis (IPCA) method is utilized to mine the important features from the normalizing datasets. 
Later, a hybrid grasshopper crow search optimizer (GSCSO) is used to select the significant 
features for testing and training processes. At last, an isolated heuristic neural networks 



(IHNNs) method is employed to forecast the flow of data is intrusive or normal. Arthi et al. [13] 
target to improve intellectual Software Defined Networks (SDNs) to enable protected structures 
for IoT healthcare systems. This method presents a hybrid of DL and ML methods (DNN + SVM) 
to detect network intrusion in the sensor based health care data. Additionally, this method could 
effectively monitor suspicious behaviors and connected devices. At last, the technique assesses 
the performances of the presented method by utilizing several metrics performances based on 
the scenarios of healthcare applications. 

Alsubaei et al. [14] propose a new DL method, the ResNeXt technique, and embedding 
Gated Recurrent Unit (GRU) method (RNT). The systematized method contains SMOTE for 
handling data inequality throughout the early processing of data. This method's discriminatory 
ability is enhanced, especially in the process of feature extractions. The ensemble method of 
feature extraction exhibits critical data patterns. Fundamental to our AI classification is the RNT 
method, optimization by utilizing hyper-parameters over the Jaya optimizer technique (RNT-J). 
Almuqren et al. [15] introduce an Explainable AI Enabled Intrusion Detection Method for 
Secure Cyber Physical Systems (XAIID-SCPSs). The presented XAIID-SCPS method mostly 
focuses on the classification and ID in the CPS platforms. A Hybrid Enhanced Glowworm 
Swarm Optimizer (HEGSO) method has been used for FS. For ID, the Enhanced Elman Neural 
Networks (IENNs) method has been employed with an Enhanced Fruit Fly Optimizer (EFFO) 
method for the optimization of parameters. In addition, the developed method incorporates the 
XAI method LIME for understanding and better perceptive of the Blackbox technique for the 
intrusions of precise classifications. 

3. Proposed Methodology 

In this article, we focus on the design of CSOXAI-PDC technique on CPS. The projected 
CSOXAI-PDC method emphasizes the effectual classification and recognition of phishing based 
on CPS. To attain this, the CSOXAI-PDC technique involved data normalization, classification 
using DQN, CSO based  fine-tuning of hyperparameter, and LIME. Fig. 1 shows the workflow 
of CSOXAI-PDC technique. 



 

Figure 1: Overall flow of CSOXAI-PDC technique 

3.1. Data Normalization 

Primarily, the CSOXAI-PDC technique executes data normalization method. Z-score 
normalization is a critical data pre-processing approach for phishing recognition, as it converts 
a value of features within a standard scale using a standard deviation of 1 and mean of 0	[16]. 
These methodologies underline differences from the mean to make it simple to identify 
abnormalities symbolic of phishing challenges. Through Z-score normalization, data 
standardization improves the reliability and precision of machine learning (ML) methods to 
detect phishing attacks. 

3.2. DQN Classifier  

Next, the classification of phishing recognition occurs by utilizing the DQN classifier. To 
diminish the cost of computational related to the iterative procedure, neural networks are used 
to estimate the value function of state‐action [17]. Firstly, the upgrade function of 0‐learning 
can be stated as: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 -𝑟 + 𝛾	max
!!

𝑄(𝑠" , 𝑎") − 𝑄(𝑠, 𝑎)4																				(1) 

A fluctuating rate of learning 𝛼 within the interval [0,1] is employed to balance the 
importance of the present environment’s learning experience against previous ones. Where, 𝑠# 
and 𝑎# denotes the state and action numbers in the following process. The Deep Q‐Network 
(DQN) incorporates neural network methods with Q‐learning and was presented to estimate 
the action‐ value function in higher‐dimensional state space. 

𝑄(𝑠, 𝑎|𝜃) ≈ 𝑄(𝑠, 𝑎)																																																							(2) 



In Q‐Learning, only neural networks and a target Q network are employed, DQN includes 
experience replay in training. The stochastic gradient descent (SGD) technique is used to 
upgrade the parameters of network in the training procedure. The DQN loss function is stated 
below: 

𝐿(𝜃) = 𝐸[(𝑡𝑎𝑟𝑔𝑒𝑡𝑄 − 𝑄(𝑠, 𝑎|𝜃))$]																																				(3) 
The optimization objective for the state‐action function is expressed below: 

𝑡𝑎𝑟𝑔𝑒𝑡𝑄 = 𝑟 + 𝛾	max
!!

