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Abstract

Classifying patent documents into categories is an important step in many decision-making processes like competitor
monitoring, patent landscaping, and portfolio management. Performing the classification task manually is time-consuming,
so the amount of training data available to train machine learning models for classification is often limited. The lack of
training data is thus frequently the limiting factor in the performance of the classification model. In this work, we share
semi-supervised learning methods used to alleviate the issue of the lack of training data. We utilize pre-trained search-
optimized representations to automatically label additional training data by performing label propagation using nearest
neighbor searches in the vast space of patent documents and demonstrate that the classifiers’ performance improves compared

to using the smaller, original training data sets and to naive oversampling methods.
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1. Introduction

The classification of patent documents plays an impor-
tant role in strategic decision-making. Supervised ma-
chine learning models require labeled datasets for predict-
ing new input data, yet the manual labeling of patents
is labor-intensive and often leads to limited or imbal-
anced training data. This highlights a crucial difference
between academic datasets and real-world scenarios in
patent classification. In academic settings, researchers
typically work with well-curated datasets like CIFAR-10
and IMAGENET, focusing on optimizing models for these
datasets [1, 2]. In contrast, when working on real-world
patent classification, the data are not fixed. Users can
continuously add new patents to the dataset or remove
some, change labels, etc. Moreover, in some cases only
a few manually labeled data points are provided, while
unlabeled data may be abundant. In this work, we cover
this specific setting: the user might provide labels for
only a small set of documents, and the database could
have millions of structured, but unclassified patent docu-
ments. Therefore, to improve the classifier performance,
we are free not only to modify the customers’ datasets
but even to collect additional data.

Our previous work [3] showed that graph-based em-
beddings optimized for a search task contain rich enough
information to be directly applied to a classification task
with no additional fine-tuning steps. Only training a
lightweight classification model on top of the embed-
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dings is needed. As a logical continuation of the afore-
mentioned work, this paper presents an algorithm al-
ready used in our commercial product [4], that utilizes
knowledge about the embeddings’ structure in the vector
space to enlarge customer datasets using label propaga-
tion techniques and k-nearest neighbors algorithm.

2. Literature survey

In machine learning, we primarily discuss two key con-
cepts: supervised and unsupervised learning [5]. Super-
vised learning involves having examples with known
inputs and corresponding outputs. The goal is to build
a model that can predict outputs for new inputs accu-
rately. On the other hand, unsupervised learning deals
with datasets that contain only inputs. Unsupervised
learning models aim at uncovering patterns or clusters
within these inputs. Finally, semi-supervised learning
combines aspects of both supervised and unsupervised
learning. For instance, in classification tasks, we may
utilize data without labels to enhance the performance
of our model [6].

In the last twenty years, many different semi-
supervised classification methods have been proposed.
These methods vary in their conceptual approach to semi-
supervised learning, their use of unlabeled data, and their
integration with standard supervised algorithms. The
survey [6] suggests the following taxonomy to distin-
guish between them. At the basic level, there are two
types of methods: inductive and transductive. Firstly, they
have different goals: inductive methods aim at creating
a classification model, while transductive methods focus
only on label prediction for the unlabeled data points.
Inductive methods have clear train and test phases, while
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transductive algorithms are provided with labeled data
(Xr,yr) and unlabeled data X7, and output exclusively
predictions yy for the unlabeled data. Since the method
we analyze in this work is transductive, the literature
survey below focuses mainly on the latter.

The transductive methods typically define a graph over
all data points, both labeled and unlabeled, encoding the
pairwise similarity of data points with possibly weighted
edges [7]. Graph-based semi-supervised learning meth-
ods generally involve three separate steps: graph creation,
graph weighting (these two steps could also be described
as one graph construction phase), and inference [8, 9].

After the first two steps, we have a graph consisting
of a set of nodes corresponding to the data points, and a
weight matrix, containing the edge weights for all pairs
of nodes. Once the graph is constructed, it is used to
obtain predictions for the unlabeled data points.

