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Abstract
In patent prosecution, image-based retrieval systems for identifying similarities between current patent images and prior art
are pivotal to ensure the novelty and non-obviousness of patent applications. Despite their growing popularity in recent
years, existing attempts, while effective at recognizing images within the same patent, fail to deliver practical value due to
their limited generalizability in retrieving relevant prior art. Moreover, this task inherently involves the challenges posed by
the abstract visual features of patent images, the skewed distribution of image classifications, and the semantic information
of image descriptions. Therefore, we propose a language-informed, distribution-aware multimodal approach to patent image
feature learning, which enriches the semantic understanding of patent image by integrating Large Language Models and
improves the performance of underrepresented classes with our proposed distribution-aware contrastive losses. Extensive
experiments on DeepPatent2 dataset show that our proposed method achieves state-of-the-art or comparable performance in
image-based patent retrieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%. Furthermore, through an
in-depth user analysis, we explore our model in aiding patent professionals in their image retrieval efforts, highlighting the
model’s real-world applicability and effectiveness.

1. Introduction
Prior art search aims to identify similarities between new
inventions and existing technologies, thus ensuring the
inventions satisfy novelty and non-obviousness require-
ments during patent drafting, examination, and infringe-
ment analysis [2]. Traditionally focused on metadata and
textual information [3], researchers have increasingly
turned to image-based patent retrieval to overcome the
limitations (e.g., the complexity of legal and technical
patent language) of textual analysis [4, 5, 6, 7], given that
patent images provide a clearer, more intuitive under-
standing of inventions (e.g., vehicle, design, and fashion),
enabling faster and deeper insights compared to text
alone [8].

Patent images, designed to convey technical and sci-
entific information, exhibit distinctive features that set
them apart from natural and sketch images. Firstly, they
often lack the background context, color, texture, and in-
tensity variability found in natural images, characterized
instead by their abstractness and sparseness. Secondly,
unlike sketch images, patent images provide detailed
and high-quality visualizations from multiple viewpoints.
This specificity results in commercial search engines like
Google facing difficulties in accurately retrieving rele-
vant patent images from drawing queries [5, 7], thereby
rendering image-based patent retrieval a significant and
ongoing challenge.

Research on image-based patent retrieval, though lim-
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ited, can be broadly categorized into two: (i) Low-level
vision-based methods, which employee basic visual fea-
tures such as visual words [9], shape and contour [10, 11],
relational skeletons [12], and adaptive hierarchical den-
sity histograms [13] to describe patent images for re-
trieval. These methods, however, falter in large-scale ap-
plications [7]. (ii) Learning-based methods have gained
traction in recent years. For instance, one early work, us-
ing object detection and multi-task framework for patent
classification, simultaneously performs image-based re-
trieval [4]. With the emergence of DeepPatent dataset
[5] and the ECCV 2022 DIRA Workshop Image Retrieval
Challenge has prompted exploration into various net-
work architectures, loss functions, and Re-ID techniques
to improve retrieval systems [6, 7].

Despite these efforts, past studies have often over-
looked the real-world workflow of patent attorneys con-
ducting prior art searches with images. In practice, patent
attorneys evaluate not only the visual similarity between
current images and those of prior art but also consider the
images’ descriptions and their associated patent classifica-
tions. This oversight leads to several critical gaps and our
corresponding contributions: (i) Given the importance of
textual content, we adopt a visual language model (VLM)
[14] without following pretrain-finetune paradigm. Fur-
thermore, recognizing the limited semantics in patent
images’ textual content (i.e., primarily object names and
perspectives), we, inspired by past prompting engineer-
ing [15, 16], propose using large language models (LLMs)
[17] to generate detailed, alias-containing, free-form de-
scriptions. (ii) To incorporate patent classification and
address its long-tail distribution (1), beyond the InfoNCE
loss, we introduce multiple coarse-grained losses with
uncertainty factors tailored for long-tail data into our

51

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:austenpsy@gmail.com
mailto:d09944017@csie.ntu.edu.tw
mailto:siang@csie.ntu.edu.tw
mailto:jeff@jcipgroup.com
https://creativecommons.org/licenses/by/4.0


Hao-Cheng Lo et al. CEUR Workshop Proceedings 51–60

Figure 1: The long-tail distribution of patent images within DeepPatent2 [1], plotting Locarno classification IDs against their
frequency. The graph differs between the top 40% of classes (head) and the bottom 60% (tail), showing patent image examples
from different perspectives with their object names under various classifications.

