
Logic Mill - A Knowledge Navigation System
Sebastian Erhardt1,*, Mainak Ghosh1, Erik Buunk1, Michael E. Rose1 and Dietmar Harhoff1

1Max Planck Institute for Innovation and Competition, Marstallplatz 1, Munich, Bavaria, 80539, Germany

Abstract
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either
one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to
generate numerical representations of documents. It leverages a large pre-trained language model to generate these document
representations. The system focuses on scientific publications and patent documents and contains more than 200 million
documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is
continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose
tool for future research applications in the social sciences and other domains.

Keywords
Semantic Similarity, Vector Search, Patents, Publications, Document Encoder

1. Introduction
There is a growing need for tools that allow researchers
to identify related documents within the same but also
across different domains. With the ever-growing vol-
ume of scientific publications and patents, scholars find
it burdensome to manage relevant documents and search
for important prior contributions efficiently. Finding
relevant documents plays a significant role in building
coherent scientific arguments but is also important in
assessing the use of scientific research outside academia
[1, 2]. Patent examination is another field in which find-
ing related documents and identifying prior art is essen-
tial.

In ex post analyses, researchers often rely on citation
data to identify relations between documents. While ci-
tations are helpful in tracing citation networks and in
uncovering important patterns in the production and dif-
fusion of knowledge within the same corpus, they are
typically limited when searching for relations across dif-
ferent corpora. Even within the same corpus, citations
can be selective or even systematically biased (see [3, 4]).
Finally, references may not exist for texts that are in the
process of being created, so authors are faced with the
challenge of identifying relevant references in the first
place. Therefore, tools are needed that allow for process-
ing and analyzing the textual contents of high-volume
text corpora and establishing measures of relatedness
(similarity) between them.

We refer to the system described here as a knowledge

5th Workshop on Patent Text Mining and Semantic Technologies
(PatentSemTech) 2024
*Corresponding author.
$ sebastian.erhardt@ip.mpg.de (S. Erhardt);
mainak.ghosh@ip.mpg.de (M. Ghosh); erik.buunk@ip.mpg.de
(E. Buunk); michael.rose@ip.mpg.de (M. E. Rose);
dietmar.harhoff@ip.mpg.de (D. Harhoff)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

navigation system, since it facilitates the tracing of knowl-
edge elements within and across text corpora (e.g., the
corpus of all patents or all scientific publications). Previ-
ous attempts include [5] for scientific publications and
[6] for patent documents, both of which make use of bag-
of-words approaches. While such systems are sometimes
referred to as recommender systems [7], recommenda-
tion of related documents is only one possible application
of knowledge navigation (see below for a non-exhaustive
list of use cases). However, these systems often use pro-
prietary algorithms, usually focus on one domain cor-
pus, are not openly accessible, or are not continuously
being updated. A knowledge navigation system of the
kind envisioned here should be capable of efficiently re-
trieving, storing, and processing hundreds of millions
of documents. Moreover, it requires capabilities for fast
detection of particularly similar documents within and
across corpora.

An important problem that needs to be addressed is
how to implement the concept of document similarity.
This requires representing documents in a numerical
form that computers can process, with the goal of gen-
erating similar representations for similar documents at
a large scale. In the field of natural language processing
(NLP), this process is known as document encoding.

There are various methods for representing documents
numerically. Traditional NLP approaches like TF-IDF [8]
are used widely in the literature. However, these tradi-
tional methods are not scalable, since an extension of
the vocabulary requires a re-computation of all represen-
tations of the corpus. In addition, these approaches do
not capture the semantics of the documents; that is, the
meaning of words or the interpretation of sentences in
context is lost.

Therefore, we propose Logic Mill, a software system
aiming to satisfy the shortcomings of existing systems
and approaches. The system creates document repre-

25

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sebastian.erhardt@ip.mpg.de
mailto:mainak.ghosh@ip.mpg.de
mailto:erik.buunk@ip.mpg.de
mailto:michael.rose@ip.mpg.de
mailto:dietmar.harhoff@ip.mpg.de
https://creativecommons.org/licenses/by/4.0

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

sentations using modern NLP techniques and contains
large document sets with pre-calculated encodings. It is
easy to use and allows users to access and compare texts
from different text corpora. Furthermore, it is scalable
and built on non-proprietary algorithms. We regularly
update the datasets based on their release schedule. Our
objective is to provide a fast system of high accuracy that
is openly accessible.

In the current version, the system encodes text doc-
uments using the Pat SPECTER document encoder [9],
which leverages the bi-directional transformer architec-
ture (BERT) [10]. This model, in combination with the
database containing numerical representations of doc-
uments from different corpora (analogous to a vector
search database), is the backbone for the Logic Mill sys-
tem.

At present, we provide the numerical representations
for the scientific articles of OpenAlex [11] and for the
patent publications provided in DocDB database, main-
tained by the European Patent Office. To be precise, we
use the titles and abstracts of these, since BERT-based
models can process only 512 tokens at a time.

An important feature is that users can also feed their
own text data to Logic Mill for encoding and obtaining
similarity measures, within their data and between their
data and the system-provided documents. They can thus
link their own curated documents to patents and scien-
tific publications according to textual similarity.

Logic Mill can be used in a number of different research
applications, such as:

• Explore literature: Search for research papers,
and find the best matches based on textual sim-
ilarity to a paper in the database or to own text
documents.

