
ClaimCompare: A Data Pipeline for Evaluation of Novelty
Destroying Patent Pairs
Arav Parikh, Shiri Dori-Hacohen

University of Connecticut, School of Computing, Reducing Information Ecosystem Threats (RIET) Lab

Abstract
A fundamental step in the patent application process is the determination of whether there exist prior patents that are novelty
destroying. This step is routinely performed by both applicants and examiners, in order to assess the novelty of proposed
inventions among the millions of applications filed annually. However, conducting this search is time and labor-intensive,
as searchers must navigate complex legal and technical jargon while covering a large amount of legal claims. Automated
approaches using information retrieval and machine learning approaches to detect novelty destroying patents present a
promising avenue to streamline this process, yet research focusing on this space remains limited. In this paper, we introduce
a novel data pipeline, ClaimCompare, designed to generate labeled patent claim datasets suitable for training IR and ML
models to address this challenge of novelty destruction assessment. To the best of our knowledge, ClaimCompare is the first
pipeline that can generate multiple novelty destroying patent datasets. To illustrate the practical relevance of this pipeline,
we utilize it to construct a sample dataset comprising of over 27K patents in the electrochemical domain: 1,045 base patents
from USPTO, each associated with 25 related patents labeled according to their novelty destruction towards the base patent.
Subsequently, we conduct preliminary experiments showcasing the efficacy of this dataset in fine-tuning transformer models
to identify novelty destroying patents, demonstrating 29.2% and 32.7% absolute improvement in MRR and P@1, respectively.
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1. Introduction
Patent search is a rich and challenging space which com-
prises a diverse set of tasks, including Freedom to Op-
erate (FTO) searches, novelty or patentability searches,
and validity searches. Within this spectrum, patentability
searches hold particular significance as they help gauge
whether an invention’s claims (i.e. structural features)
are novel and non-obvious, and are therefore a critical
part of the patent examination process. This assessment
typically involves patent examiners, as well as inven-
tors or their legal representatives, meticulously combing
through prior art databases to uncover any existing dis-
closures that could potentially anticipate the invention
and, consequently, undermine its novelty. In the United
States, in particular, prior art is deemed “novelty destroy-
ing” if it anticipates or references every element of at
least one of a proposed invention’s claims.

Traditionally, prior art searches have been performed
manually, with searchers iteratively crafting and revising
complex keyword and Boolean queries to obtain the most
relevant documents. However, with the number of patent
applications and volume of prior art growing annually,
the labor-intensive nature of this process has become
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increasingly unsustainable, driving a growing interest in
the usage of information retrieval (IR), machine learning
(ML), and deep learning (DL) approaches to streamline
search methodologies and optimize result relevance, for
example, via query expansion and targeted semantic sim-
ilarity techniques [1, 2, 3]. These advances build on prior
work in the patent space pertaining to automated patent
landscaping and other automation tasks related to patent
code classification and categorization [4, 5, 6, 7]. Far less
work has focused on finding novelty destroying prior
art; in fact, to date, there is only one other public dataset
dedicated to this task [8], and none on US Patent data.
Contributions and Scope. In this paper, we intro-

duce ClaimCompare, a novel data pipeline for generat-
ing patent claim datasets, labeled with respect to the
novelty destruction search problem, in order to facili-
tate improved performance in this space. To the best of
our knowledge, ClaimCompare is the first pipeline that
can generate multiple novelty destroying patent datasets.
We leverage publicly available United States Patent and
Trademark Office (USPTO) APIs in order to curate such
datasets, alongside web-scraping Google Patents. To sim-
plify the problem, we focus only on identifying novelty
destroying patents, rather than all potential literature
contributing to novelty destruction. Our contributions
are as follows:

• We construct ClaimCompare, a pipeline utilizing the
USPTO API and Google Patents to generate curated
novelty destroying datasets.