VLM. This strategy aims to ensure that patent image rep-
resentations capture class information while remaining
sensitive to the distribution [18]. (iii) Previous works
have treated image-based patent retrieval tasks as Re-
ID tasks, which do not fully align with industrial needs.
Typically, searches are conducted on large databases and
retrieval is carried out both before and after a patent is
granted, primarily in two scenarios: novelty detection or
prior art search, where a current invention is compared
against past inventions to identify similarities; and in-
fringement search, which aims to identify subsequent
inventions that might infringe upon the granted patent
[3]. Accordingly, we train and validate our model on a
larger dataset and ensure that the retrieval metrics align
with these temporal concerns. (iv) To further understand
the practical value of our image-based patent retrieval
system, we conducted blind user studies [19]. The goal
is to directly evaluate and compare the satisfaction, us-
ability, and performance of our method against existing
methods in a real-world setting, showing the practical
significance of our approach. Hence, we present four-
fold distinctive contributions to better meet the industrial
demands:

• We introduce a language-informed, distribution-
aware multimodal approach to patent image fea-
ture learning, which is both simple and robust.
This method enhances images with correspond-
ing semantic information, augmented via LLMs.

• We propose tailored losses specifically designed
for the long-tail distribution of patent classifi-
cations. This strategy significantly boosts the
robustness and accuracy of patent image repre-
sentations, particularly in scenarios sensitive to
class distinctions, leading our method achieve
state-of-the-art results.

• Our model is validated on a large dataset with

metrics specifically tailored for novelty detection,
ensuring it meets broad industrial needs.

• We employ a multi-paradigm approach, validat-
ing the system’s effectiveness not only through
technical retrieval metrics but also by accentuat-
ing its practical utility through user studies.

2. Related Work
Existing learning-based works on image-based patent
retrieval systems can be categorized into two approaches:
The first approach is intuitive, starting with the identifi-
cation of objects within patent images, then training a
classifier to associate these identified objects with their re-
spective International Patent Classification (IPC) classes,
and extracting vectors from the network for retrieval
[4, 9, 20]. However, this method faces two limitations: (i)
It relies on objects that the original detector has been pre-
trained to recognize, resulting in the exclusion of uniden-
tifiable patent images and thus limiting its applicability
for large-scale applications. (ii) Although it considers
IPC, IPC provides a rather coarse classification to the
entire patent, which fails to accurately reflect the specific
class of a certain image.

The second approach developed with the release of the
large-scale DeepPatent dataset [5], where a series of stud-
ies have treated learning patent image representation as
a Re-ID (i.e., Patent ID) problem [21]. Employing vari-
ous CNN backbones such as EfficientNet [7, 6], ResNet
[5], ViT [6], and SwinTransformer [6], these studies aim
to embed patent drawings into a common feature space
using contrastive loss functions (e.g., triplet loss [5], Ar-
cFace [6, 7]), clustering identical ID images closely and
separating different ID images. Although these studies
have shown excellent Re-ID capabilities, they have over-
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Figure 2: Model Architecture. (a) Generation of diverse, alias-containing, fine-grained descriptions for each patent image
using a captioner and LLMs. (b) Text feature extraction from the enriched text via a frozen text encoder. (c) Visual feature
extraction through a trainable visual encoder; a projector is employed when a mismatch between text and visual features. (d)
Proposed distribution-aware contrastive losses. (e) Query patent images are converted into embeddings for retrieval based on
cosine similarity.

looked several critical aspects: (i) Re-ID primarily focuses
on retrieving images within the same patent, which does
not align with the patent industry’s workflow (i.e., re-
trieving images from different patents). (ii) The Re-ID
approach is susceptible to overfitting, which reduces its
generalizability and accuracy in retrieving similar cases
across different patents [22]. (iii) These methods often
ignore other patent-specific information, such as image
descriptions and Locarno classification, which are crucial
in practical patent work.