Three common methods for graph creation include
e-neighbourhood, k-neighbourhood, and b-matching [6].
The e-neighbourhood method connects nodes within a
distance of e. The k-neighbourhood method links each
node to its closest k neighbors. The b-matching method
is a post-processing step used with k-neighbourhood to
ensure the graph’s regularity, checking that the nodes
have the same number of neighbors and a specified num-
ber of edges. Regarding the graph weighting step, in
many cases, graph weights reflect the similarity measure
employed for the edge construction, as in the case of the
method we are about to introduce.

Concerning the inference stage, the literature survey
[10] suggests that the graph-based methods predomi-
nantly can be viewed as estimating a function f on the
graph. One wants f to satisfy two conditions at the same
time: 1) it should be close to the given labels y, on the
labeled nodes, and 2) it should be smooth on the whole
graph. In other words, this can be explained as a loss
function and a regularizer. Examples of different loss
functions and regularizers used in graph methods are
described in [11, 12, 10].

A similar approach to our work was used in [11], who
experimented with graph construction using a k-nearest
neighbors algorithm and the e-neighbourhood (connect-
ing pairs of data points with distance smaller than e).
They kept the edge weights fixed and uniform but ex-
perimented with changing the weight of edges between
unlabeled data points relative to the other edges [6].

3. Methodology

Numerous manipulations can be conducted on datasets
to enhance metric performance, achieve greater result
stability, and facilitate improved model generalization.
In this work, our main focus is to investigate the usabil-
ity of search-optimized graph-based embeddings for the

18-24
Dataset Labels Full train size  Test size
Qubit [13] 1 985 421
Cannabinoid [14] 1 1,117 478
Mechanical eng. 10 3,295 1412
Chemical 5 887 380
Table 1

Statistics for the datasets used for training and evaluation. In
all datasets only one document per patent family is preserved
to avoid overrepresenting certain families.

datasets enlarging and fine-tuning and therefore better
classification metrics scores. We compare our suggested
semi-supervised method to up-sampling, wherein exist-
ing samples within the dataset are duplicated to address
class imbalance.

3.1. Datasets

Four datasets were chosen for this study, comprising two
binary datasets and two multi-label datasets. The binary
datasets consist of the well-established Qubit dataset [13]
and the Cannabinoid patent dataset [14]. The multi-label
datasets are proprietary and originate from distinct do-
mains: one from the mechanical engineering patent do-
main and the other from the chemistry field (refer to
Table 1 for specific dataset details).

3.2. Experiment setup

Each model is trained using a distinct training set ex-
tracted from the complete dataset. The models take doc-
ument embeddings as input and generate probabilities
for each label as output. For binary datasets, a single
classifier is trained. Conversely, for multi-label datasets,
a binary classifier is trained for each class using the one-
versus-all approach, resulting in a set of m individual
binary classifiers.

For the experiments on the subsets of data, the training
set was partitioned based on predetermined percentages
(i.e. we randomly sample p percent of data points with p
varying from 0.5 to 100). The criterion for a successful
sampling attempt is the presence of at least one positive
and one negative sample in each class of the dataset. We
would call this subset A of training data D with at least
one positive and one negative sample per class an original
subset, A C D.

Following this, to enlarge the training data subset A
and have higher test scores, we search for k additional
samples for every sample a € A, k € {3,5,7,10}. The
algorithm for creating an additional dataset and propagat-
ing labels to it is detailed in Section 4.3. Here we would
only mention that the additional samples are strictly not
from the same patent families as the sampled training
data and the test data. Therefore, in the final training



Ekaterina Kotliarova et al. CEUR Workshop Proceedings

18-24

dataset, where the additional and original training data
are merged, all samples belong to different patent fami-
lies.

To provide a comparison, we perform an up-sampling
procedure for the same original subset. We copy each
sample a € A k times, where k € {3,5,7,10}. Then
we merge copied samples with the original dataset A,
as we did with the semi-supervised additional samples.
The copied samples have the same labels and embedding
vectors as the original ones.