• We utilize ClaimCompare to curate a sample dataset
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Dataset Size Data Source Positive Samples Negative Samples Matching Strategy Balanced?
PatentMatch v2 25K EPO Search report “X" citations Search report “A" citations Specific excerpts/lines Yes
CC Sample 27K USPTO Office action 102 rejections Similar keyword patents Entire claim sets No

Table 1
PatentMatch vs. a sample ClaimCompare (CC) dataset. Note that the ClaimCompare pipeline can be used as-is in order to
generate many other datasets, including significantly larger ones.

of 27K patents in a specialized domain, comprising of
1,045 base patents and 25 related patents for each. Of
the base patents, 357 (34%) have one or more identified
novelty destroying patent(s).

• To assess the effectiveness of ClaimCompare and the
sample dataset, we perform experiments utilizing
LLMs fine-tuned on our dataset to assist with novelty
determination. Our experiments demonstrate 29.2%
and 32.7% absolute improvement in MRR and P@1,
respectively, over a baseline model.

We envision ClaimCompare being used to generate
both generic and domain-specific training datasets at
scale, focused specifically on the task of novelty determi-
nation. These datasets can subsequently be used to train
and test a variety of IR, AI/ML, and/or DL models for this
task. We release all our pipeline code and data1.

2. Prior Work
Despite a very rich literature on patent search overall [9],
there is little work on the important, highly-specialized
task of detecting novelty destroying patents.

The now discontinued CLEF-IP tracks in 2012 and 2013
present useful datasets related to patentability searching.
The 2012 edition released a claims to passage dataset con-
taining 2.3 million European patent documents with 2,700
corresponding relevance judgements [10]. The shared
task is to create the most effective passage retrieval sys-
tem given a particular topic. However, the task focused
on claim sets, rather than single claims, and considers “X”
(novelty destroying) and “Y” (inventiveness destroying)
passages as equally relevant, merging the two problems
rather than isolating novelty destruction.

A key paper on the task of novelty evaluation is Patent-
Match [8], which offers the first dataset directly address-
ing novelty destruction in patents by leveraging Euro-
pean Patent Office (EPO) search reports. The dataset is
composed of pairs, each containing an individual patent
application claim paired with a passage from either an “X"
citation or an “A" (background) citation. Unfortunately,
as the authors note, fine-tuning a BERT model on the
dataset produces relatively poor results with an accuracy
of 54% in the best case. A follow-up empirical study uti-
lizing the dataset also found fine-tuned BERT and SBERT
1https://github.com/RIET-lab/claim-compare

models to perform poorly with accuracies of 54% and 57%
respectively [11]. In examining the PatentMatch dataset
further, we see that many of the excerpts are quite short
in length, lacking the context of the broader patent, which
helps explain why context-dependent transformer mod-
els like BERT struggle to effectively capture the nuanced
semantic relationships defining novelty destruction be-
tween patents. In light of this observation, we opt against
incorporating the specific excerpts into our dataset, fa-
voring instead the inclusion of broader claim sets which
concisely encapsulate the essential elements that define
the novelty of an invention, or lack thereof, while still
providing sufficient context.

To the best of our knowledge, our paper is the first to
approach novelty destruction from a US-centric approach,
and offers the first public dataset for this task as well as
a pipeline to easily generate additional datasets1.

3. Methodology
We now introduce the ClaimCompare data pipeline (Fig-
ure 1) which generates domain-centric and agnostic
datasets in order to train DL models to assess patent
novelty. For the remainder of the paper, we focus on
describing our pipeline, sharing information about the
sample dataset, and demonstrating its effectiveness for
this task via preliminary experiments involving large lan-
guage models (LLMs) fine-tuned on this sample dataset.

3.1. Approach
To ground the use of our ClaimCompare pipeline in the
context of novelty determination specifically, we define
the novelty destruction search problem as a sub-problem
of the prior art retrieval process. Accordingly, ClaimCom-
pare operates under the assumption that a preliminary
set of prior art patents of size 𝑘 has already been retrieved
by the searcher for a given query (i.e., base patent 𝑞), us-
ing preexisting methods. While the models trained with
ClaimCompare’s datasets can certainly be used to im-
prove direct retrieval of only novelty destroying patents
(i.e., when 𝑘 is made sufficiently large), in this paper we
focus on applying these models as a filter on top of a
smaller subset of retrieved patents.

