
How Does Migration to Microservices Happen? A Survey of
the Finnish Software Industry

Kristian Tuusjärvi1,*,†, Jussi Kasurinen2,† and Sami Hyrynsalmi3,†

1Lappeenranta University of Technology, Yliopistonkatu 34, 53850 Lappeenranta, Finland
2Lappeenranta University of Technology, Yliopistonkatu 34, 53850 Lappeenranta, Finland
3Lappeenranta University of Technology, Yliopistonkatu 34, 53850 Lappeenranta, Finland

Abstract
When a software system gets old, it is time to decide whether it is replaced, revised, or removed from the support life cycle.
In modern software development, migrating old monolithic systems into a solution by applying microservices is an option
when the system is still needed, or the decision is made to modernize the existing component with new technology. In this
study, we conducted an online survey on 28 Finnish software professionals who provide MSA migration services to their
clients. We aimed to understand how these MSA migration projects happen, how they are resourced, what skills are useful
for this type of work, and how common these activities are. Based on our observations, migration projects usually replace
monolithic systems with less than ten services and require advanced software engineering skills and an understanding of
trade-offs in software architectures. With these results, we can continue our work towards qualitative studies to compare
general observations against more practical issues of MSA migration processes.

Keywords
Microservice architecture, Modernization, Migration, Online survey,

1. Introduction
In this research paper, we describe our survey study on
the migration of legacy systems. Specifically, we focus
on migrating monolithic legacy software to microservice
architecture (MSA). MSA has gained traction in the past
two decades due to technological advancements such
as cloud computing and containerization, offering scala-
bility, cost-effectiveness, and faster development cycles.
The increasing digitization of businesses drives the search
for more dynamic and adaptive software architectures.

Legacy systems refer to old systems that have been
neglected, lack documentation, tests, and proper main-
tenance, and often have poor architecture. Despite their
deficiencies, these systems are maintained because they
are necessary for a business to continue operating. In
essence, while legacy systems may not be ideal from a
software development perspective, they are crucial for
the ongoing operation of a business and, therefore, must
be kept running [1].

Unlike a traditional monolithic system, MSA is a soft-

TKTP 2024: Annual Doctoral Symposium of Computer Science, 10.-
11.6.2024 Vaasa, Finland
*Corresponding author.
†

These authors contributed equally.
$ kristian.tuusjarvi@gmail.com (K. Tuusjärvi);
jussi.kasurinen@lut.fi (J. Kasurinen); sami.hyrynsalmi@lut.fi
(S. Hyrynsalmi)
� https://ktcoding.fi (K. Tuusjärvi);
https://www.jussikasurinen.net/about.html (J. Kasurinen)
� 0009-0008-3974-4038 (K. Tuusjärvi); 0000-0001-9454-8664
(J. Kasurinen); 0000-0002-5073-3750 (S. Hyrynsalmi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

ware architecture style that uses small decentralized ser-
vices that interact with each other using messaging pro-
tocols, such as Representational State Transfer (REST)
[2, 3, 4]. In the early 2010s, MSA started to rise in popular-
ity [5]. It was popularized by large software companies
such as Sound Cloud [6], Netflix [7], and Uber [8]. MSA’s
main quality attributes are availability, flexibility, main-
tainability, scalability, and loose coupling, [9, 10] which
are desirable for large software systems developed by the
aforementioned companies.

Large legacy systems are often migrated to MSA be-
cause systems developed with MSA are less likely to
accrue complexity throughout their lifespans. MSA sys-
tems are also more decoupled, meaning that parts of the
system can be developed more isolated from the rest of
the system, which decreases the dependencies between
the software components. This allows the software com-
ponents to be maintained apart, letting the whole system
stay robust and responsive [4].

Our previous SMS study [11] into this subject found
many challenges associated with the re-engineering pro-
cess: lack of decomposition approaches, high level of
coupling, lack of guidelines, identification, and boundary
recognition of microservices. Related to the motivations,
we found scalability, maintainability, time to market, and
adaptability to new technologies. Based on these findings
and the related research, we wanted real-world results
from the Finnish software industry, as much of the re-
search is conducted abroad in different business areas.
The rest of this research paper is structured: study design,
related research, results, discussion, threats to validity,
and conclusion.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:kristian.tuusjarvi@gmail.com
mailto:jussi.kasurinen@lut.fi
mailto:sami.hyrynsalmi@lut.fi
https://ktcoding.fi
https://www.jussikasurinen.net/about.html
https://orcid.org/0009-0008-3974-4038
https://orcid.org/0000-0001-9454-8664
https://orcid.org/0000-0002-5073-3750
https://creativecommons.org/licenses/by/4.0


2. Study design
This study aims to understand the trend of moderniz-
ing legacy software to MSA and to add to the empiri-
cal research studying migrations from legacy systems
toward MSA. Specifically, we want to research practi-
tioners’ core challenges in the Finnish software industry
to understand their environment, what motivates mod-
ernization to MSA from the legacy system, and the chal-
lenges of different phases of modernization. Additionally,
we wanted to gather information about the organizations
and projects that attempt MSA migration. The research
questions below reflect our research goal.

• RQ1: What are the project details of MSA
projects?

• RQ2: What are the success factors and method-
ologies for MSA migration?

• RQ3: What are the main challenges and motiva-
tions in migrating to MSA?