With the rise of VLM and multimodal learning, the
retrieval of natural color images has seen significant
improvements [23, 24, 25, 26]. Likewise, multimodal
methods have become increasingly prevalent in retrieval
strategies for sketch images, which are similar, if not
identical, to patent images. For example, sketch-based
image retrieval involves retrieving natural images using
sketch representations [27, 28, 29, 30]. They mainly uti-
lize the associations with natural images to achieve such
effective results. While patent images lack the stroke
information found in sketches and are challenging to as-
sociate with natural images due to their nature of novelty
and multiple perspectives, the textual information and
well-defined classification in patents provide a solid foun-
dation for employing a VLM approach. Therefore, we
explore the potential of applying VLM to patent image
retrieval, an area currently underappreciated, leveraging
the rich auxiliary information in patents [1].

3. Method

3.1. Model Overview
Our objective is to leverage the powerful capabilities of
pre-trained LLMs to facilitate feature learning for patent
images, thus achieving semantically rich image repre-
sentations and efficient patent image retrieval. To this
end, we introduce a one-stage framework, distinct from
the conventional pretrain-finetune approaches employed
by prior studies. As depicted in 2, our model comprises
two main components: visual feature extraction and text
feature extraction. In the visual component of our model,
we preprocess the input patent images using data aug-
mentation techniques tailored for patent images, such
as flipping, random cropping [31], random erasing [32],
and gridmask [33]. We then employ CNN-based back-
bones to extract visual features from these augmented
images. For cases where the output feature dimensions
from certain backbones are too long or too short, we
utilize projectors composed of MLPs to align the dimen-
sions of visual features with those of text features for
subsequent contrastive training (2 (c)).

In the textual component, our process begins with em-
ploying an image captioner, which, given a patent image
and a predefined prompt, generates a sophisticated de-
scription of the image [34, 35, 24]. This generated descrip-
tion is then combined with other pertinent information
about the image, such as its Locarno classification, origi-
nal image description, object name, and perspective. This
composite input is fed into LLMs to produce diversified,
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alias-caontaining, fine-grained text descriptions, thereby
enriching the semantic understanding of the patent im-
age (see 2 (a) and 3.3). Following, we employ a frozen
text encoder (i.e., text encoder in CLIP), to extract textual
features of the descriptions (2 (b)).

To ensure our contrastive loss is distribution-aware,
we introduce three types of loss functions. Firstly, for
the conventional VLM contrastive loss ℒclip, we treat the
pairing of a fine-grained image with its corresponding
description as a positive match. For the coarse-grained
approach, inspired by [18, 36], we define two scenar-
ios: class-wise, where an image and a sentence from
the same class are considered a positive pair (ℒcls); and
category-wise, where an image and a sentence from the
same category (e.g., head or tail categories) are seen as a
positive pair (ℒcat). These losses are combined to update
the visual encoder during the training phase (see 2 (d)
and 3.2).

In the query phase (2 (e)), each patent image is trans-
formed into embeddings with the visual encoder and then
stored in a vector database. Retrieval of other images is
done by comparing these embeddings via cosine simi-
larity, where embeddings closer in distance are ranked
higher, and those farther apart are ranked lower.

3.2. Distribution-Aware Contastive Loss
As previously mentioned, we formulate our task as a VLM
contrastive learning paradigm. The traditional instance-
based training objective for a single image can be de-
scribed as follows (i.e., InfoNCE loss, 1):

ℒclip = − log(
exp(t𝑇+ · v/𝜏)∑︀𝐵
𝑖=1 exp(t

𝑇
𝑖 · v/𝜏)

), (1)

where (t𝑇1 , t
𝑇
2 , ..., t

𝑇
𝐵) denotes 𝐵 text features extracted

by the text encoder and v denotes the learned feature of
a patent image. The term t𝑇 · v represents the cosine
similarity score between the patent image and texts and
𝜏 is a learnable temperature coefficient. This objective is
to maximize t𝑇+ ·v, which indicates the feature similarity
between the patent image and the corresponding textual
information.