To develop ClaimCompare, we primarily rely on two
publicly available USPTO APIs to access the patent data
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Figure 1: The ClaimCompare Pipeline. ClaimCompare can accept any initial seed queries and generate a novelty destroying
dataset for that query set. For each base patent, the pipeline finds 𝑘 novelty destroying and related, non-novelty destroying
patents. The pipeline utilizes two types of API calls to the USPTO (Bulk Data and Office Action APIs) and scrapes data from
Google Patents to account for patent number changes.

necessary to teach subsequently trained models to se-
mantically differentiate between novelty destruction and
mere relevance. Relevant patents constitute “negative"
samples in our dataset and are queried for with keywords
extracted from the base patents, mimicking a common
prior art search practice. In contrast, novelty destroy-
ing “positive" samples are generated by obtaining USPTO
office actions with rejections citing novelty destroying
prior art patents. For our positive samples, we only con-
sider office actions that contain a 102 rejection, indicating
that the citation is considered to be novelty destroying
for the corresponding application by skilled patent ex-
aminers. Our focus on 102 rejections is deliberate, as
they only reference elements from a single document as
sufficient to destroy the novelty of a patent application,
whereas the more nuanced and complex 103 rejections
often refer to elements from multiple patents and/or com-
mon technical knowledge coming together to invalidate
the novelty of the proposed patent.

3.2. Implementation Details
ClaimCompare’s pipeline starts with a set of seed queries,
which are sent to the USPTO Bulk Data API2. In the
context of the provided sample dataset, we use the phrase
“redox flow battery" as a query to retrieve inventions in
the electrochemical device space; naturally, this can be
replaced with keywords/phrases in any given domain.

For each retrieved patent application, we collect the
application and publication numbers, abstract, and claims
in order to form our set of base patents; we then set
out to acquire their cited novelty destroying patent(s),

2https://developer.uspto.gov/api-catalog/bulk-search-and-
download

if applicable, and other related patents. For the cited
patents, we query the USPTO Office Action Citation API3

using the base patents’ application numbers. If an office
action is found with a 102 rejection, we take the rejection
text and pass it to a text2text generation base T5 model
along with a standardized prompt in order to extract the
publication number of the novelty destroying patent cited
within the text. The T5 performs the task efficiently with
a 94% success rate, which is sufficiently high for our needs.
We then perform a simple cleanup on the publication
number and use it to query for its claims via Google
Patents4, which can web redirect to the most up-to-date
version of the patent if the number is outdated, unlike
the APIs. To acquire our negative samples, we extract
keywords and phrases from the base patent abstract. We
apply the KeyBERT model to get the top 5 keywords
from the abstract [12], with which we query the USPTO
Bulk Data API for the number of relevant patents it takes
to meet the limit 𝑘 per base patent depending on the
number of positive samples previously acquired. We
omit smaller details of the related patent query process
for space considerations; we refer interested readers to
our codebase.

3.3. Dataset Structure
Of the 1,045 rows in our raw sample dataset, 357 (34%) of
them contain at least one positive sample. Of these 357
rows, 36 (10%) have two positive samples; there are no
rows with three or more novelty destroying patents in our
dataset. To ensure that the number of samples per row

3https://developer.uspto.gov/api-catalog/uspto-office-action-
citations-api-beta

4https://patents.google.com
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is always 𝑘, we set 𝐶𝑙𝑎𝑖𝑚𝑠_25 and/or 𝐶𝑙𝑎𝑖𝑚𝑠_24 and
their corresponding publication numbers as null values,
depending on the number of novelty destroying patents
present. If none are found for a given base patent, then
the rejection columns are set as null instead.

Clearly, given the structure of our dataset, there is an
inherent lack of balance between the two classes. We de-
liberately maintain this imbalance for two main reasons.
Firstly, it reflects the current state of prior art searching
where there are far more relevant samples than novelty
destroying samples for any given patent. While imbal-
anced datasets typically pose challenges for training ML
or DL models, we are intrigued to explore how this real-
istic representation of class distribution influences model
performance in our experimentation. Secondly, although
we do not directly train a ranking model in our experi-
mentation, we indirectly test the ability of our model to
rank prior art patents based on their likelihood of invali-
dating the novelty of a given base patent, a task which
necessitates a larger value for 𝑘 and, consequently, an
imbalanced dataset.