To better map the challenges of the migration process,
we used a horseshoe model of software modernization.
The horseshoe model includes three phases. First is the
reserve engineering of the existing system, meaning the
mapping and understanding of the existing system to
plan for the transformation of the system. The second
phase is transformation, which means altering the exist-
ing system to the desired state. Finally, the third phase is
forward engineering, meaning making the changes de-
scribed in the second phase. [12] Regarding the research
design process, we decided on the research questions we
wanted to use to base the survey. After that, we started
an iterative process to generate the survey questions.
The iterative process of generating the survey questions
was done mainly through email exchanges, going back
and forth until we were content with the content of the
preliminary survey. To test the survey, we sent it to a few
experts in the field to review and gather feedback. After
fixing the suggestions from our experts, we launched the
survey online. The survey consists of 20 questions, with
only one open-ended question. The rest have options,
and we also included an ’other’ option if none fit. We
grouped the questions into project details, success factors,
challenges, and motivations-related questions. Project
details questions reflected what kind of people and teams
were working on the MSA project. Success factors ques-
tions queried their choices in different situations. Finally,
the challenge and motivation-specific questions focused
on the MSA project’s challenges and motivations. The
survey was published online and was available through a
web link. Our survey’s target audience was practitioners
with at least some experience working with legacy to
MSA modernization. We recruited respondents through
social media such as Linkedin and X (formerly Twitter).

The goal was to find a person with information about
MSA on their social media page and then approach them
about filling out the survey. We also used our connec-
tions to reach out to people with expertise related to the
topic. To increase the effect, we also asked our connec-
tions to ask about their connections in a snowballing
fashion. We also attempted to reach out to people on
social media who had advertised their expertise in this
field; this approach was efficient. We analyzed the data
using spreadsheets and charts to interpret the results.
We received 28 responses to the survey. We have pub-
lished the results and the survey template to Figshare
(https://dx.doi.org/10.6084/m9.figshare.25487269) for re-
peatability purposes.

3. Related research
This section will discuss the related research focusing on
the industry challenges and motivations for migrating
toward MSA.

Taibi et al. [13] conducted a survey study in 2017 where
they interviewed 21 practitioners who had migrated to
MSA in the past two years. Similar to our research, they
wanted to know the motivations, advantages, and disad-
vantages of migrating to MSA. The primary challenges
that they identified were monolith decoupling, database
migration, and communication between microservices.
The primary benefits of MSA are maintainability, scala-
bility, return on investment (ROI), and complexity reduc-
tion. They conclude that scalability and maintainability
are primary drivers for migrating to MSA. Their study
method differs from ours as we deployed an online sur-
vey, whereas they used in-person interviews. We also
gather other data related to general system information
and organizational and demographic data.

In their study, Ghofrani et al. [14] surveyed 25 ex-
perts to understand the challenges and practices associ-
ated with microservices architecture (MSA). The survey
identified several challenges, including the distributed
nature of MSA, skill and knowledge gaps, and domain
separation and service boundary definition difficulties.
The primary reasons for adopting MSA were scalability
and agility, with manual methods commonly used to de-
termine service boundaries. The surveyed experts also
expressed concerns about security, licensing, and mem-
ory usage and suggested improved notations, techniques,
and frameworks for MSA design. They also identified se-
curity optimization, response time, and performance en-
hancement as the top priorities for improvement. While
Ghofrani et al. [14] also study the challenges of microser-
vices, they do not specifically focus on the migration
process as we do. Furthermore, they researched the bar-
riers to MSA usage and the solutions to improve MSA,
which we have not researched.

https://dx.doi.org/10.6084/m9.figshare.25487269


Francesco et al. [15] conducted a survey in 2018 on
the challenges of migrating applications to microservices
architecture. Experienced IT practitioners were surveyed
and interviewed. Challenges included releasing new fea-
tures, high coupling in legacy systems, and difficulties in
testing and maintenance. The research by Francesco et
al. [15] is similar to ours as it is a survey study that also
studies the challenges of migrating to MSA and utilizes
the horseshoe model. However, they have not researched
the motivation for migrating.

Fritzsch et al. [16] conducted an interview study in
2018 to research MSA migration strategies, motivations,
and challenges. The research explores the migration of
14 systems to microservices based on 16 in-depth inter-
views with professionals from 10 companies in Germany.
The key drivers for migration were maintainability and
scalability. Challenges faced included service decomposi-
tion difficulty, a shortage of Microservices expertise, and
organizational hurdles [16]. Their research differs from
ours in that interviews are used, not surveys. Addition-
ally, they focus on migration strategies, which we do not
do.

In their study (2018), Bogner et al. [17] interviewed 17
software professionals from 10 companies in Germany
to evaluate 14 service-based systems’ adherence to Mi-
croservices characteristics and their impact on software
quality. The study revealed that migration to Microser-
vices was primarily driven by the need to improve main-
tainability and that HTTP and Docker containers were
preferred technologies. At the same time, Microservices
positively or neutrally impacted software quality [17].
Compared to our research, they focus more on the MSA
technologies, qualities, and quality. Furthermore, our
research is based on a survey study while they conducted
an interview study.

In 2018, Knoche et al. [18] surveyed 71 German profes-
sionals to determine the primary drivers and barriers to
adopting MSA, the goals of modernizing MSA, and how
data consistency affects performance. They concluded
that scalability, maintainability, and time to market were
the main drivers for modernization, with developer’s
and staff’s skills being the main barriers. Early adopters
desired scalability, while traditional companies wanted
maintainability [18]. Their study is similar to ours as
they also research the motivations and goals of MSA
migration. However, unlike us, they researched the bar-
riers preventing MSA adoption and the runtime effects
of MSA.

Some research has been conducted to study the motiva-
tions and challenges related to MSA migration [14] [15]
[16] [18]. However, there are some differences, namely
the study type used. Additionally, the research is primar-
ily regional, focusing on Germany [14] [16] [17] [18]. Our
research brings a new region into the current research
field to complement the existing research findings.

4. Results

4.1. Project details
In this section, we describe the demographics of the sur-
vey respondents. The respondents have a significant
amount of experience in software development. Most
respondents (60.7 %) have more than ten years of experi-
ence, and 89 % of respondents have four years or more
experience in software development, Table 1.