• Prior art search in patent examination: Look for
previously granted patents or (not yet granted)
patent applications that are similar to the focal
one.

• Link patents to related scientific publications:
Search for patents that the scientific publication
might be based on or have a strong similarity to.

• Recommend citations and readings for new docu-
ments: Find documents that are very similar to
a focal one and may be useful as a reference or
reading.

• Assess the novelty of patents and publications:
Check if a patent or publication is new or not
by comparing it to prior texts. Documents that
have few highly similar documents may be new
or even unique.

• Trace concepts across domains and over time:
Identify documents across domains (e.g. publi-
cations and patents) that are highly similar and
possibly related.

2. Document Encoding
Document encoding in natural language processing
(NLP) is a process for representing textual data in a nu-
merical form. There are various approaches to encoding
documents.

Bag of words Simple and fast procedures construct
a vector whose binary elements indicate the presence
of a word in a document ("binary term encoding"), the
number of occurrences of a word in a document ("count
matrix") or the weighted number of occurrences of a word
in a document ("Term frequency-inverse document fre-
quency (TF-IDF)"). These approaches have the drawback
of not capturing the meaning or context of the words in
the document – hence the common term bag-of-words.
Furthermore, they are not scalable since the whole model
must be retrained if a new word is added to the vocab-
ulary and the length of each vector equals with the vo-
cabulary size. From a computational perspective, they
are inefficient since they generate sparse matrices where
most elements equal 0.

Word embeddings Word embeddings are dense,
fixed-size, and continuous-valued vector representations
of words that capture the meaning of the words in the
document. These word representations are learned via
training over large corpora of textual data using methods
such as Word2Vec [12], GloVe [13], or FastText [14]. The
advent of these word embedding methods was a leap to-
wards memory-efficient dense numerical representation
for words and documents from the sparse representation
of bag of words models. A baseline approach to represent-
ing a document is to average or sum the learned word
embeddings of the words in a document.

Sentence/Paragraph Embeddings Sentence embed-
dings can be understood as an extension of the basic
idea of word embeddings. Word embeddings are static
representations of words that do not change even when
multiple contexts are present in the document collection.
However, the same word can have different meanings in
different contexts. For example, the word "bank" can be a
financial institute or can relate to a river bank. Hence, the
neural network architecture such as Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM)
[15] are used for representing the word to its true context
dynamically with a notion that words appearing either
before or after the focal word reveal the context around
the focal word. RNN and LSTM also aid the vector rep-
resentation of the context of the sentences or paragraph
[16].

However, RNN and LSTM architectures cannot appro-
priately capture the meaning of the words at the begin-
ning of a very long sentence or paragraph in its numerical

26

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

representation due to their sequential structure. The rise
of deep neural networks and recent advancements in the
field of NLP introduced the transformer architecture [17].
Transformers look at each word of a sentence together,
unlike RNN and LSTM, and learn the degree to which
the words reflect the context of that sentence using the
so-called attention mechanism. The transformer architec-
ture can translate the meaning of each word in a sentence
through its network into the numerical representation of
the sentence, also called sentence embedding. As stated
before, a baseline approach to representing a document
is to average or sum the learned sentence embeddings of
that document.

BERT Language Model Bidirectional Encoder Repre-
sentations from Transformer, BERT [10] is another recent
development that uses transformer architecture. It ex-
hibits all the traits of transformer architecture, meaning
it learns the sense of the words of an input sentence,
the context of that sentence, and the semantic relation
between the words and the context. BERT being a "bidi-
rectional" model, considers the context of a word from
both sides (left and right) at the same time in a sentence,
which makes this model effectively process long contigu-
ous text sequences, such as entire paragraph, not limited
to short phrase. The BERT architecture is designed with a
limitation of 512 input tokens. This means that before the
text is fed into the model, it is tokenized and truncated if
necessary. Any model built on BERT must take this into
account. Based on our own data, a word usually consists
of ≈ 1.2 tokens.

SciBERT SciBERT is a BERT language model for tasks
involving scientific publications [18]. It was trained on a
large corpus of 1.14M scientific publications from com-
puter science and the broad biomedical field. This model
also outputs numerical representation like BERT.

Fine-tuning a general purpose BERT model on scien-
tific papers produces more accurate results in this domain
[18, 19] because it uses a domain-specific vocabulary.
This also extends to similar domains, in this case, patents,
where SciBERT model outperforms the original BERT for
tasks such as IPC classification and similar patent finding
[20]. SciBERT is thus particularly well-suited for tasks
such as information extraction, document classification,
and text representation in the scientific domain.

SPECTER SPECTER is an extension of SciBERT to en-
code scientific publications also with the help of inter-
document relatedness [21]. In the scientific literature,
citations signal relatedness, but this information is not
used by SciBERT. SPECTER transfers the learned relat-
edness signal to the representation of a scientific article.
During the application of this model, it generates simi-

lar embeddings for related scientific documents without
knowing citation information. SPECTER was used in the
initial version of Logic Mill.

Pat SPECTER Pat SPECTER is a language model to
encode scientific publications and patents at the same
time [9]. It is a SPECTER model (version: 2.0) fine-tuned
on a curated patent dataset comprising 1.5M training
instances (5 triplets for 300k focal patents) with cred-
ible patent citations. Thus, this model combines both
domains, scientific publications, and patents. Our tests
have shown that this model outperforms the previously
mentioned models, as well as the PaECTER [9], for pre-
dicting patent-to-paper citations. Furthermore, it also
outperforms traditional search methods, often used in
information retrieval systems like BM25.