Hence, each model discussed in the corresponding
section (see Section 3.3) is trained using two training
datasets. One dataset involves up-sampling, where copies
of data points are included, while the other is a semi-
supervised dataset enriched with additional data. It’s
crucial to emphasize that for both datasets the original
samples a € A are the same and only the enlarged part
changes. Therefore the models’ training results obtained
from these two datasets can be directly compared to each
other.

When training on a subset, we repeat the random sam-
pling and training processes n times to reduce the amount
of noise caused by a poor train-validation split, where n
varies from 2 for the largest subsets to 10 for the smallest
subsets.

This methodological approach was designed to main-
tain a result comparability across iterations. By utilizing
the same test set and keeping the same training set for
different models, the obtained metrics are comparable.
Metrics from multiple sampling iterations for the same
percentage were then averaged.

Since the models’ outputs are probabilities, it’s cru-
cial to determine an optimal cut-off threshold that maxi-
mizes the F1 score. This threshold is determined through
a stratified 5-fold cross-validation. In both binary and
multi-label scenarios, only a single (global) threshold is
selected. In the multi-label case, we choose the threshold
that maximizes the micro-averaged F1 score across all
classifiers.

3.3. Choice of classification models

Building upon our previous work [3], we have decided
to continue using the same classification models for this
study. Our selection criteria emphasize minimizing train-
ing costs and ensuring the models can provide probability
estimates for sample classification. Specifically, we utilize
the basic logistic regression and k-nearest-neighbors clas-
sifiers with default parameters, implemented using the
scikit-learn library [15] among with XGBoost classifier
using library [16].
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3.4. Model evaluation

Evaluations for all subsets of data were done using a
separate holdout test set independent of the training data.
For demonstration purposes, we calculate the standard
F1 scores. In the context of the multi-label dataset, micro-
averaging is applied. To transform predicted probabilities
into binary predictions, we employ an optimal threshold
determined during the training phase.

4. Transductive semi-supervised
method for dataset enlarging

As highlighted in the literature survey, the proposed semi-
supervised method has a transductive nature, because it
has the following three stages: graph creation, graph
weighting, and inference.

In the first stage, we create embeddings for patents.
This involves parsing patent document text to construct a
patent document graph and then using a neural network to
embed this graph into a vector space. We then utilize the
embeddings for each patent document as the foundation
when creating the search space graph used to perform the
label propagation. It’s crucial to differentiate between the
concepts of the patent document graph and the search
space graph. The concept of the patent document graph
is specifically relevant in Section 4.1, as it pertains to
the embedding creation process. Conversely, the search
space graph is a recurring concept throughout the paper.

The second phase is the search space graph creation
and weighting using the nearest neighbors algorithm.
Finally, the third phase is the inference step, where we
find possible new members of the dataset and propagate
labels for them.

4.1. Graph-based representations
optimized for patent search

To incorporate the patent domain-specific information
into the embeddings used for classification, we utilize a
two-stage process:

1. The text of a patent document is parsed into a
patent document graph using a specialized parser.
The result is a collection of nodes and edges de-
scribing the invention found in the original text.

2. A graph neural network is used to embed the
graph into a vector space, where the network is
trained to perform prior art searches in the patent
domain.

The graph of a patent document contains all relevant
features of the invention described in the original text,
and also the relationships between them. An example of



Ekaterina Kotliarova et al. CEUR Workshop Proceedings

18-24

1. A snowthrower, comprising:
a motor;
an auger driven by the motor to rotate;
a handle device for a user to operate;
an auger housing for containing the auger; and
a frame for connecting the handle device and the auger housing;

wherein the auger housing is made of at least two different materials.

—

snowthrower
motor
handle device
handle device for a user to operate
auger housing
auger
auger driven by motor to rotate
at least two different materials
frame

frame for connecting handle device and auger housing

Figure 1: A patent claim describing a snowthrower and the graph conversion of that claim. The classification is performed on
the vector created from this graph by a graph neural network model.

a patent claim converted to a graph can be seen in Figure
1.