Table 1
How many years of experience you have on software develop-
ment, or related areas?

Choice # %

Less than 1 year 0 0.0%
1-3 years 3 10.7%
4-6 years 5 17.9%
7-10 years 3 10.7%
More than 10 years 17 60.7%

We can observe the relative novelty of MSA-related
work as only 10.7 % of the respondents have more than
seven years of experience with re-engineering using MSA
technologies. Most of the respondents (78.6 %) have one
to six years of experience related to MSA re-engineering,
Table 2.

Table 2
How many years of experience you have on working with
microservices, or re-engineering projects involving migrating
to microservices?

Choice # %

Less than 1 year 3 10.7%
1-3 years 9 32.2%
4-6 years 13 46.4%
7-10 years 2 7.1%
More than 10 years 1 3.6%

Regarding the roles of the respondents. We can ob-
serve that most are working in a senior position, with
the most common roles being senior developer (42.9 %)
and architect (21.4 %). 82.1 % of the respondents work in
roles that can be described as senior (senior developer,
architect, project manager, higher management, product
owner). Only 14.8 % of the respondents identify as junior
developers, Table 3.

The most common business domain for the software
products our respondents worked on was banking or
accounting-related software (18.5 %). Other popular do-
mains were industrial manufacturing and retail markets,
both with 11.1 %. There is clear scattering in this ques-
tion, as 44.5 % of the respondents didn’t identify with any
of the choices, Table 4.



Table 3
Which of these titles would characterize your role in your
most recent MSA-project?

Choice # %

Junior Developer 4 14.3%
Senior Developer 12 42.9%
Architect 6 21.4%
Domain expert 0 0.0%
Product owner 1 3.6%
Project manager / Team
leader

2 7.1%

QA, or other, manager 0 0.0%
Higher management or
administration

2 7.1%

Table 4
What was the business domain of the software product in
your most recent MSA project?

Choice # %

Resource production (farming,
forest ind.)

1 3.7%

Industrial manufacturing 3 11.1%
Banking or accounting 5 18.5%
Retail market, online or
store-based

3 11.1%

Logistics, or shipping
industry

2 7.4%

Energy, heat or water
distribution

1 3.7%

Automotive Industry 0 0.0%
Other 12 44.5%

In the size of a typical MSA project team, the projects
usually include between 6-10 (46.4 %) or 3-5 (28.6 %) per-
sonnel. Most respondents worked in teams with 3-10
team members (75 %). Small (less than 3) or large teams
(11-25 or more) are less common, Table 5.

Table 5
In average, how many people are involved your organization’s
typical MSA project?

Choice # %

Less than 3 2 7.1%
3-5 8 28.6%
6-10 13 46.4%
11-25 1 3.6%
more than 25 4 14.3%

93 % of the respondents report changes in the project
personnel count; sometimes (53.6 %), often (21.4 %), rarely
(14.3 %) or always (3.6 %). Nearly all of the MSA projects
have some amount of fluctuation in the personnel count.

However, the bulk of the fluctuation happens only some-
times, Table 6.

Table 6
Does the amount of people involved change, or fluctuate dur-
ing the MSA project?

Choice # %

Never 2 7.1%
Rarely 4 14.3%
Sometimes 15 53.6%
Often 6 21.4%
Always 1 3.6%

The most common team size in MSA projects is one
team, which accounts for 40.8 % of projects. The second
most common team size is 2-3 teams in almost the same
number of projects. Less commonly, 4-5 teams are used
in 14.8 % of projects, while projects with more than 5 are
the least popular, accounting for only 7.4 % of projects,
Table 7.

Table 7
In average, to how many teams are these people typically
divided into?

Choice # %

Just one 11 40.8%
2-3 10 37.0%
4-5 4 14.8%
more than 5 2 7.4%

The survey revealed that the number of teams in a
given MSA project rarely changes (50 %), sometimes
changes (35.7 %), never changes (7.1 %), or changes often
(3.6 %), and always (3.6 %), respectively, Table 8.

Table 8
Does the amount of teams involved change or fluctuate during
the MSA project?

Choice # %

Never 2 7.1%
Rarely 14 50.0%
Sometimes 10 35.7%
Often 1 3.6%
Always 1 3.6%

The majority of the legacy systems that MSA is re-
placing are based on monolithic architecture (81.5 %),
followed by client-server (7.4 %) and service-oriented ar-
chitectures (7.4 %). Only one project used other solutions
and designs (3.7 %), Table 9.

The data shows that most systems being replaced are
between 7 and 10 years old, making up 37.1 % of the



Table 9
In projects where microservice solutions are developed to re-
place existing systems, are those systems typically based on

Choice # %

Monolithic design 22 81.5%
Client-server design 2 7.4%
Service-Oriented design 2 7.4%
Peer-to-Peer design 0 0.0%
Layered design 0 0.0%
Other solutions /architectures 1 3.7%

total. The next highest age group is 11 to 15 years old,
representing 25.9 % of the total. Other age groups include
systems aged 4 to 6 years and 16 to 20 years, each making
up 14.8 % of the total. Systems that are less than 3 years
old and older than 20 years each account for 3.7 % of the
total.

Based on the results, most microservice projects are
being implemented to replace systems between 7 and 15
years old (63 %), with fewer systems falling outside of
this range. Interestingly, the most common age range for
replacement is between 7 and 10, Table 10.

Table 10
In projects where microservices solutions to replace existing
systems are development, how old in general are those systems
that are being replaced?