Pat SPECTER replaces SPECTER as our workhorse doc-
ument encoder model.1

3. System Specifics
Logic Mill system is designed using a Microservice Ar-
chitecture. This software design approach breaks down
a large, monolithic application into smaller, independent
components that can be developed, deployed, and main-
tained separately. Each microservice is a self-contained
unit that performs a specific function and communicates
with other microservices through well-defined interfaces,
typically using APIs.

Figure 1 shows the multiple services of our system.
From a high-level perspective, there are 6 distinct parts:

a) External Data Sources: where patent documents
and scientific publications are obtained from

b) Document Encoder: transforms the text of the
document into a numerical representation using
a machine learning model

c) Extract, Transform, Load (ETL): processes move
documents from the external sources, process and
store them

d) Vector Search Database: stores the computed nu-
merical representation along with metadata and
the text

e) Backend with Web API : propagate the user re-
quests to the database

f) User-Interface: provides the users with a web ap-
plication where they can interact with the API
via our website or using their own scripts, for
example in Python or R.

1There is one other BERT -based language model specifically trained
on patents, namely PatentBERT [22]. Its task is to classify patents,
and therefore, it is not suitable for our purpose.

27

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

Figure 1: Overview of the Architecture of Logic Mill

External Data Sources The system can be connected
to various external data sources. The release version
of the system retrieves patent documents and scientific
publications from public and access-restricted sources.

Initially, Logic Mill relied on publicly available patent
APIs from the EPO and the USPTO. For scientific publi-
cations, we relied on Semantic Scholar [23].

However, we decided to change the external data
sources to streamline the processes and align with the
preferences of the scientific community.

Scientific publications are now obtained from the Ope-
nAlex 2[11] database, including title, abstracts, and addi-
tional metadata such as publication date, journal name,
or Digital Object Identifier (DOI).

We obtain patent documents from the DocDB3, the
EPO’s master documentation database. This database
has worldwide coverage and contains bibliographic data,
abstracts, and citations. Furthermore, it also maintains
the DOCDB simple patent family.

Extract, Transform, Load The system obtains the
raw documents from external data sources and processes
them through various Extract, Transform, and Load (ETL)
processes. In the first step, the textual content and the
metadata are extracted and stored in a global data struc-
ture. The structure is independent of the document type
(patent or scientific publication). In the second step, the
document encoder encodes the text parts of the document
and generates the numerical representation. Finally, the
search database stores the numerical representation of a
document along with the metadata and the text.

Document Encoder The document encoder is a
machine-learning model that transforms text documents
into a numerical representation. We use Pat SPECTER
2See https://openalex.org/
3See https://www.epo.org/en/searching-for-patents/data/bulk-dat
a-sets/docdb

[9] to encode documents. The output of this model is a
dense vector of 768 dimensions.

Since encoding all documents requires significant com-
puting power, it was conducted on specialized hardware.
On the one hand, we used desktop workstations with
Nvidia graphics processing units (GPUs). For large bulk
sets, we made use of high-performance cloud computing
facilities. To allow for real-time inference, a CPU mi-
croservice was deployed in the cloud. It is connected to
the system and accessible to end-users via the GraphQL
API.

Storage & Search For the search and storage of docu-
ments with their numerical representation, ElasticSearch
is used. This database is capable of full-text search and
can be used in a distributed context, which is essential
for scalability reasons.

Furthermore, ElasticSearch allows storing dense vec-
tors that nearest-neighbor search algorithms can use. Ex-
act Nearest Neighbor searchers are guaranteed to find the
best solution but are inefficient and not scalable. There-
fore, we use the approximate nearest neighbor searches
(ANN), which trade-off precision for lower computational
and resource burdens. ElasticSearch uses the Hierarchical
Navigable Small World graphs (HNSW) [24] algorithm
(as of version 8.0).4 HNSW organizes vectors as a graph
based on their similarity to each other. Together, this
setup finds the most similar documents with a very high
probability for any query document within milliseconds.

In our current setting, the cluster consists of 12 nodes
with 8 vCPU cores, 128 GB of RAM, and 1 TB of SSD
storage each. This setting is needed to allow for fast
and efficient computation, because the RAM required
by the ElasticSearch database can be distributed over
multiple nodes. The database cluster as well as all other

4Compared to a wide spectrum of alternative ANN and according to
various distance measures, HNSW performs consistently well [25];
see also http://ann-benchmarks.com.

28

https://openalex.org/
https://www.epo.org/en/searching-for-patents/data/bulk-data-sets/docdb
https://www.epo.org/en/searching-for-patents/data/bulk-data-sets/docdb
http://ann-benchmarks.com

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

components are running on the GWDG OpenStack Cloud
IT infrastructure5 in Göttingen, Germany.

Computation & API The back-end extends the soft-
ware stack for more functionality and to handle user in-
teractions. It is written in the language Go and provides a
plug-and-play Application Programming Interface (API)
for end-users using GraphQL. This query language for
APIs is a strongly typed interface that provides complete
and understandable API documentation. Furthermore, it
allows users to retrieve the data precisely that they have
asked for.

The back-end also connects the document encoder
with the client-facing run-time environment. This en-
sures that end-users can upload texts, which can then
be encoded to numerical representations. Finally, the
representation can be used to query similar documents
from the database.