However, relying solely on instance-based contrastive
loss falls short in capturing class or category information,
potentially leading to suboptimal performance in datasets
with skewed distributions [36]. Therefore, we propose
class-based and category-based coarse-grained losses (i.e.,
ℒcls and ℒcat, see 2 (d)). These losses can be described in
a similar form as follows (2):

− 1

|V+
𝑖 |

∑︁
V𝑗∈V+

𝑖

log
exp(t𝑇𝑖 · v𝑗/𝜏)∑︀

V𝑘∈V exp(t𝑇𝑖 · v𝑘/𝜏)

− 1

|T+
𝑖 |

∑︁
T𝑗∈T+

𝑖

log
exp(t𝑇𝑗 · v𝑖/𝜏)∑︀

T𝑘∈T exp(t𝑇𝑘 · v𝑗/𝜏)
,

(2)

where 𝑉 represents a batch of patent images, and 𝑇 de-
notes the corresponding set of text sentences. The subset
𝑇+
𝑖 comprises texts that share the same class (in the case

of ℒcls) or category (for ℒcat) with the image 𝑉𝑖. Similarly,
𝑉 +
𝑖 includes all images that share the same class or cate-

gory with the text 𝑇𝑖. By doing so, our model gains an
understanding of the class and category information, en-
abling it to acquire robust representations even for those
in the tail classes. Furthermore, since the text descrip-
tion for each image sample varies with each iteration,
and combined with the class or category loss, the one-to-
one pairing relationship between images and texts is less
rigid. This variability acts as an additional regularization
mechanism, preventing the model from adhering to fixed,
trivial correlations within specific image-text pairs.

Considering each loss’s stability varies, we move away
from linear loss combination towards a method based on
homoscedastic uncertainty [37, 38], learnable through
probabilistic deep learning. This type of uncertainty,
independent of input data, reflects the task’s intrinsic
uncertainty. The loss includes residual regression and
uncertainty regularization components. The implicitly
learned variance 𝑠 moderates the residual regression,
while regularization prevents the network from predict-
ing infinite uncertainty. Hence, The overall loss can be
written as in 3.

ℒ =ℒclip exp(−𝑠clip) + 𝑠clip

+ ℒcls exp(−𝑠cls) + 𝑠cls

+ ℒcat exp(−𝑠cat) + 𝑠cat

(3)

where 𝑠 is learnable homoscedastic uncertainty. We find
this loss is robust to our task.

3.3. Text Enrichment
Converting object names, perspectives, class names, and
the patent image’s original descriptions into text for in-
put into a text encoder is a plausible way to generate
text embeddings for supervisory purposes. However,
this method encounters several limitations. Firstly, the
most comprehensive descriptions provided by patents
are typically succinct and straightforward, such as FIG.
3 is a front elevational view of the light device, leading
to unclear and sparse information about the image. Ad-
ditionally, the similarity and potential overlap among
different classes (e.g., automobiles, motor cars, and toy
cars) can obscure the distinction of nuanced concepts. To
overcome these challenges and derive more discrimina-
tive text features, we employee captioners [34] and LLMs
[17] for producing detailed, enriched descriptions that
enhance the semantic understanding of the images.

Specifically, we firstly employ captioners to generate
descriptions of images in a manner that would capture as-
pects patent attorneys focus on. We provide the caption-
ers with images alongside a set of predefined instructions
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Table 1
Evaluation results across models using metrics such as mAP, Recall@K, and MRR@K, under different settings. Highest values
are highlighted in bold.

Head Classes Tail Classes All Classes

mAP R@5 R@10 M@10 mAP R@5 R@10 M@10 mAP R@5 R@10 M@10

Baseline
PatentNet [5] 22.1 13.4 26.2 35.7 12.9 3.1 11.6 25.2 15.8 8.0 16.8 29.4
EfficientNetB0+ArcFace [7] 31.5 19.8 34.9 43.9 20.1 8.7 20.3 33.1 24.1 13.6 26.7 37.4
SwinV2-B+ArcFace [6] 32.0 19.4 34.2 45.2 20.3 6.3 21.4 32.7 25.1 11.6 27.3 37.7

Ours (backbone)