Choice # %

Less than 3 year 1 3.7%
4-6 years 4 14.8%
7-10 years 10 37.1%
11-15 years 7 25.9%
16-20 years 4 14.8%
Older than 20 years 1 3.7%

Most Microservices Architecture (MSA) projects have
a duration range of 1-3 years, representing 35.7 % of
the total. Following this, projects lasting 7-12 months
account for 32.2 % of the total. Projects with less than 3
months and 4-6 months represent smaller proportions
of the total, at 7.1 % and 10.7 %, respectively. A small
percentage of projects have longer duration, with 3.6 %
lasting between 4-5 years and 10.7 % lasting more than
5 years. MSA projects usually span 1-3 years, with a
significant proportion lasting 7-12 months, Table 11.

MSA projects typically involve the development of 2-
10 self-contained microservices, with 35.7 % consisting
of 2-5 services and 25.0 % consisting of 6-10 services. Ad-
ditionally, 21.4 % of projects involve developing 10-25
services. Fewer projects have a smaller or larger number
of microservices, with only 10.7 % involving one service
and 3.6 % each involving 26-50 services or more than fifty
services. MSA projects usually involve developing a mod-

Table 11
In general, what is the duration of your organization’s typical
MSA project?

Choice # %

Less than 3 months 2 7.1%
4-6 months 3 10.7%
7-12 months 9 32.2%
1-3 years 10 35.7%
4-5 years 1 3.6%
More than 5 years 3 10.7%

erate number of self-contained microservices, ranging
from a few services to several tens of services, Table 12.

Table 12
In general, how many different self-contained microservices
are developed for a one typical MSA project?

Choice # %

One service 3 10.7%
2-5 services 10 35.7%
6-10 services 7 25.0%
10-25 services 6 21.4%
26-50 services 1 3.6%
More than fifty services 1 3.6%

4.2. Success factors and methodologies
In this section, we discuss the results related to the suc-
cess factors and methodologies utilized by the respon-
dents. When asked, "In a few words, can you please men-
tion three of the most important aspects that, in your
opinion, help MSA-related projects to be successful?" the
respondents highlighted several crucial aspects essen-
tial for the success of projects related to Microservices
Architecture (MSA).

Firstly, adopting a cross-functional approach, enabled
by MSA, allows teams to work independently on the de-
velopment, testing, troubleshooting, deployment, and
updating of services. This approach results in faster de-
ployment and troubleshooting. It emphasizes the impor-
tance of planning and adopting a DevOps methodology
to streamline the development and operations processes.

Secondly, careful planning and considering architec-
tural trade-offs are essential to avoid common pitfalls like
the distributed monolith trap. This involves understand-
ing the implications of MSA and making informed deci-
sions regarding technology choices and service bound-
aries.

Thirdly, effective team and stakeholder communica-
tion ensures alignment and collaboration throughout
the migration process. Clear communication facilitates



knowledge sharing, coordination, and support from man-
agement, which are critical for project success.

Other aspects highlighted include the importance of
proper documentation, developer skills, infrastructure
automation, well-defined service boundaries, and early
system performance testing and investigation. Addition-
ally, management buy-in, architectural design, and de-
ployment strategies contribute to the overall success of
MSA-related projects.

In summary, successful MSA-related projects require
a holistic approach encompassing technical expertise,
effective communication, careful planning, and continu-
ous testing and refinement to address the challenges of
migrating to Microservices Architecture.

In MSA migration projects, service boundaries are typ-
ically derived through intuition and skills based on pre-
vious experience, which accounts for 46.2 % of the to-
tal. Another significant proportion of projects (42.3 %)
uses the approach of dividing services based on domain
boundaries, often associated with Domain-Driven De-
sign (DDD) principles. Only a few projects (3.8 %) use
analysis tools to derive service boundaries, while a small
percentage of projects (7.7 %) utilize other unspecified
methods, Table 13.

Table 13
In your typical MSA migration project, how do you derive
service boundaries?

Choice # %

Through dividing services based on
domain boundaries (DDD).

11 42.3%

Through analysis tools. 1 3.8%
Through intuition and skills based
on earlier experience.

12 46.2%

Other 2 7.7%

In most MSA migration projects, diagram modeling
tools like UML, draw.io, Miro, or Visio document the
new system, accounting for 55.6 % of the total. 18.5 % of
projects document the system with separate documents.

On the other hand, textual modeling tools or docu-
mentation in code comments are used in fewer projects,
representing only 3.7 % each. Similarly, a small percent-
age of projects (3.7 %) do not systematically document
their projects, while 14.8 % employ other approaches not
specified in the predefined categories, Table 14.

In the survey, 25 % of respondents considered the
source code of the previous system the most crucial data
source for planning the migration to a Microservices Ar-
chitecture (MSA). Existing documentation in diagrams
(e.g., UML diagrams) was selected by 22.2 % of the respon-
dents, followed by the data schema, chosen by 18.1 % of
the respondents. Other data sources were also consid-
ered necessary, with smaller proportions of respondents

Table 14
In your typical MSA migration project, how do you document
the new MSA-based system?

Choice # %

With diagram modelling tool (for
example UML, draw.io, Miro, Vi-
sio).

15 55.6%

With textual modelling tools (for
example Mermaid).

1 3.7%

With documentations in com-
ments in code.

1 3.7%

With documentation in separate
documents.

5 18.5%

We do not systematically docu-
ment our projects.

1 3.7%

With other approach. 4 14.8%

selecting them, ranging from 1.4 % to 11.1 %, Table 15.

Table 15
Select up to three most important data sources, which you
considered critical on planning the migration process

Choice # %

Source code of the previous sys-
tem.

18 25 %

Existing documentation in
diagrams (for example UML-
diagrams).

16 22.2%

Documentation in text or source
code comments.

5 6.9%

Existing tests and test automation
cases.

8 11.1%

Data schema 13 18.1%
Unwritten knowledge caught with
interviews.