It can also be used to calculate distances between texts
provided by the user using their numerical representation
and distance metrics like the Cosine Similarity (Eq. (1)),
the Manhattan (L1) Distance (Eq. (2)) or the Euclidean
(L2) Distance (Eq. (3)).

cos(a, b) = ab
‖a‖‖b‖ =

∑︀𝑛
𝑖=1 a𝑖b𝑖√︀∑︀𝑛

𝑖=1 (a𝑖)2
√︀∑︀𝑛

𝑖=1 (b𝑖)2

(1)

𝑙1(a, b) = ‖a− b‖ =

𝑛∑︁
𝑖=1

|a𝑖 − b𝑖| (2)

𝑙2(a, b) = ‖b− a‖2 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(b𝑖 − a𝑖)2 (3)

Furthermore, the back-end authenticates and autho-
rizes the end-users. This is ensured by JSON Web Tokens
(JWT), which are sent in the HTTP header of each re-
quest.

User Interfaces The website logic-mill.net features
user registration, project presentation, and documenta-
tion in a Single Page web Application (SPA). It uses the
Vue JavaScript framework6 and consumes the GraphQL
API provided by the backend.

4. Usage
The general idea behind the user interface is to enable a
simple and easy plug-and-play interaction that simplifies
the project setup. The machinery to use the document

5Gesellschaft für wissenschaftliche Datenverarbeiting mbH Göttin-
gen. See https://www.gwdg.de/.

6See https://vuejs.org.

encoder model is already available, and the embeddings
of large corpora are pre-computed and ready to be used.
Users can do their projects in less time with fewer re-
sources, since there is no need to download the raw data
(time, storage), set up the machine learning pipeline (time,
CPU/GPU, memory), encode the documents (time), and
search through results (time, CPU/GPU, memory, inter-
nal storage).

User interfaces Upon registration on the website,
users can access the system either through the web appli-
cation on https://logic-mill.net/ (Fig. 2) or the Application
Programming Interface (API).

The web application aims to help users familiarize
themselves with the queries and data structure. It ex-
plains the different functionalities of the system and
interactively shows the syntactically correct GraphQL
queries. Thus, users can experiment, design, and adapt
their queries.

The web app auto-generates these queries for various
programming languages and tools. The release version
of Logic Mill provides these examples in GraphQL for
Curl, Python, R, and Go. However, any programming
language with the ability to make HTTP requests and
retrieve and process JSON responses can interact with
the API endpoint.

API Functionality Logic Mill provides nine API end-
points for retrieval, pairwise similarity metric computa-
tion, and Nearest Neighbor search. Each functionality
can be extended to multi-domain corpora (i.e., searching
the most similar scientific publications for a patent), and
they can involve available documents in the database as
well as user-supplied documents or texts. The endpoints
are summarized in Table 1.

Table 1
Overview of Logic Mill’s API functionality.

Purely database with own documents

Retrieval
Document, Documents
searchDocuments

encodeDocument, encodeDocuments

Calculation similarityCalculation encodeDocumentAndSimilarityCalculation
NN Search SimilaritySearch embedDocumentAndSimilaritySearch

4.1. Retrieval
Document Retrieval Pre-computed embeddings for
existing patent documents or scientific publications can
be retrieved via the Document and Documents end-
points. Users provide the IDs and specify the database as
well as the desired information such as title, IDs, or em-
bedding, which are detailed in the online documentation.
The returned information depends on the document type
and data source, and copyright restrictions may apply.

29

https://logic-mill.net/
https://www.gwdg.de/
https://vuejs.org
https://logic-mill.net/

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

Figure 2: Screenshot of the Logic Mill Website - Overview

Document Search The searchDocuments endpoint
allows keyword-based searches. Logic Mill retrieves doc-
uments matching the specified keywords and metadata
from the available corpora. The returned information
is consistent with that obtained through the Document
and Documents endpoints.

Encode own documents The embeddings for users’
curated documents can be generated and retrieved us-
ing the encodeDocument and encodeDocuments end-
points of our API. Users provide a title and an abstract,
and the document encoder model returns the correspond-
ing numerical representation.

4.2. Calculation
Users interested in pairwise similarities between docu-
ments have two options. They can retrieve embeddings
for a set of documents one-by-one and compute simi-
larity metrics themselves, or the rely on functionality
provided by the system.

Calculate Document Similarities The
similarityCalculation endpoint retrieves the
similarity matrix for multiple documents in the database,
enabling their comparison. Input consists of a list
of source and target documents (identified by their
identifiers and indices), along with the desired distance
calculation metric (cosine, l1, l2).

Calculate Similarities with Own Documents To
retrieve the similarities between a set of own curated
documents and documents in the database, users use the

encodeDocumentAndSimilarityCalculation end-
point. The user provides, for instance, title and abstract
of the different documents, identifiers for later reference,
and the type of distance calculation metric (cosine, l1,
l2). The system encodes the documents with the help
of the document encoder and uses provided metric to
compute the distances among the encoded documents. A
typical use case includes the representation as a similarity
matrix.

4.3. Nearest Neighbor Search
Database Document Similarity Search Given a
known document, users can search for the approxi-
mate nearest neighbor within the same or other cor-
pora. This is based on cosine similarity using the
SimilaritySearch query. For example, users can re-
quest the five most similar scientific publications for a
specific patent. The results include the title, similarity
score, and ID of each document within its respective
index.