The specialized parser works as follows: First, a lin-
guistic analysis of the text is done using the spacCy [17]
library, and uses this information to detect all nouns and
noun chunks in the text. The detected nouns and noun
chunks are the features of the invention, and they become
nodes in the graph. In Figure 1, examples of nouns and
noun chunks turned into nodes are snowthrower, motor,
and handle device.

After the features have been detected, the parser ex-
tracts relationships between the features utilizing the out-
put of the linguistic analysis combined with hand-crafted
rules that recognize common phrases used in patent texts.
The outcome of this process is a set of edges connecting
the pairs of feature nodes. For instance, in Figure 1, the
parser will recognize the term comprising, and it will,
among others, result in an edge between snowthrower
and motor.

Due to the removal of duplication and some legal jar-
gon, the graphs are smaller than the original texts and
thus faster to process, while also allowing downstream
models to learn faster since the relationships between fea-
tures are explicitly encoded. More details on the patent
document graphs and how they are created can be found
in [18].

The graph neural network is then given the parsed
graphs as input and trained to perform patent searching
in a supervised manner by using patent office examiner
citations. The result is a model that embeds documents
with similar technical content near each other in the
embedding space, regardless of the exact words used.
Further information on the training of the graph neural
network is found in [18].

The embeddings created by the graph neural network
can then be used for patent classification purposes by
training a lightweight classification model on top of the
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embeddings [3].

4.2. Search space graph creation for label
propagation

To create the search space graph to use for the label
propagation, we perform for each existing sample in the
training data set a nearest neighbor search in the embed-
ding space of patent documents, where the embeddings
are created using the method described in section 4.1.
The total size of the search space is over 100 million doc-
uments, reflecting the large number of available patent
documents. The nearest neighbor searches are done us-
ing the Annoy library [19].

When creating the graph we exclude from the nearest
neighbor search results any documents that are already
a part of the dataset, to guarantee that the label propaga-
tion results in completely new documents being used for
the training.

4.3. Inference stage

We are given a set L of labeled samples, and a set U of
unlabeled samples. Since in our case, the search space
graph G has millions of patents, U is exceedingly large.
After the construction of the graph G = (V, E), weights
are assigned to the edges between all vertices (i.e. patent
documents’ embeddings) based on a cosine distance be-
tween them. To enlarge the set L and propagate labels
for the subset of the set U, we perform the next steps:

1. For a sample ! € L we find k neighbors among
u € U, using the Annoy library [19]. Let’s mark
these neighbors as V_. Any found neighborv_ €
V_ shouldn’t belong to the same patent family as
any ! € L sample. If the neighbor v_ shares the
same patent family as the sample [, then we skip
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Qubit Dataset
XGBoost Logistic Regression
Semi-supervised Up-sampling Semi-supervised Up-sampling
% Nirain k=5 k=10 k=5 k=10 Baseline k=5 k=10 k=5 k=10 Baseline
0.5 4 0.47 0.45 0.41 0.41 0.26 0.68 0.54 0.33 0.31 0.37
1 9 0.56 0.53 0.46 0.46 0.44 0.64 0.6 0.46 0.43 0.54
3 29 0.7 0.73 0.49 0.51 0.55 0.81 0.8 0.75 0.73 0.79
5 49 0.78 0.78 0.56 0.6 0.71 0.84 0.83 0.83 0.81 0.83
10 98 0.81 0.82 0.68 0.69 0.75 0.85 0.87 0.86 0.85 0.86
15 147 0.81 0.82 0.68 0.69 0.78 0.85 0.85 0.85 0.85 0.86
20 197 0.85 0.85 0.73 0.75 0.81 0.87 0.87 0.86 0.86 0.85
25 246 0.83 0.85 0.72 0.73 0.80 0.87 0.88 0.88 0.87 0.87
30 295 0.84 0.86 0.75 0.76 0.85 0.87 0.87 0.88 0.87 0.87
Table 2