4. Experimental Setup and Results
In order to assess the effectiveness of our dataset in train-
ing LLMs to assist with novelty determination, we test
whether fine-tuning these models outperforms a baseline
pre-trained BERT-based transformer model.

4.1. Training Data
To prepare our raw sample dataset for model training,
we drop all non-claim columns and convert the row-wise
format of the dataset into a pairwise format such that
each base patent is individually matched with each of
its relevant or novelty destroying patents to form the
training examples. In other words, instead of having
rows where a base patent is matched with 25 related
patents, there are now 25 rows enumerating each of these
matches. The base patents are found in the 𝐶𝑙𝑎𝑖𝑚𝑠_𝑥
column while their related matches are each found in the
𝐶𝑙𝑎𝑖𝑚𝑠_𝑦 column. If the pair is novelty destroying, the
𝐿𝑎𝑏𝑒𝑙 column contains a 1 to denote the positive match;
otherwise, it contains a 0.

We use an 80-10-10 stratified train-val-test split, with
each of the splits possessing roughly the same propor-
tion of positive samples. To avoid data leakage, the base
patents are restricted to one of the splits such that all 25
pairs can be found in that split. To mitigate the effects of
sampling bias, we randomly subsample the raw dataset
twice more to generate a total of three unique train-val-
test splits for our model. The results we present are all
averaged across these three runs.

Model AUROC AP MRR P@1
General Baseline 0.473 0.350 0.697 0.651
Domain Baseline 0.589 0.464 0.703 0.651
Fine-Tuned (𝑘 = 25) 0.999 0.999 0.989 0.978
Fine-Tuned (𝑘 = 10) 0.999 0.998 0.987 0.975
Fine-Tuned (𝑘 = 5) 0.982 0.975 0.967 0.934

Table 2
Model testing results. General baseline and fine-tuned models
rely on DistilRoBERTa. Domain baseline relies on BERT for
Patents.

We also intentionally downsample the negative sam-
ples in our training dataset, to observe the effect this has
on both the validation and testing metrics. We perform
this downsampling by simply reducing 𝑘 = 25 to 𝑘 = 10
and 𝑘 = 5 on our three shuffled train-val-test splits, re-
taining all positive sample while randomly sampling the
required number of negatives examples from the larger
set for each base patent.

4.2. Model Fine-Tuning
For our experiments, we fine-tune a sequence classifica-
tion model with our sample dataset. We primarily use the
base DistilRoBERTa model 5 due to its compact size and
robust performance on related tasks [13]. We also use the
BERT for Patents model 6 as a stronger, domain-specific
baseline but unfortunately lack the computational re-
sources to fine-tune such a large model. As a result,
we choose to fine-tune the DistilRoBERTa model “from
scratch," presenting an intriguing opportunity to assess
the ability of this model to adapt to both the broader
patent domain and our specific novelty determination
use case. We train the model for 3 epochs with a cross
entropy loss function, training and validation batch size
of 16, learning rate of 0.00002, and weight decay of 0.01.

4.3. Model Evaluation and Discussion
Once the model has been trained, we assess its perfor-
mance on our testing dataset. However, rather than solely
test its ability to perform pairwise classifications, we
take each set of 25 test patents and combine the model’s
pairwise predictions for each of the patents in the set
using a simple logical OR as an ensemble, such that if
any patent in the set is deemed to be novelty destroy-
ing, the base patent is found not novel. To quantify the
model’s performance on this task, we compute classifica-
tion metrics suitable for our imbalanced dataset such as
average precision (AP) and area under the receiver oper-
ating characteristic curve (AUROC). Since these metrics

5https://huggingface.co/distilbert/distilroberta-base
6https://huggingface.co/anferico/bert-for-patents
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require prediction scores as opposed to labels to com-
pute, we take the maximum novelty destruction score
(i.e., pairwise probability of the positive class) out of all
the patents as the representative score for the set.