Own Document Similarity Search Users can also
provide their own documents and search for sim-
ilar ones of OpenAlex, DocDB, that have already
been encoded and stored in the database using the
embedDocumentAndSimilaritySearch query.

5. Performance
To thoroughly evaluate the performance of our system,
we conducted a series of experiments focusing on patent-
to-patent and patent-to-publication citations. This evalu-

30

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

Figure 3: Distribution of the first ranked patent (DocDB
family member) cited by the reference Patent

ation is analogous to the prior art search by patent offices.
Prior art search is a crucial task in the patent examination
process. It is designed to uncover existing patents, publi-
cations, and other relevant articles that might challenge
the novelty of the patent application under prosecution.
Our experiments simulate the prior art search process,
testing the system’s ability to identify relevant prior art
accurately and ensuring its practical applicability and ro-
bustness. This approach not only validates the system’s
quality but also aligns it with industry-standard practices,
thereby enhancing its reliability and utility for examin-
ers and inventors who conduct comprehensive prior art
searches to make informed decisions and protect their
innovations.

5.1. Patents to Patents
The first task is to identify patent-to-patent citations
for 10k randomly selected patents granted by the EPO
whose family consists of at least 10 documents. The goal
is to predict the patent citations to prior patents on a
patent family level. We then search our DocDB index for
1,000 approximated nearest neighbors present at the time
of the earliest filing date and retrieve the closest patent
documents from the EPO, the USPTO, and the WIPO. The
approximate nearest neighbor results are then aggregated
on a patent family basis and re-ranked.

Of 10,000 test cases, we were able to identify at least
one correct family citation within the first 1,000 nearest
neighbors in 8,641 cases (≈ 86%). In 6,912 cases, at least
one family citation is among the 100 nearest neighbors
(≈ 69%). Indeed , most of the first family citations are
within the first 20 results (cf. Figure 3).

Table 2 shows the Mean Reciprocal Rank (MRR) and
the Mean Average Precision (MAP) for various cutoff
values 𝑘 ∈ {5, 10, 20, 50, 100}. For 𝑘 = 5, the MRR is
equal to 0.264 and the MAP equals 0.06.

Table 2
MRR and MAP for patent-to-patent citations

k MRR MAP
5 0.263874 0.062466
10 0.276368 0.065272
20 0.283207 0.070677
50 0.287384 0.078185
100 0.288638 0.082916

5.2. Patents to Publications
Our second task focuses on identifying relevant publi-
cations that a patent should cite. To establish a ground
truth for these citations, we leverage the Reliance on Sci-
ence dataset [1, 26], which links US patent IDs to their
corresponding citations within the Open Alex database.
Each patent-paper citation in this dataset is assigned a
confidence score ranging from 1 to 10. For our analy-
sis, we exclusively consider citations with the highest
confidence score of 10. The search parameters employed
for this task remain consistent with those used in the
previous analysis.

There are instances where we are not able to obtain an
embedding. A common reason is the absence of title and
(English) abstract. Another reason is that IDs present in
the Reliance on Science dataset have changed in more
recent versions of OpenAlex.

Of initially 10,000 randomly selected samples, we
found at least one cited publication among the top 100
results in 3,740 cases (≈ 37%). As can be seen in Figure 4,
the distribution is not as steep as in the patent-to-patent
case. Table 3 presents the MRR and MAP for various
𝑘 ∈ {5, 10, 20, 50, 100}.

To understand the omission of a significant share of
citations, we manually examined anecdotal cases where
matches were not found within our approximate near-
est neighbor (ANN) results. Our analysis reveals that
many of these citations were applicant-added rather than
examiner-cited. These applicant-added citations often
appear in the patent description, a context not consid-
ered during model training, nor encoded in our system.
Additionally, a lack of semantic similarity between the
cited publication and the focal patent’s abstract makes
associating the two challenging even for humans.

5.3. System Performance
The strength of the system is however not only the novel
language model utilized, but the speed and ease-of-use.
The system can identify the closest 100 to 10,000 docu-
ments based on an already encoded reference document
within one second. Depending on the load and search
parameters, results can be retrieved even faster, within
100 milliseconds. If encoding is required, the process

31

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

Figure 4: Distribution of the first ranked publication cited by
the reference patent

Table 3
MRR and MAP for patent-to-publication citations

k MRR MAP
5 0.162932 0.052162
10 0.179573 0.066367
20 0.190259 0.080288
50 0.197886 0.093623
100 0.200598 0.100609

takes one to two seconds.

6. Conclusion and Future
Developments

Logic Mill is a novel modular software system that helps
navigate knowledge embedded in scientific publications,
patent documents, and other text corpora. The system
is scalable and openly accessible. New documents are
regularly ingested into the system.

Users can leverage the system, for example, in the
following contexts:

• retrieve numerical representations of existing
documents in Logic Mill’s database

• generate numerical representations for their own
documents

• calculate similarities between users’ given docu-
ments, or documents in the database, or between
users’ given document and the one in the database

• search for similar documents present in the
database given a query document that either ex-
ists in the database or users can provide the query
document

Despite some present shortcomings, Logic Mill can
assist many user groups. Researchers interested in study-
ing the economics of innovation, science of science, and
knowledge flows may be particularly interested in these
capabilities. Its search capabilities may also be of in-
terest to patent examiners and inventors seeking prior
art related to their ongoing inventions. Researchers in
many fields may want to use Logic Mill as a literature
and citation recommender system.