8 11.1%

Data from analysis tools. 1 1.4%
Other 3 4.2%

4.3. Challenges and motivations
In this section, we go through the challenges and moti-
vations of the migration process utilizing the horseshoe
model. According to a survey, the most common mo-
tivation for implementing a microservices architecture
(MSA) in migration projects was to achieve a more cohe-
sive and less coupled project, with 33.4 % of respondents
selecting this as their primary motivation. This high-
lights the importance of maintainability. Around 14.8 %
of respondents cited various motivations, such as gaining
scalability through multiple microservices, allowing for
partial upgrades of the system, and opting for a part-by-
part migration from the legacy system. Similarly, 11.1 %
opted to enable teams to work more independently. Ad-



ditionally, 7.4 % of respondents chose other motivations
that were not explicitly specified. Interestingly, none of
the respondents selected decreased time to market as a
primary motivation for adopting MSA in their migration
projects, Table 16.

Table 16
On the last migration project from old system to MSA, what
was the main motivation for this migration process to take
place?

Choice # %

To gain scalability through multi-
ple microservices.

4 14.8%

To gain more cohesive and less cou-
pled project (maintainability).

9 33.4%

Decreased time to market. 0 0.0%
Faster development iterations. 1 3.7%
Enable teams to work more inde-
pendently.

3 11.1%

Allow for partial upgrades of your
system.

4 14.8%

Part by part migration from legacy
system.

4 14.8%

Other 2 7.4%

Various challenges were faced during the planning
phase of migrating to MSA. One of the major obstacles
identified by a significant proportion of respondents (18.1
%) was the lack of documentation. Furthermore, other
common issues encountered include lack of test coverage
(13.6 %), tightly coupled components (11.8 %), obscure
boundaries between components and functions (11.8 %),
and missing knowledge of the code base (11.8 %). How-
ever, fewer respondents reported unexpected side effects
in components (8.2 %) and technical issues (7.3 %), Table
17.

Several challenges arise during the restructuring phase
of system migration, as highlighted by the survey respon-
dents. The decomposition of the existing system is a sig-
nificant obstacle reported by approximately 18.8 % of the
respondents. This process involves breaking down the
system into smaller, more manageable components or ser-
vices, requiring careful consideration to ensure smooth
transitions and maintain system functionality.

Furthermore, approximately 16.3 % of the respondents
cited the lack of documentation as a challenge during
restructuring. Adequate documentation is crucial for un-
derstanding the system’s architecture and dependencies,
facilitating effective decision-making and communica-
tion among team members.

Additionally, the respondents identified challenges re-
lated to reducing coupling in the new system (15 %), de-
termining the appropriate granularity for microservices
(15 %), managing tightly coupled components (11.3 %),
and recognizing microservice boundaries (11.3 %). Other

Table 17
When planning a migration, it is necessary to reverse engineer
(understand and abstract) the existing system. What were the
challenges when planning the migration to MSA?

Choice # %

Tightly coupled components. 13 11.8%
Unexpected side effects in compo-
nents.

9 8.2%

Lack of test coverage. 15 13.6%
Lack of documentation. 20 18.1%
Missing knowledge of code base. 13 11.8%
Obscure boundaries between com-
ponents and functions.

13 11.8%

Lack of confidence in the code
base.

6 5.5%

Convincing management or other
parties about the migration.

8 7.3%

Informing related stakeholders. 3 2.7%
Technical issues. 8 7.3%
Other. 2 1.8%

challenges mentioned by respondents included the lack
of automated tests (7.5 %), lack of code comments (3.8 %),
and unspecified issues (1.3 %), Table 18.

Table 18
When transforming a system, it is necessary to restructure
(extend and improve) the existing system. What were the chal-
lenges when restructuring the system during the migration
process?

Choice # %

Tightly coupled components. 9 11.3%
Difficulty recognizing microservice
boundaries.

9 11.3%

Decomposition of the existing sys-
tem.

15 18.8%

Lack of automated tests. 6 7.5%
Reducing coupling in the new sys-
tem.

12 15%

Figuring out the right granularity
for microservices.

12 15%

Lack of documentation. 13 16.3%
Lack of code comments. 3 3.8%
Other 1 1.3%

The migration to MSA can present various challenges
when forward engineering a system. According to a sur-
vey, approximately 14.4 % of respondents identified chal-
lenges related to adapting to new development method-
ologies necessitated by microservices, and 13.4 % estab-
lished the infrastructure required for microservices.

Communication and coordination between teams
emerged as another prominent challenge, with approx-
imately 13.4 % of respondents citing this as an obsta-



cle. Effective communication is essential for ensuring
alignment and collaboration among teams working on
different aspects of the microservices-based system.

In addition, respondents noted challenges related to
monitoring and debugging microservices-based systems,
with approximately 14.4 % and 12.4 %, respectively, re-
porting difficulties in these areas. Smaller percentages of
respondents also cited challenges related to monitoring
microservice logging and standardizing microservices.
Testing the new microservices-based system presented
challenges for approximately 9.3 % of respondents. Other
challenges mentioned by respondents included building
the first proof of concept (3.1 %) and unspecified issues
(4.1 %), Table 19.

Table 19
When forward engineering a system, it is necessary to gen-
erate (refine and improve) code. What were the challenges
when forward engineering the system during the migration
process?

Choice # %

Establishing the infrastructure re-
quired for microservices.

13 13.4%

New development methodology be-
cause of microservices.

14 14.4%

Monitoring microservice-based
system.

14 14.4%

Communication between teams. 13 13.4%
Monitoring microservice logging. 7 7.2%
Debugging microservice system. 12 12.4%
Standardizing microservices. 8 8.2%
Testing new microservice-based
system.

9 9.3%

Building the first proof of concept
(PoC).