Additionally, we also evaluate the model in the con-
text of ranking, using their novelty destruction scores
for rank ordering the test patents in each set of 25. We
use ranking metrics such as MRR and Precision@1 to as-
sess the performance. The unique nature of the novelty
destruction task means there are often no members of
the positive class in a given set; we therefore introduce a
placeholder patent, assigned a score of 0.9, in order to ac-
curately compute these metrics. The placeholder patent
is inserted into the set prior to ranking, in order to denote
a patent which the model regards as reasonably novelty
destroying. To facilitate accurate comparisons across the
board on the testing set, we introduce the placeholder
patent to all of the patent sets, such that if a novelty de-
stroying patent is actually present, it is ideally ranked
first, above the placeholder patent. Alternatively, when
no novelty destroying patent is present, the placeholder
patent is ideally ranked #1.

Examining the impact of fine-tuning with our dataset
on model performances (Table 2), we see significant im-
provement over both baselines. As expected, the models
perform quite poorly in the baseline, zero-shot setting, es-
pecially in terms of classification, with BERT for Patents
exhibiting only a slight improvement over DistilRoBERTa.
The near-perfect classification and ranking performance
metrics we see after fine-tuning, however, are quite sur-
prising. The high AUROC and AP, in particular, indicate
that the model is able to differentiate between the positive
and negative samples with a high degree of confidence.
The 𝑘 = 25 model is the top performer, but with little
distinguishing it from the 𝑘 = 10 model. This is intrigu-
ing as the model appears to be performing better in spite
of the greater imbalance, perhaps simply due to the pres-
ence of more data allowing the model to better learn the
relationships defining novelty destruction.

4.4. Limitations and Future Work
These results, though incredibly promising, point to some
limitations due to the large gap between the baseline
and fine-tuned models, and exceptionally high testing
scores. While we can confidently say that the fine-tuned
models are more suited for the novelty evaluation task
than the base models, further comparisons are needed to
baseline models pre-trained on general legal data, which
would likely provide a stronger baseline; however, due to
computational resource limitations at submission time,
we leave this to future work.

We note that our models do not appear to be overfitting,
given that the loss trends during training are nominal,
and these models are generalizing well to the unseen data

of both the validation and testing sets. Manual examina-
tion of a significant portion of the dataset shows no sign
of data leakage, and the training appears to be sound as
well. Thus, we hypothesize that the high absolute results
are the consequence of the negative samples selected
via keyword search being far too “easy” to differentiate
from the positive, novelty destroying samples. Whether
this issue stems from the keyword extraction process
itself, the fact that more powerful Boolean queries are
needed to obtain the most relevant results, or perhaps
even another unseen factor, requires further experimen-
tation. We leave an in-depth exploration of how to lever-
age unique inter-patent relationships to build upon our
pipeline to future work; likewise with the task of find-
ing more semantically similar non-novelty destroying
patents (i.e., harder negatives) to match with the applica-
tion to improve robustness at the classification boundary.
We note that the USPTO has a new Citation API that can
potentially be of use for these goals.

We also invite future work to employ ClaimCompare
in order to generate additional datasets, inclusive of ad-
ditional technical fields, for example, by creating queries
that utilize Cooperative Patent Classification (CPC) codes
instead of keywords. With these datasets, future work
can train state-of-the-art models, such as generative
LLMs, to improve performance even further.

5. Conclusion
In this paper, we introduce a novel pipeline, ClaimCom-
pare, to generate datasets geared towards patent novelty
evaluation; offer a sample dataset generated using Claim-
Compare; and assess its utility in fine-tuning a novelty
destroying classifier. We leverage USPTO APIs to obtain
our novelty and non-novelty destroying data. To the best
of our knowledge, this is the first usage of USPTO office
actions and patent claims as a source of data, providing
high quality datasets while being fairly straightforward,
flexible, and easy to replicate.

We believe ClaimCompare holds potential to acceler-
ate research in the patent retrieval field, in conjunction
with the use of LLMs and other cutting-edge DL mod-
els. Improving novelty determination holds the promise
of reducing the time and monetary burden required for
patent search and patentability determinations, while
also increasing accuracy, thereby saving searchers’ time
and making patent databases more accessible for all. In
this sense, we hope that our pipeline can facilitate the
democratization of what has been a historically complex
process, and enable inventors, attorneys, and patent ex-
aminers alike to assess patent novelty with greater ease.
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