As Logic Mill is actually agnostic about the underly-
ing document encoder model, the system may improve
with the advent of better models. For instance, the next
generations of deep learning language models may pro-
vide larger context windows so that Logic Mill can be
able to encode a larger portion of documents. This might
extend to models that are specifically trained to identify
similarities between patents and their cited publications.

The impact of the approximate nearest neighbor (ANN)
search on our patent data also needs to be investigated7.

6.0.1. Acknowledgements

For helpful comments, we thank Matt Marx and the par-
ticipants at the 2022 Munich Summer Institute and the
2022 Summer School on Data and Algorithms for Science,
Technology & Innovation Studies at KU Leuven. We also
thank the 2023 I3 NBER workshop participants for their
comments. We also thank the team at the computing
and IT competence center of GWDG for their continuous
support. Dietmar Harhoff acknowledges support from
Deutsche Forschungsgemeinschaft (CRC 190).
7A up-to-date benchmarking with industry datasets can be found
here: https://ann-benchmarks.com/

32

https://ann-benchmarks.com/

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

References
[1] M. Marx, A. Fuegi, Reliance on science: World-

wide front-page patent citations to scientific arti-
cles, Strategic Management Journal 41 (2020) 1572–
1594. URL: https://onlinelibrary.wiley.com/doi/ab
s/10.1002/smj.3145. doi:https://doi.org/10.1
002/smj.3145.

[2] F. Poege, D. Harhoff, F. Gaessler, S. Baruffaldi, Sci-
ence quality and the value of inventions, Sci-
ence Advances 5 (2019) eaay7323. URL: https:
//www.science.org/doi/10.1126/sciadv.aay7323.
doi:10.1126/sciadv.aay7323.

[3] A. B. Jaffe, G. de Rassenfosse, Patent citation data
in social science research: Overview and best prac-
tices, Journal of the Association for Information
Science and Technology 68 (2017) 1360–1374. URL:
https://onlinelibrary.wiley.com/doi/10.1002/asi.23
731. doi:10.1002/asi.23731.

[4] A. Rubin, E. Rubin, Systematic Bias in the Progress
of Research, Journal of Political Economy 129 (2021)
2666 – 2719. URL: https://doi.org/10.1086/715021.
doi:10.1086/715021.

[5] S. L. Woltmann, L. Alkærsig, Tracing univer-
sity–industry knowledge transfer through a text
mining approach, Scientometrics 117 (2018) 449–
472. URL: http://link.springer.com/10.1007/s111
92-018-2849-9. doi:10.1007/s11192-018-284
9-9.

[6] B. Kelly, D. Papanikolaou, A. Seru, M. Taddy, Mea-
suring Technological Innovation over the Long Run,
American Economic Review: Insights 3 (2021) 303–
320. URL: https://pubs.aeaweb.org/doi/10.1257/aeri
.20190499. doi:10.1257/aeri.20190499.

[7] J. Beel, B. Gipp, S. Langer, C. Breitinger, Research-
paper recommender systems: a literature survey,
International Journal on Digital Libraries 17 (2016)
305–338. URL: https://doi.org/10.1007/s00799-015
-0156-0. doi:10.1007/s00799-015-0156-0.

[8] K. Sparck Jones, A Statistical Interpretation of Term
Specificity and its Application in Retrieval, Journal
of Documentation 28 (1972) 11–21. URL: https://do
i.org/10.1108/eb026526. doi:10.1108/eb026526,
publisher: MCB UP Ltd.

[9] M. Ghosh, S. Erhardt, M. E. Rose, E. Buunk,
D. Harhoff, PaECTER: Patent-level Representation
Learning using Citation-informed Transformers,
2024. URL: https://arxiv.org/abs/2402.19411.
doi:10.48550/ARXIV.2402.19411, version
Number: 1.

[10] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding, in: Proceedings of the
2019 Conference of the North, Association for Com-
putational Linguistics, Minneapolis, Minnesota,

2019, pp. 4171–4186. URL: http://aclweb.org/antho
logy/N19-1423. doi:10.18653/v1/N19-1423.

[11] J. Priem, H. Piwowar, R. Orr, OpenAlex: A fully-
open index of scholarly works, authors, venues,
institutions, and concepts, 2022. URL: https://arxiv.
org/abs/2205.01833. doi:10.48550/ARXIV.2205.
01833, version Number: 2.

[12] T. Mikolov, K. Chen, G. Corrado, J. Dean, Effi-
cient Estimation of Word Representations in Vec-
tor Space, 2013. URL: http://arxiv.org/abs/13
01.3781. doi:10.48550/arXiv.1301.3781,
arXiv:1301.3781 [cs].

[13] J. Pennington, R. Socher, C. Manning, GloVe: Global
Vectors for Word Representation, in: Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Associa-
tion for Computational Linguistics, Doha, Qatar,
2014, pp. 1532–1543. URL: https://aclanthology.org
/D14-1162. doi:10.3115/v1/D14-1162.

[14] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, En-
riching Word Vectors with Subword Information,
2017. URL: http://arxiv.org/abs/1607.04606. doi:10
.48550/arXiv.1607.04606, arXiv:1607.04606
[cs].