F1-scores computed for the Qubit dataset [13]. % symbol means the percentage of the training dataset utilized during the
training, while Nirain represents the count of the original samples (i.e. without additional data of any kind) used for the training.
"Semi-supervised" refers to the approach we propose, whereas "up-sampling" denotes a technique wherein existing samples
within the dataset are duplicated. The variable & signifies the number of neighbors added for each original sample (or the
number of made sample copies if the "up-sampling” method was used). "Baseline" refers to the F1-score computed using only

the original data (k = 0).

it and move to the next, more distant neighbor.
Therefore, we always find k-neighbors for sample
[, but they might be not the closest ones.

2. We assign the same labels as the sample [ has
to all v— € V_. Consequently, each neighbor
v_ € V_ becomes vy € V.

3. Since all vy € V4 samples have labels now, we
merge them into the L set.

4. We repeat this procedure for all samples ! € L.

The motivation for this algorithm is that if edges be-
tween samples that are similar to each other are given a
high weight, then it’s probable that they share the same
labels since this conforms with the basic assumption of
many learning algorithms that similar examples should
be classified similarly.

5. Results and discussions

Results are presented in Figure 2 and Table 2. The semi-
supervised method showed improvements in metrics for
XGBoost and logistic regression classifiers when using
small subsets of training data (p < 25%). However,
for larger subsets, enlarging the dataset did not lead
to further improvement in the metrics. This observa-
tion was expected, especially for the binary datasets, as
lightweight models like logistic regression typically do
not require many samples per class to achieve an F1-score
plateau.

For future work, it would be beneficial to have an un-
derstanding of why the k-nearest neighbors classification
algorithm’s metrics are barely affected by additional data.

Moreover, exploring the influence of varying the pa-
rameter k in the k-nearest neighbors search algorithm

and its impact on the F1-score is worthwhile. Our ex-
periments involved training models with additional data
where parameter k varies in {3, 5,7, 10} set. Although
the semi-supervised method generally yielded the best
results for £ = 10, the differences in metrics across dif-
ferent k parameters were relatively modest. Notably,
we observed a noticeable increase in time consumption
and memory usage with higher k values, indicating a
trade-off between the model performance and resource
utilization.

There is also a potential to modify the algorithm to fix
the class imbalance more effectively rather than simply
appending as much data as possible.

6. Conclusions

In conclusion, our study highlights the effectiveness of
graph embeddings optimized for a search task in the con-
text of semi-supervised learning. Our evaluation focused
on two binary and two multi-label datasets from different
patent domains. The methods used in the work are also
utilized in our commercial product. The results show
that our semi-supervised approach for dataset enlarge-
ment outperforms the naive up-sampling method. We
observed improvements in metrics for XGBoost and lo-
gistic regression classifiers when using small subsets of
training data, indicating the potential of our method for
handling limited data scenarios.

Overall, our work contributes to advancing semi-
supervised learning algorithms and their applicability
in real-world scenarios with limited labeled data.
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Multi-label chemical dataset
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Figure 2: Evaluations from two multi-label and two binary datasets, where the X-axis denotes the percentage of the training
dataset utilized during training, and the Y-axis reflects the F1-score calculated for the test set. Information about datasets can
be found in Table 1. As observed from the results, among theghree models utilized, the suggested semi-supervised method
consistently outperformed up-sampling when applied to the XGBoost classifier, exhibiting score differences of up to 0.15 points
for corresponding percentages. The semi-supervised method demonstrated efficiency for p € {0.5,1, 3,5, 10, 15, 20, 25, 30}
in the context of logistic regression. However, when considering various datasets on average, up-sampling did not perform
much worse (see Table 2 for the specific numerical values). The efficiency of both methods for the k-neighbors classifier was
noticeable only for the lowest percentages p € {0.5, 1, 3, 5}, while for higher percentages, they either maintained the F1-score
at baseline levels or even yielded worse results.
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