3 3.1%

Other 4 4.1%

We got varied responses when asking for open com-
ments about MSA migration at the end of the survey.
The comments warn about the complexity of MSA migra-
tion and stress the importance of careful planning and
refactoring to avoid issues such as the distributed mono-
lith trap. Financial implications are mentioned. Security
concerns and the significance of data transfer between
services are also highlighted. Furthermore, experiences
with both successful and unsuccessful MSA implemen-
tations emphasize the need for thorough planning and
execution.

5. Discussion
The first research question focused on the project and
demographic details related to MSA migrations. With
this research question, we wanted to know what kind
of organizations, teams, and timelines are involved in

migrating toward MSA. The results regarding the first
research question show that most respondents have sig-
nificant software development backgrounds, indicating
that experienced professionals usually undertake MSA
migrations. 60.7 % of participants have over ten years of
experience, while 89 % have at least four years, highlight-
ing the advanced expertise required for successful MSA
migration projects. A significant 77.8 % of respondents
have between one to six years of experience, specifically
in MSA re-engineering. This suggests that while MSA is
a relatively newer field, many professionals have quickly
gained considerable expertise.

Regarding the company domain, the banking or ac-
counting sector seems to be the most common field for
MSA projects, emphasizing the critical need for scalable
and flexible architectures in financial services. How-
ever, there is a lot of scattering in this question, with
42.3 % not identifying with any specific domain, illustrat-
ing the widespread applicability of MSA across various
sectors. Teams usually have 3-10 members, suggesting
that medium-sized teams are optimal for MSA projects.
However, team size fluctuation is typical, with nearly all
projects experiencing some degree of fluctuation (93 %),
primarily occurring only sometimes (53 %). This likely
reflects these projects’ adaptive and iterative nature.

Most MSA projects (81.5 %) are aimed at replacing
outdated monolithic systems, with these legacy systems
being between 7 and 15 years old. This indicates a strong
trend towards modernization, with MSA offering a viable
pathway out of the limitations of older architectures.

The duration of MSA projects varies, with a notable
portion taking between 1-3 years (35.7 %) or 7-12 months
(32.2 %). This range reflects both the complexity and
the scale of such migrations. A vast majority deploy a
moderate number of microservices (2-25), with the most
common range being 2-5 microservices (35.7 %). This
suggests a cautious approach to microservices deploy-
ment, likely aimed at managing complexity and ensuring
stability during the transition.

The second research question targeted the methodolo-
gies and success factors of the MSA project. We wanted to
know what methodologies were used in MSA migration-
related tasks and what critical factors could aid in MSA
migration. The result of the second research question
shows that in MSA projects when determining service
boundaries, 46.2 % of respondents rely on intuition and
skills from previous experience to assess service bound-
aries. In comparison, 42.3 % use DDD principles. This
indicates a balanced reliance on empirical knowledge and
methodical, principle-based strategies.

Regarding documentation practices, 55.6 % of respon-
dents indicated using diagram modeling tools such as
UML, draw.io, Miro, or Visio in documenting MSA mi-
grations, suggesting a strong preference for a visual rep-
resentation of system architecture. Meanwhile, 18.5 %



rely on separate documents for documentation, possibly
indicating a supplementary strategy to detailed diagrams
or a preference for textual over visual documentation in
specific contexts.

When asked about the sources of information for plan-
ning migrations, 25 % of respondents consider the source
code of the previous system as the most crucial data
source for migrating to MSA, while 22.2 % view existing
documentation, such as diagrams (e.g., UML), as the most
valuable.

These findings highlight the importance of a bal-
anced approach that values both experience and theo-
retical frameworks in defining service boundaries, the
widespread use of visual documentation in understand-
ing, planning, and communicating the architecture of
MSA systems, and the necessity of a deep understanding
of the legacy system and the importance of thorough
documentation practices.

The third research question was aimed at understand-
ing the motivations and challenges of the migration pro-
cess. Through these questions, we wanted to comprehend
what motivates migrations, the challenges, and at what
phase of the migration challenges arise (mapped using
the horseshoe model). Results of the third research ques-
tion show that the main reason for adopting MSA, as
reported by 33.4 % of respondents, is to create a more co-
hesive and less coupled project structure. This strategic
goal aims to improve system modularity, making it easier
to maintain, evolve, and scale applications. Other signifi-
cant motivations include the ability to scale parts of the
system independently through multiple microservices
and the flexibility to perform partial system upgrades.
Allowing the teams to work more independently is also a
key driver, leading to organizational benefits such as en-
hanced productivity and faster development cycles. This
aligns with the MSA principle of giving teams auton-
omy over their respective services, which can improve
innovation and efficiency.

During the reverse engineering stage of the migration
process, the most prominent challenges include a lack of
documentation, insufficient test coverage, and obscure
boundaries between components and functions. These
issues underscore the difficulties in understanding and
preparing the existing system for a transition to MSA,
emphasizing the need for thorough groundwork and clear
system delineation.

Challenges such as the decomposition process, manag-
ing tightly coupled components, and a lack of documen-
tation emerge during the transformation phase of the mi-
gration process. These reflect the technical complexities
of breaking down a monolithic system into microservices,
which requires a deep understanding of the domain and
the existing system’s architecture.

The results from the forward engineering phase of
MSA migration reveal several key challenges that organi-

zations encounter as they transition to this architectural
style. These challenges included technical and infras-
tructural hurdles and underscored the significance of
organizational and process-oriented adjustments.

Regarding participant demographics, our research
aligns with Taibi et al. [13] and Francesco et al. [15].
Our results show that most respondents have significant
experience in software development, with a substantial
portion specifically experienced in MSA re-engineering.
This emphasizes the importance of experienced person-
nel in MSA projects.