[15] S. Hochreiter, J. Schmidhuber, Long Short-Term
Memory, Neural Computation 9 (1997) 1735–1780.
URL: https://direct.mit.edu/neco/article/9/8/1735-1
780/6109. doi:10.1162/neco.1997.9.8.1735.

[16] O. Melamud, J. Goldberger, I. Dagan, context2vec:
Learning Generic Context Embedding with Bidirec-
tional LSTM, in: Proceedings of the 20th SIGNLL
Conference on Computational Natural Language
Learning, Association for Computational Linguis-
tics, Berlin, Germany, 2016, pp. 51–61. URL: https:
//aclanthology.org/K16-1006. doi:10.18653/v1/
K16-1006.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,
Attention Is All You Need, in: NIPS’17: Proceed-
ings of the 31st International Conference on Neu-
ral Information Processing Systems, 2017. URL:
https://dl.acm.org/doi/10.5555/3295222.3295349.
doi:10.5555/3295222.3295349.

[18] I. Beltagy, K. Lo, A. Cohan, SciBERT: A Pretrained
Language Model for Scientific Text, in: Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), Association for Compu-
tational Linguistics, Hong Kong, China, 2019, pp.
3613–3618. URL: https://www.aclweb.org/antholo
gy/D19-1371. doi:10.18653/v1/D19-1371.

[19] G. Aslanyan, I. Wetherbee, Patents Phrase to Phrase
Semantic Matching Dataset, 2022. URL: http://ar
xiv.org/abs/2208.01171, number: arXiv:2208.01171

33

https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.3145
https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.3145
http://dx.doi.org/https://doi.org/10.1002/smj.3145
http://dx.doi.org/https://doi.org/10.1002/smj.3145
https://www.science.org/doi/10.1126/sciadv.aay7323
https://www.science.org/doi/10.1126/sciadv.aay7323
http://dx.doi.org/10.1126/sciadv.aay7323
https://onlinelibrary.wiley.com/doi/10.1002/asi.23731
https://onlinelibrary.wiley.com/doi/10.1002/asi.23731
http://dx.doi.org/10.1002/asi.23731
https://doi.org/10.1086/715021
http://dx.doi.org/10.1086/715021
http://link.springer.com/10.1007/s11192-018-2849-9
http://link.springer.com/10.1007/s11192-018-2849-9
http://dx.doi.org/10.1007/s11192-018-2849-9
http://dx.doi.org/10.1007/s11192-018-2849-9
https://pubs.aeaweb.org/doi/10.1257/aeri.20190499
https://pubs.aeaweb.org/doi/10.1257/aeri.20190499
http://dx.doi.org/10.1257/aeri.20190499
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1007/s00799-015-0156-0
http://dx.doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
http://dx.doi.org/10.1108/eb026526
https://arxiv.org/abs/2402.19411
http://dx.doi.org/10.48550/ARXIV.2402.19411
http://aclweb.org/anthology/N19-1423
http://aclweb.org/anthology/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2205.01833
https://arxiv.org/abs/2205.01833
http://dx.doi.org/10.48550/ARXIV.2205.01833
http://dx.doi.org/10.48550/ARXIV.2205.01833
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.48550/arXiv.1301.3781
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1607.04606
http://dx.doi.org/10.48550/arXiv.1607.04606
http://dx.doi.org/10.48550/arXiv.1607.04606
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/K16-1006
https://aclanthology.org/K16-1006
http://dx.doi.org/10.18653/v1/K16-1006
http://dx.doi.org/10.18653/v1/K16-1006
https://dl.acm.org/doi/10.5555/3295222.3295349
http://dx.doi.org/10.5555/3295222.3295349
https://www.aclweb.org/anthology/D19-1371
https://www.aclweb.org/anthology/D19-1371
http://dx.doi.org/10.18653/v1/D19-1371
http://arxiv.org/abs/2208.01171
http://arxiv.org/abs/2208.01171

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

arXiv:2208.01171 [cs].
[20] S. Althammer, M. Buckley, S. Hofstätter, A. Han-

bury, Linguistically Informed Masking for Repre-
sentation Learning in the Patent Domain, 2021.
URL: http://arxiv.org/abs/2106.05768, number:
arXiv:2106.05768 arXiv:2106.05768 [cs].

[21] A. Cohan, S. Feldman, I. Beltagy, D. Downey,
D. Weld, SPECTER: Document-level Representa-
tion Learning using Citation-informed Transform-
ers, in: Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, Association for Computational Linguistics,
Online, 2020, pp. 2270–2282. URL: https://ww
w.aclweb.org/anthology/2020.acl-main.207.
doi:10.18653/v1/2020.acl-main.207.

[22] J.-S. Lee, J. Hsiang, Patent classification by fine-
tuning BERT language model, World Patent Infor-
mation 61 (2020) 101965. URL: https://linkinghub
.elsevier.com/retrieve/pii/S0172219019300742.
doi:10.1016/j.wpi.2020.101965.

[23] S. Fricke, Semantic Scholar, Journal of the Medical
Library Association 106 (2018). URL: http://jmla.pit
t.edu/ojs/jmla/article/view/280. doi:10.5195/jm
la.2018.280.

[24] Y. A. Malkov, D. A. Yashunin, Efficient and robust
approximate nearest neighbor search using Hier-
archical Navigable Small World graphs, 2018. URL:
http://arxiv.org/abs/1603.09320. doi:10.48550/a
rXiv.1603.09320, arXiv:1603.09320 [cs].