𝑄(𝑠#, 𝑎#|𝜃)																																									(4) 

Here, 𝜃 signifies a parameter of neural network, the policy gradient model is a model‐free 
technique intended to enhance the predictable total return of a tactic, discovering the optimum 
tactic directly in the strategy space. The greedy policy picks the action, which boosts the 
function of value on every occasion. Conversely, action and state values that were not tested 
earlier will not be selected afterward because they are not assessed. The 𝜀‐greedy policy 
integrates the advantages of exploitation and exploration. Actions are selected stochastically 
from every obtainable action with a probability of 𝜀, whereas the finest action is nominated 
with a probability of 1 − 𝜀. 

3.3. Parameter Selection 

For enhancing the classification performance of DQN classifier, the hyperparameter tuning 
method can be done using the CSO algorithm. The nature of chickens creates them a special 
type of poultry animal, and often they manage their food‐searching efforts in clusters [18]. 
Hens, chicks, and roosters are three different classes of chicken flocks. According to different 
foraging capacities, there is a foraging hierarchal order in the group. Hens forage after roosters 
owing to their less foraging abilities, whereas chicks follow the lead because they have inferior 
foraging abilities. The chicken population shows that the chicks are arranged around the hen, 
the rooster occupies the center of population, and the hens are positioned around the rooster. 
Accordingly, there is competition among similar individual species, namely hens and hens, 
roosters and roosters, or among members of diverse species, namely hens and chicks, through 
the foraging process. For instance, hen groups 𝐻%, 𝐻$ forage around rooster 𝑅$ and acquire the 
foraging pattern of rooster 𝑅$ that define the foraging direction of hens 𝐻%, 𝐻$. Simultaneously, 
as hen 𝐻$ is closer to the rooster 𝑅%, the foraging patterns of rooster 𝑅% affects hen 𝐻$ towards 
a certain range. Chicks 𝐶&, 𝐶' and 𝐶( will forage around hen 𝐻$, which learn foraging patterns, 
and hen 𝐻$ define the foraging direction of chicks 𝐶&, 𝐶' and 𝐶(. The CSO algorithm was 
inspired by self‐organizing evolution of intelligence and the coexistence of learning. 

The objective function that requires an optimum solution is the optimizer object, and its 
variables are composed of 𝑛𝑗‐dimensional vector space 𝑋, where 𝑛 is the number and 𝑗 is the 
dimensionality, and 𝑛 represents positive integer. The fitness value 𝑓 differentiates the chick, 
rooster, and hen flocks. The chick group 𝐶) is allocated to the CN individual with the high fitness 
values; the rooster group 𝑅) is allocated to the 𝑅𝑁 individual with the lower fitness values; and, 
the residual 𝐻𝑁 individuals are allocated to the hen cluster 𝐻* . 𝑅𝑁, 𝐻𝑁 and 𝐶𝑁 denotes the 
rooster, hen, and chick groups, respectively. 

𝑅* = {𝑅%, 𝑅$, … , 𝑅+,}																																																				(5) 
𝑐) = {𝐶%, 𝐶$, … , 𝐶-,}																																																					(6) 
𝐻) = {𝐻%, 𝐻$, … , 𝐻.,}																																																			(7) 



All the chicks have an individual mother hen, and all the hens have a matching individual 
dominant male. The succeeding formula updates the foraging position of rooster, hen, and chick 
individuals: 

1) Computation equation for the rooster group 
𝑅/,123 = 𝑅),*2 [1 + 𝑟𝑎𝑛𝑑𝑛(0, 𝛿$)]																																						(8) 

𝛿$ = W

1,									𝑓) ≤ 𝑓4

𝑒
5".75#
|9$̇|3ℰ ,					𝑓) > 𝑓4
𝑠 ∈ [1, 𝑛],			𝑠 ≠ 𝑖

																																													(9) 

Where 𝑅2 denotes the location of the 𝑖2; roosters at the 𝑗2; dimension after 𝑡2; iteration, 
0, 𝛿$ denotes the Gaussian distribution random value within [0,1].	The fitness value of an 
individual is 𝑓, and 𝑆 is the random rooster index keeping the denominator from 0. 