Furthermore, we observed small to medium team sizes,
which reflected the industry standard. It is a testament
to MSA’s encouragement of smaller, more agile teams, a
point also mentioned by Francesco et al. [15] and Taibi et
al. [13]. Our specific findings on the number of microser-
vices deployed and the project durations provide detailed
insights into the scale and time frame of MSA migrations,
which are less explicitly detailed in the comparative stud-
ies. Interestingly, our results show the generally positive
management reaction to MSA migration and the high
degree of business-IT alignment, which the comparative
literature does not cover extensively.

We observed cohesive and less coupled projects as a
primary motivation for MSA migration. Authors like
Taibi et al. [13] and Fritzsch et al. [16] also highlight
motivations such as scalability, maintainability, and the
modular architecture of microservices as drivers for adop-
tion.

Regarding the challenges in the reverse engineering
phase, we have identified several challenges, including
the lack of documentation, insufficient test coverage, and
tightly coupled components. Similar findings were re-
ported by Francesco et al. [15]. However, their partici-
pants were more concerned with time to market, high
amount of coupling, and maintenance difficulties. Chal-
lenges related to understanding the system, documenting
it, and identifying independent components for decou-
pling are recurring themes, emphasizing the crucial need
for clear system understanding and abstraction capabili-
ties.

We have identified several critical challenges related
to the transformation phase, including the system’s de-
composition, lack of documentation, tight coupling, mi-
croservice granularity, and boundary recognition. In
their survey, Francesco et al. [15] also found similar chal-
lenges, emphasizing the nuanced difficulties of restruc-
turing systems for MSA migration. These results show
the multifaceted nature of MSA migration, encompass-
ing technical, organizational, and documentation-related
challenges in system transformation.

In the forward engineering phase, the most common
challenges included adopting a new development method-
ology, setting up infrastructure, monitoring the MSA sys-
tem, communicating between teams, and debugging the



MSA system. These challenges emphasize the need to
adopt new methods, set up infrastructure, and address
operational challenges such as monitoring, debugging,
and ensuring effective communication. Francesco et al.’s
[15] findings echo many of these concerns, highlight-
ing the need for a mindset shift among developers and
the overarching goal of achieving uniformity across ser-
vices. These insights underscore the multifaceted nature
of adopting MSA, encompassing initial planning, restruc-
turing, practical execution, and standardization of the
new architecture.

6. Threats to validity
We used the classification by Wohlin et al. [19] to clas-
sify the threats to validity related to this research paper.
Wohlin et al. divide threats to validity into four classes:
conclusion, internal, external, and construct. We have
identified internal, external, and conclusion threats. Inter-
nal threats affect the study results without the knowledge
of the researchers. External threats hinder the application
of the results to the real world. Conclusion threats affect
the credibility of the conclusion based on the results.

Regarding the internal bias, we identified a threat in
the control of respondents. We did not have control over
the respondents as the survey was conducted online. To
mitigate this threat, we attempted to contact people in
person to confirm their skill set before asking them to
complete the survey, and we marketed the survey on
social media in specialized forums to get the people with
the right expertise to fill it. Additionally, we read through
the responses carefully to identify any misleading or
harmful responses. We found none of them.

Another form of internal bias is researcher bias, often
introduced to the research process by researchers and
their conscious and unconscious beliefs and expectations.
To mitigate this bias, we will be transparent by publishing
everything related to this study, including the survey
form and the results, so that other researchers can verify
our conclusions.

Regarding the external threats to validity. We identi-
fied the low rate of respondents as a possible threat. 339
respondents opened this survey; it was started by 66 and
submitted by 28 persons, giving us a response rate of
8.2 %, which is less than one in ten but still very good
for an online survey. However, it has to be remembered
that due to difficulties in identifying a large enough audi-
ence with relevant skills, this survey was advertised on
social media and websites aimed at professional software
developers. Furthermore, low respondent numbers are
expected when surveying such a specialized field. In or-
der to give perspective, according to the Finnish Ministry
of Economic Affairs, the whole of the Finnish software
development sector consisted of 53000 personnel in 2018

[20]. We could not find data to estimate how many people
work with MSA migrations.

Concerning the conclusion bias, we identified the pos-
sibility of sampling bias, meaning that the population
surveyed does not represent the entire population. This
is a concern as we did not have many respondents. How-
ever, we consider the number of respondents enough for
this study as the pool of possible candidates in Finland is
not that large.

7. Conclusion
Software life-cycle means all products need replacement,
revision, or removal from the corporate portfolio. How-
ever, some systems deemed valuable enough are replaced
with modernized versions of the same system, usually
meaning that they are migrated from monolithic systems
to microservice architectures. In this paper, we surveyed
28 industry professionals to gather project details, moti-
vation, and challenges of MSA migration.

Our survey results indicated that most respondents
had significant experience, suggesting that experienced
practitioners mainly do MSA migration. The seniority of
their roles supports this claim. Banking or accounting is
the most cited business domain, though a significant por-
tion did not specify a domain. Most work in teams of 3-10
members, aligning with industry norms despite the no-
table presence of larger teams. MSA projects frequently
experience team size fluctuations. Service boundaries
are often derived using intuition or previous experience,
with many also using DDD principles. The primary moti-
vation for MSA migration is to achieve a more cohesive,
less coupled project, underlining the value of maintain-
ability. The main challenges in reverse engineering of the
migration process include a lack of documentation, in-
sufficient test coverage, component coupling, and vague
component boundaries. In the transformation phase, the
main challenges are decomposing existing systems, lack
of documentation, reducing coupling, and determining
microservice granularity. Finally, the challenges in the
forward engineering phase were adapting to new method-
ologies, establishing infrastructure, team communication,
system monitoring, and debugging.