ResNet50 31.9 35.1 48.9 45.7 22.4 20.9 38.2 36.3 25.6 26.6 42.2 40.1
EfficientNetB-0 64.2 43.5 58.5 76.4 43.0 31.2 44.0 55.7 52.4 36.9 50.5 63.1
ViT-B-32 78.0 51.7 65.3 90.3 61.6 36.7 53.5 75.4 69.1 43.4 58.6 81.3
SwinV2-B 77.2 52.5 66.2 90.8 61.3 42.5 52.5 75.0 67.8 46.0 57.7 80.6

that guide the description process. For example, instruc-
tions might include: Describe the distinct visual elements
present in the design, such as shapes, contours, texture, and
the arrangement of various components. The outcomes
of this process, merged with pre-existing auxiliary in-
formation and predetermined instruction templates, are
then fed into LLMs. For example, we employ templates
such as This is a photo of {Object Name}, classified as
{Class}, This image features {Details}, and {Object
Name} can also be referred to as {Synonym}, to generate
enriched text. Ultimately, this approach yields around 20
detailed text descriptions per image, designed to mine
the semantic nuances within the text feature space.

Additionally, our research revealed that utilizing more
specific object names significantly enhances feature learn-
ing. For example, the broad class of Emergency equipment,
which encompasses distinct items such as lighting fixture,
horticulture grow light, and lighting device. Therefore, in
our text generation process, we prioritize these detailed
object names over the more generic class names, different
from the previous approach that typically leans on class
categorization [39, 40].

3.4. Metrics for Patent Retrieval
As mentioned before, in image-based patent retrieval, par-
ticularly for novelty detection and related work searches,
patent professionals explore databases of patents, applica-
tions, and scientific literature to determine an invention’s
uniqueness. This process, crucial both before and after a
patent application is filed, focuses on identifying if simi-
lar prior inventions exist. Accordingly, when evaluating
retrieval metrics, it’s necessary to account for the tem-
poral factor, ensuring that only prior art—rather than
contemporaneous or subsequent inventions—is consid-
ered for retrieval [3]. Considering a database 𝐷 where
each data point is represented by a tuple (v, 𝑡), with v
being the image embedding and 𝑡 the granted time of
the patent the image belongs to. For each query image
v𝑞 with a granted time 𝑡𝑞 , define 𝐷′

𝑞 ⊆ 𝐷 containing

images granted before 𝑡𝑞 . Hence, the following retrieval
metrics should be calculated over 𝐷′

𝑞 given v𝑞 : (i) We
use mean Average Precision (mAP), a metric obtained
by averaging AP scores across all classes. (ii) Following
previous works, the standard evaluation protocol [41] is
to report the recall at rank 𝐾 (Recall @ 𝐾 or R@𝐾) at
different ranks (5, 10). (iii) We calculate the Mean Re-
ciprocal Rank @ 𝐾 with temporal concern (MRR@𝐾 or
M@𝐾), which averages the reciprocal of the rank for the
first correctly predicted patent image within the top 10
rankings across all test samples.

Table 2
Evaluation results of an ablation study on various components
within the model architecture.

Head Classes Tail Classes All Classes

mAP R@10 mAP R@10 mAP R@10

Baseline 32.3 34.7 21.9 30.2 26.0 32.8
ℒcls and ℒcat 47.4 49.2 47.0 48.4 47.9 49.7
Text Generation 70.2 59.7 52.4 53.6 58.7 56.3
Captioner 78.0 65.3 61.6 53.5 69.1 58.6

4. Experiments

4.1. Implementation Details
In our experiments, we employed PyTorch [42] and uti-
lized clusters of NVIDIA A100 GPUs. For the VLM, we ex-
plored various ViT variants [31], ResNet50 [43], EfficientNetB-
0 [44], and SwinV2-B [45, 46] as backbones for the visual
encoder. The text encoder was adapted from the original
CLIP model [14], remaining fixed throughout the experi-
ments. For captioner, we leveraged open-source BLIP-2
[35] and GPT-4V [47]. Regarding LLMs, our focus was
on GPT-4 [47], though we also experimented with other
LLMs like GPT-3.5-Turbo [17] and LLaMA-2 [48].