[25] M. Aumüller, E. Bernhardsson, A. Faithfull, ANN-
Benchmarks: A benchmarking tool for approximate
nearest neighbor algorithms, Information Systems
87 (2020) 101374. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0306437918303685. doi:10.101
6/j.is.2019.02.006.

[26] M. Marx, A. Fuegi, Reliance on science by inven-
tors: Hybrid extraction of in-text patent-to-article
citations, Journal of Economics & Management
Strategy 31 (2022) 369–392. URL: https://online
library.wiley.com/doi/abs/10.1111/jems.12455.
doi:https://doi.org/10.1111/jems.12455.

A. Appendix
Logic Mill provides an API endpoint that uses GraphQL.
The GraphQL query determines what should be executed
and what information should be returned. Users need an
API key to access the API.

Logic Mill web app provides a user-interface where
dynamicGraphQL queries are generated for cURL, Python,
R and Go. 8

8Stata is another commonly used statistics tool, but it cannot retrieve
these JSON responses. Recent versions of Stata can, however, embed
Python code.

Once a query is constructed in GraphQL, it can be im-
plemented and executed using any modern programming
language.

Basic structure of a request A basic request written
in Python is displayed in source code .9 The variable
called query defines the GraphQL query. User-specific
variables and requested information. By providing
the index and the ID (in this case an EPO patent with
the number of EP19164094B1), the title of the docu-
ment and the vector (the numerical representation) of
the encoded text are requested. The return variables can
be customized (lines 8-11) to include other information
about the document. The object called response (line
19) is a dictionary that can be processed further. As one
can see, the Python code directly includes the GraphQL
query.

Example code showing the structure of any inter-
action with the web API in Python

import requests

import json

TOKEN = ’XXX’

ENDPOINT = ’https://lm/api/endpoint/url/here’

headers = {

’content-type’: ’application/json’,

’Authorization’: ’Bearer ’ + TOKEN,

}

query="""{

Document(index: "docdb_cos", id: "EP19164094B1") {

documentParts {

title

}

vector

}

}"""

r = requests.post(ENDPOINT,

headers=headers,

json={’query’: query})

if r.status_code == 200:

response = r.json()

print(response)

else:

print(f"Error executing\n{query}\non {url}")

Parameters While the previous example is the most
straightforward and basic implementation, it is not al-
ways the most suitable in practice. In many cases, one
has to make multiple requests to retrieve all the data.
For example, it is possible to request the encoding for
multiple documents in one request. However, retrieving
more than 10,000 documents is impossible. To do this,
the code needs to include a loop that executes a query
with different parameters with each iteration. We will
call this a parameterized query. The user provides two

9Our examples are written in Python using the requests package
for http requests.

34

http://arxiv.org/abs/2106.05768
https://www.aclweb.org/anthology/2020.acl-main.207
https://www.aclweb.org/anthology/2020.acl-main.207
http://dx.doi.org/10.18653/v1/2020.acl-main.207
https://linkinghub.elsevier.com/retrieve/pii/S0172219019300742
https://linkinghub.elsevier.com/retrieve/pii/S0172219019300742
http://dx.doi.org/10.1016/j.wpi.2020.101965
http://jmla.pitt.edu/ojs/jmla/article/view/280
http://jmla.pitt.edu/ojs/jmla/article/view/280
http://dx.doi.org/10.5195/jmla.2018.280
http://dx.doi.org/10.5195/jmla.2018.280
http://arxiv.org/abs/1603.09320
http://dx.doi.org/10.48550/arXiv.1603.09320
http://dx.doi.org/10.48550/arXiv.1603.09320
https://linkinghub.elsevier.com/retrieve/pii/S0306437918303685
https://linkinghub.elsevier.com/retrieve/pii/S0306437918303685
http://dx.doi.org/10.1016/j.is.2019.02.006
http://dx.doi.org/10.1016/j.is.2019.02.006
https://onlinelibrary.wiley.com/doi/abs/10.1111/jems.12455
https://onlinelibrary.wiley.com/doi/abs/10.1111/jems.12455
http://dx.doi.org/https://doi.org/10.1111/jems.12455

Sebastian Erhardt et al. CEUR Workshop Proceedings 25–35

Figure 5: Logic Mill Website - Example Query

parameters to interact with the web API. These are the
GraphQL query and the query parameters. Doing the
loop with parameters will make the code more readable.
The code example A shows the example with the query
and the variables object. The code for looping is omitted,
as is the base code for handling the request.

Example code showing with a query with parame-
ters

(same setup as above)

Build GraphQL query

query="""

query Documents($index: String!, $keyword: String!) {

Documents(index: $index, keyword: $keyword) {

id

documentParts {

title

}

vector

}

}

"""

Build variables

variables = [

{"keyword": "EP19164094B1", "index": "docdb_cos"},

{"keyword": "20130226771", "index": "docdb_cos"}

]

Send request

r = requests.post(ENDPOINT,

headers=headers,

json={

’query’: query,

’variables’: variables

})

Handle request

(...)

35

	1 Introduction
	2 Document Encoding
	3 System Specifics
	4 Usage
	4.1 Retrieval
	4.2 Calculation
	4.3 Nearest Neighbor Search

	5 Performance
	5.1 Patents to Patents
	5.2 Patents to Publications
	5.3 System Performance

	6 Conclusion and Future Developments
	6.0.1 Acknowledgements

	A Appendix