Based on the literature review of similar works, we
can observe common motivations such as scalability
and maintainability and challenges like decoupling from
monoliths, migrating databases, and establishing effec-
tive microservice communication. Key findings across
studies also stress the need for new development method-
ologies and addressing infrastructure requirements as
critical aspects of MSA migration. Our research adds
to the body of knowledge by introducing insights into
adapting to microservices-specific practices and the op-
erational adjustments necessary for successful migra-



tion. Moreover, our study complements existing findings
by broadening the geographic scope of MSA migration
research. It provides a broader perspective on the chal-
lenges and motivations for adopting MSA across different
regions.

For future work, we aim to move forward with our
observations and conduct qualitative studies in selected
software organizations to understand better the poten-
tial pitfalls and requirements for successful migration
processes. With our observations, we intend to define a
framework that could be applied in the software main-
tenance and re-engineering life cycles to prepare legacy
systems for migration and modernization processes or as-
sess the feasibility of committing to one as a replacement
for a legacy system.

References
[1] D. L. Parnas, Software aging (1994). doi:10.1109/

ICSE.1994.296790.
[2] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microser-

vices architecture enables devops: Migration to a
cloud-native architecture, IEEE Software 33 (2016)
42–52. doi:10.1109/MS.2016.64.

[3] M. Garriga, Towards a taxonomy of microservices
architectures, in: In: Cerone A., Roveri M. (eds)
Software Engineering and Formal Methods. SEFM
2017. Lecture Notes in Computer Science., volume
10729, Springer, 2018, pp. 203–218. doi:10.1007/
978-3-319-74781-1_15.

[4] M. Richards, Microservices vs. service-oriented
architecture, in: Computer Science - Research and
Development, O’Reilly Media, 2016.

[5] F. M, Microservices Guide, Technical Report, mart-
infowler.com, 2014.

[6] P. Calcado, Building Products at SoundCloud—Part
II: Breaking the Monolith, Technical Report, Sound-
Cloud, 2014.

[7] C. Bampis, C. Chen, A. Moorthy, Z. Li, Netflix Video
Quality at Scale with Cosmos Microservices., Tech-
nical Report, Medium, 2021.

[8] E. Haddad, Service-Oriented Architecture: Scaling
the Uber Engineering Codebase As We Grow., Tech-
nical Report, Uber, 2015.

[9] D. S. Linthicum, Practical use of microservices
in moving workloads to the cloud, IEEE Cloud
Computing 3 (2016) 6–9.

[10] W. Hasselbring, G. Steinacker, Microservice ar-
chitectures for scalability, agility and reliability in
e-commerce, in: 2017 IEEE International Confer-
ence on Software Architecture Workshops (ICSAW),
IEEE, 2017. doi:10.1109/ICSAW.2017.11.

[11] K. Tuusjärvi, J. Kasurinen, S. Hyrynsalmi, Mi-
grating a legacy system to a microservice architec-

ture, e-Informatica Software Engineering Journal
18 (2024) 240104. doi:10.37190/e-Inf240104.

[12] R. Kazman, S. Woods, S. Carriere, Requirements
for integrating software architecture and reengi-
neering models: CORUM II, in: Proceedings Fifth
Working Conference on Reverse Engineering (Cat.
No.98TB100261), 1998, pp. 154–163. doi:10.1109/
WCRE.1998.723185.

[13] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, moti-
vations and issues for migrating to microservices
architectures: An empirical investigation 4 (2017).
doi:10.1109/MCC.2017.4250931.

[14] J. Ghofrani, D. LÃ¼bke, Challenges of microser-
vices architecture: A survey on the state of the
practice, in: ZEUS, 2018.

[15] P. Francesco, P. Lago, I. Malavolta, Migrating to-
wards microservice architectures: An industrial sur-
vey, 2018, pp. 29–2909. doi:10.1109/ICSA.2018.
00012.

[16] J. Fritzsch, J. Bogner, S. Wagner, A. Zimmermann,
Microservices migration in industry: Intentions,
strategies, and challenges, in: 2019 IEEE In-
ternational Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 481–490. doi:10.
1109/ICSME.2019.00081, ISSN: 2576-3148.

[17] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann,
Microservices in industry: Insights into technolo-
gies, characteristics, and software quality, in: 2019
IEEE International Conference on Software Archi-
tecture Companion (ICSA-C), 2019, pp. 187–195.
doi:10.1109/ICSA-C.2019.00041.

[18] H. Knoche, W. Hasselbring, Drivers and barriers for
microservice adoption â a survey among profession-
als in germany 14 (2019) 1:1–35. doi:10.18417/
emisa.14.1.

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, A. Wesslén, Experimentation in Soft-
ware Engineering, Springer, 2012. doi:10.1007/
978-3-642-29044-2.

[20] Ministry of Economic Affairs, Toimialaraportit.
ohjelmistoala 2020 (2020) 24–25.

http://dx.doi.org/10.1109/ICSE.1994.296790
http://dx.doi.org/10.1109/ICSE.1994.296790
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1007/978-3-319-74781-1_15
http://dx.doi.org/10.1007/978-3-319-74781-1_15
http://dx.doi.org/10.1109/ICSAW.2017.11
http://dx.doi.org/10.37190/e-Inf240104
http://dx.doi.org/10.1109/WCRE.1998.723185
http://dx.doi.org/10.1109/WCRE.1998.723185
http://dx.doi.org/10.1109/MCC.2017.4250931
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1109/ICSME.2019.00081
http://dx.doi.org/10.1109/ICSME.2019.00081
http://dx.doi.org/10.1109/ICSA-C.2019.00041
http://dx.doi.org/10.18417/emisa.14.1
http://dx.doi.org/10.18417/emisa.14.1
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

	1 Introduction
	2 Study design
	3 Related research
	4 Results
	4.1 Project details
	4.2 Success factors and methodologies
	4.3 Challenges and motivations

	5 Discussion
	6 Threats to validity
	7 Conclusion