For our experiments, we employed the DeepPatent2
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Figure 3: Qualitative Results of the Image-Based Patent Image Retrieval System. The leftmost image represents the query
image, annotated with its object name and classification as either a head or tail class. The middle section displays the retrieval
results from our method, where images framed in black indicate a match with the query image’s class, and those framed in red
indicate a mismatch. The right section shows the comparative results using the previous state-of-the-art method (SwinV2-B +
ArcFace).

dataset. Previous research has mainly adopted the origi-
nal DeepPatent dataset [5]; however, this dataset suffers
from a narrow collection span, lacks image-related meta-
data, and does not segment sub-images. These limitations
can introduce substantial noise in inter-image relation-
ships. Fortunately, the DeepPatent2 [1] dataset addresses
these issues effectively. To maintain comparability with
previous methods, we utilized DeepPatent2 data from
2016 to 2019, consisting of 822,792 records with 407 Lo-
carno classes. Of these, 90% were used for the training
set, and 10% for the validation set. For our query dataset,
we used 252,296 records from the year 2020.

Our baseline models are our replicating state-of-the-
arts on the same dataset to ensure comparability: these
include PatentNet [5], SwinV2-B+ArcFace [6], and Ef-
ficientNet+ArcFace [7]. Our primary experiments fo-
cused on a variety of visual encoder backbones, such as
ResNet50, EfficientNetB-0, ViT-B-32, and SwinV2-B. Due
to space constraints in this paper, detailed results from
experiments involving the captioner and LLMs will be
presented in the full manuscript. For preliminary insights,
we utilized GPT-4 for both the captioner and LLMs. In
our ablation study, we explore the effects of distribution
awareness losses (i.e., ℒcls and ℒcat), the text generation
component, and the captioner.

4.2. Experimental Results
Table 1 presents the quantitative results on the Deep-
Patent2 query set. Overall, our approach significantly
outperforms the state-of-the-art, achieving up to a 53%
improvement in the mAP metric, 38% in Recall @ 5, 41.8%
in Recall @ 10, and 51.9% in MRR @ 10. Notably, both
ViT-B-32 and SwinV2-B show comparable performance,
with each excelling under different metrics or scenar-
ios. For instance, ViT-B-32 performs better in tail classes,
while SwinV2-B shows strength in head classes, suggest-
ing an interaction between data distribution and model
architecture. With these results, we have achieved the
state-of-the-art in this task. Given the strong perfor-
mance across all classes with ViT as the backbone, we
will base our ablation study on this model to further in-
vestigate the impact of various model components on
performance.

Table 2 presents the evaluation results of an ablation
study on four components, starting with a baseline model,
which is a standard CLIP model. The subsequent rows
represent enhancements to this baseline. Firstly, by in-
corporating a distribution-aware contrastive loss, we ob-
serve significant performance gains in both head and tail
classes, with tail classes experiencing more substantial
improvements (approximately 20% in mAP and Recall
@ 10), and head classes seeing a 10% increase in these
metrics. Next, by incorporating text generation function-

56



Hao-Cheng Lo et al. CEUR Workshop Proceedings 51–60

Figure 4: t-SNE Visualization of Image Embeddings. This fig-
ure presents a two-dimensional t-SNE projection of randomly
sampled 2,000 image embeddings, with each axis representing
one dimension. Different colors and shapes in the plot indicate
distinct classes. The left subplot illustrates the results from
our model, while the right subplot displays the results using
the previous state-of-the-art, SwinV2-B+ArcFace.

ality, which is guided by the LLM, the model learns richer
semantic relationships between images. The addition of
this feature leads to a 10-20% improvement across vari-
ous metrics. Finally, by integrating a captioner module,
the key details of the design inventions in the images are
directly expressed by the captioner, further highlighting
the semantic focal points of the images and enhancing
the retrieval performance.

4.3. Qualitative Results
Qualitative results (see 3) indicate that our approach re-
trieves better results than the previous state-of-the-art,
evident in both head and tail classes. Focusing solely on
our model, it is apparent that it underperforms in tail
classes. Additionally, our system not only retrieves the
correct class given an image but also finds images that
are visually similar to the query image. Furthermore, we
delve into the errors made by the previous state-of-the-
art. For example, when presented with an image labeled
shoe, the previous model might retrieve a shoe image,
but it actually belongs to the category of shoelaces. This
reveals that the previous approach did not align seman-
tic information within the images, often leading to the
retrieval of visually similar but categorically different
images. Similar issues occur with categories like vehicles
& toy cars or flashlights & chargers, where the images
look alike but differ semantically. Our model mitigates
these errors by guiding the image’s embedding space
with linguistic information, which enhances semantic
alignment.