2) Computation equation for the hen group 
𝐻),*23% = 𝐻/,12 + 𝑘% ∗ 𝑟𝑎𝑛𝑑 ∗ a𝑅.)2 −𝑀/,1

2 c + 𝑘$ ∗ 𝑟𝑎𝑛𝑑 ∗ a𝑅𝐻2 −𝐻/,12 c				(10) 

𝑘% = 𝑒
𝑓.) − 𝑓<.)
|𝑓.)| + 𝜀

																																																											(11) 

𝑘$ = 𝑒5&'75'# 																																																							(12) 
Where 𝐻2 denotes the location of 𝑖2;	hens in the 𝑗2; dimension after 𝑡2; iterations. 𝑟𝑎𝑛𝑑 

denotes the random 𝑛𝑢𝑚𝑖𝑡=< within [0,1]. 𝑅.)2  shows the leader rooster location of the 𝑖2;	hen 
afterward 𝑡2; iterations; 𝑅𝐻2 shows the location after 𝑡2; iterations of the random individual 
chosen between the other roosters and  𝑘%, and 𝑘$ are the influence factors of roosters and hens. 
The fitness value of the 𝑖2; hens are indicated as 𝑓.) . 𝑓<.) and	𝑓+. are the fitness values of the 
rooster and random individuals. 

3) Calculation formula for the hen group: 
𝐶),*23% = 𝐶),*2 + 𝐹 ∗ (𝐻𝑖*2 − 𝐶/,12 																																													(13) 

Where 𝐶)*2  and 𝐻𝑖*2are the location of the 𝑖2; chick and hens in the 𝑗2; dimension after 𝑡2; 
iterations; 𝐹 refers to a random integer within [0,2]. 

The CSO obtains a FF to achieve heightened classifier performances. It identifies a positive 
numeral to express the best performances of the candidate solutions. In this research, the 
minimization of the classifier rate of error is examined as the FF, as delivered in Eq. (14).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥)) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥)) 

=
𝑛𝑜. 𝑜𝑓	𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑜. 𝑜𝑓	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100																		(14) 

3.4. LIME Model 

Eventually, the CSOXAI-PDC method incorporates the XAI method LIME for enhanced 
clarification and perception of the black-box procedure for precise identification of intrusions. 
LIME has appeared as a dominant device in the domain of XAI, mainly for the classification of 
text responsibilities [19]. LIME functions by creating disturbed input data examples and spotting 
the changes in the predictive model. In the text classification context, LIME offers local, human-
accountable descriptions for single predictions, permitting users to know how a particular 
decision was achieved. For example, in natural language processing (NLP) applications, LIME 
can emphasize the important phrases or terms in a document that are greatly subjective to the 



classification result. This interpretability is critical for constructing trust in the AI approach, 
particularly in fields where accountability and transparency are paramount namely finance or 
healthcare. LIME’s capability for shedding light on the decision-making method of the 
composite approach improves its value in different applications and promotes the liable 
utilization of AI schemes. Its assistance with interpretability and transparency makes good a 
valuable device for practitioners, investigators, and stakeholders to try to find validate, and 
comprehend the results. 

4. Experimental Results and Analysis  

The experimental analysis of the CSOXAI-PDC technique is examined utilizing phishing 
emails dataset [20], which encompasses 10000 samples with two classes illustrated in Table 1. 

Table 1 
Details of dataset  

Classes No. of Instances 

Legitimate email 5000 

Phishing email 5000 

Total Instances 10000 

 
Fig. 2 offers the performances of the CSOXAI-PDC model under the test data. Figs. 2a-2b 

displays the confusion matrix with precise classification and identification of all 2 classes on a 
70:30 TRAP/TESP. Fig. 2c reported the study of PR recognizing superior performance across all 
class labels. Finally, Fig. 2d portrayed the ROC study indicating efficient outcomes with greater 
values of ROC for different class labels. 

The phishing detection results of the CSOXAI-PDC method are visibly portrayed in Table 2 
and Fig. 3. The stimulation values gather the efficient ability of the CSOXAI-PDC approach on 
the recognition method. With 70%TRAP, the CSOXAI-PDC methodology achieves an average 
𝑎𝑐𝑐𝑢> of 98.33%, 𝑝𝑟𝑒𝑐? of 98.34%, 𝑟𝑒𝑐𝑎@ of 98.33%, 𝐹4AB<= of 98.33%, and 𝐴𝑈𝐶4AB<= of 98.33%. 
Similarly, with 30%TESP, the CSOXAI-PDC approach acquires average 𝑎𝑐𝑐𝑢> of 98.38%, 𝑝𝑟𝑒𝑐? 
of 98.36%, 𝑟𝑒𝑐𝑎@ of 98.38%, 𝐹4AB<= of 98.37%, and 𝐴𝑈𝐶4AB<= of 98.38%.   