Based on the t-SNE results shown in 4, our method
yields more clustered embeddings, suggesting that the
model effectively captures the inherent structures or
classes within the data. Each cluster represents a group

of similar images, closely corresponding to predefined
classes, indicating that the model has learned meaningful
and discriminative features for each class. This cluster-
ing enables the model to effectively distinguish between
different classes.

Conversely, the previous approach results in a t-SNE
visualization with less clustered and more continuous em-
beddings, making it difficult to identify distinct clusters
or their correlation to predefined classes. This indicates
that the model’s learned representations are less discrim-
inative, potentially capturing more generalized features
shared across multiple classes. Although some clustering
is visible, it may not relate to actual classes but rather to
visually similar images, blurring the boundaries between
different classes.

5. User Study
To further ensure the practical value of our system, we
conducted a user study following rigorous psychological
procedures. As for participants, we recruited 15 patent
agents (48% female, average age: 33.4 years) to perform
tasks related to design patent image retrieval.

As for procedure, we employed a double-blind test,
where participants were unaware of the underlying re-
trieval system during their tasks. They could encounter
either our retrieval system or a system based on the pre-
vious approach. Each patent agent handled 30 retrieval
tasks, with these tasks randomly assigned to one of the
two systems—15 tasks with our system and 15 with the
previous approach. After each task, participants rated
their satisfaction with the retrieval results on a scale from
1 to 5 and recorded the time taken to complete the task
(in hours). To minimize randomness, we averaged the
scores across systems for each participant, resulting in
four scores per person (two systems × two scores).

The results of the paired t-test revealed significant dif-
ferences in satisfaction levels, with patent agents show-
ing a higher satisfaction with our system compared to the
previous approach, 𝑡(14) = 3.30, 𝑝 < 0.01. Regarding task
completion time, agents completed tasks faster using our
system, 𝑡(14) = -4.30, 𝑝 < 0.001. These results indicate
that our system is more efficient and better meets the
practical needs of professionals in the field.

6. Conclusion
Our method has achieved new state-of-the-art results
in the quantitative evaluation of mAP, Recall@𝐾 , and
MRR@𝐾 , as well as in high-quality image retrieval dur-
ing qualitative evaluation. For many years, current com-
mercial design patent retrieval systems have had signifi-
cant shortcomings. For example, traditional text-based
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searches can be limiting due to the subjective interpre-
tation of design features and the difficulty in describing
visual details with text. Although learning-based image
retrieval systems have started to emerge in the last two
years, their practical value remains limited.

To address these issues, our proposal can effectively
solve this problem. Firstly, we proposed a new learning-
based architecture capable of learning image features
with practical value. These representations not only con-
tain visual information but are also aligned with corre-
sponding (augmented) semantic text and classification
data. This has substantial practical value because spe-
cific graphic semantic features such as curvature, edges,
and geometric details are considered. Focusing solely
on the image itself might overlook these critical visual
elements. Secondly, we utilize a larger and more well-
defined dataset, which encompasses a broader collec-
tion span, image-related metadata, and segmented sub-
images. This makes the model more robust and enhances
its accuracy. Thirdly, addressing the long-tail distribu-
tion in classification, our study is the first to propose
distribution-aware losses, which have proven to be effec-
tive. Lastly, we conducted a user study to demonstrate
the practical value of our system in the field, showing
that it is more efficient, accurate, and time-saving.

In the future, we have several directions for further
expansion: (𝑖) Identifying similarities between this in-
vention and prior arts, which involves not only using
existing models for visualizations through explainable
AI [49] but also leveraging data from examiner’s reports
(Office Actions) to guide further explorations. (𝑖𝑖) While
our research currently focuses on prior art searches, fu-
ture work could also explore other temporal dimensions,
such as infringement searches. Additionally, image do-
main adaptation [50] could be used to enhance the ef-
fectiveness of searches across different domains, such as
retrieving E-commerce images using patent drawings.
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