 



 

Figure 2: Classifier outcome of (a-b) Confusion matrices and (c-d) PR and ROC curves  

Table 2 
Phishing detection result of CSOXAI-PDC method with 70%TRAP and 30%TESP 

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏	 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 

TRAP (70%) 

Legitimate email 97.87 98.75 97.87 98.31 98.33 

Phishing email 98.78 97.92 98.78 98.35 98.33 

Average 98.33 98.34 98.33 98.33 98.33 

TESP (30%) 



Legitimate email 97.90 98.88 97.90 98.39 98.38 

Phishing email 98.85 97.85 98.85 98.35 98.38 

Average 98.38 98.36 98.38 98.37 98.38 

  

 

Figure 3: Average of CSOXAI-PDC technique with 70%TRAP and 30%TESP 

 

Figure 4: 𝐴𝑐𝑐𝑢> curve of the CSOXAI-PDC technique  



In Fig. 4, the training and validation accuracy outcomes of the CSOXAI-PDC methodology 
can be displayed. The accuracy values are computed throughout 0-25 epoch counts. This figure 
underscored that the training and validation accuracy values show growing trend that informed 
the capacity of the CSOXAI-PDC method with better performance over numerous iterations. 
Furthermore, the training accuracy and validation accuracy rest nearer over the epoch counts 
that exhibit least minimum overfitting and display improved performance of the CSOXAI-PDC 
technique, ensuring continuous prediction on hidden samples. 

In Fig. 5, the training and validation loss graph of the CSOXAI-PDC system was depicted. 
The loss values are calculated for 0-25 epoch counts. It is denoted that the training and 
validation accuracy values demonstrate a minimum trend that reported the capability of the 
CSOXAI-PDC system to balance a trade-off between generalization and data fitting.  The steady 
decrease in loss values in addition assurances the superior performance of the CSOXAI-PDC 
approach and tuning the prediction outcomes in time. 

 

Figure 5: Loss curve of the CSOXAI-PDC technique  

To demonstrate the superior performance of the CSOXAI-PDC model, a short comparative 
analysis can be produced in Table 3 and Fig. 6 [21]. This outcome illustrated that the LR and the 
decision forest technique have demonstrated least classification outcomes. In the meanwhile, 
SVM, the locally-deep SVM, Boosted DT, and averaged perceptron approaches have been tested 
to execute slightly adjacent classification results [22]. Additionally, the NN model has shown 
reasonable performance with 𝑎𝑐𝑐𝑢> of 97.70%, 𝑝𝑟𝑒𝑐? of 96.40%,𝑟𝑒𝑐𝑎@ of 89.30%, and 𝐹4AB<= of 
92.70%. On the other hand, the CSOXAI-PDC model illustrates promising performance with 
𝑎𝑐𝑐𝑢> of 98.38%, 𝑝𝑟𝑒𝑐? of 98.36%,𝑟𝑒𝑐𝑎@ of 98.38%, and 𝐹4AB<= of 98.37%. 

 
 
Table 3 

 Comparative analysis of CSOXAI-PDC technique with recent methods 



Algorithm 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏	 𝑹𝒆𝒄𝒂𝒍 
𝑭𝑺𝒄𝒐𝒓𝒆 

CSOXAI-PDC 98.38 98.36 98.38 98.37 

Locally-deep SVM 96.80 90.00 90.60 90.30 

SVM Classifier 97.40 95.00 89.30 92.00 

Boosted DT 97.20 93.10 89.90 91.50 

Logistic Regression 95.60 95.00 77.20 85.20 

Averaged Perceptron 97.70 94.40 91.30 92.80 

Neural Network 97.70 96.40 89.30 92.70 

Decision Forest 95.30 95.00 75.80 84.30 

 

 

Figure 6: Comparative analysis of CSOXAI-PDC technique with recent methods 

5. Conclusion  

In this study, we focus on the design of CSOXAI-PDC technique on CPS. The projected 
CSOXAI-PDC method emphasizes the effectual classification and recognition of phishing based 
on CPS. To attain this, the CSOXAI-PDC technique first executes data normalization method. 
Next, the classification of phishing recognition occurs by utilizing DQN classifier. For 
enhancing the classification performance of DQN classifier, the hyperparameter tuning method 



can be done using the CSO algorithm. Eventually, the CSOXAI-PDC method incorporates the 
XAI method LIME for superior clarification and perception of the black-box procedure for 
accurate identification of intrusions. The experimental analysis of the CSOXAI-PDC algorithm 
is executed against real dataset and the results establish the improvement of the projected 
method over recent techniques. 
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