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Abstract
Hybrid intelligence in autonomous driving systems can potentially augment human-machine capabilities and lead to better data-driven
decision-making. Hence, various decision scenarios, such as route planning and change, can benefit from increased optimization.
However, while advancements in research and practice focus on developing technologies for enhancing vehicle autonomy, performance,
and algorithms, the requirements for designing such complex hybrid intelligence systems were not found to be elaborated in the
existing literature. Accordingly, as part of the 6G Visible project and as a result of expert interviews, this paper proposes a set of
design requirements for developing autonomous driving systems with hybrid intelligence. The design requirements cover a range
of multi-faceted attributes that should be reflected in the system, including the decision, decision-making process, knowledge, data,
human, machine, and decision evaluation considerations. Consequently, a set of knowledge requirements for the system is proposed,
from which an ontology can be developed, and the required data can be further determined. Therefore, the design and knowledge
requirements contribute to theory by establishing the initial objectives of a design science artifact, which can be developed in future
research. Furthermore, they support a more comprehensive and sociotechnical view for the practical development and implementation
of hybrid intelligence in autonomous driving systems beyond the prevailing focus on vehicular capabilities.
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1. Introduction
Autonomous driving has evolved with the advancements in
AI, sensor technology, and intelligent control in a multidisci-
plinary intersection of research [1]. While the concept was
first implemented decades ago, technological developments
have led to increased attention and research in autonomous
driving systems (ADS) [2].

An ADS generally has six stages or layers, with each stage
feeding new information into the next stages: (1) the sen-
sor and hardware layer for gathering data about static and
dynamic objects from the environment, (2) the perception
layer for performing object tracking and detection tasks, (3)
the localization and mapping layer for getting the vehicle’s
position in the environment, (4) the assessment layer for es-
timating the overall risk and performing predictions to avoid
accidents, (5) the path planning and decision-making layer
for getting the shortest path from start to end point without
collisions, and (6) the control layer which uses actions to
control the vehicle to perform the path [3].

The main focus of this paper is on the decision-making
layer; however, the aim is not to attain the shortest path
but rather to utilize hybrid intelligence (HI), or hybrid aug-
mented intelligence (HAI) as it is referred to in some pa-
pers [1], for planning the best route according to multiple
human-machine criteria. This is because decision-making
and planning can evolve by augmenting human andmachine
intelligence into HI. Human drivers have the capability to
improve the performance of autonomous driving in real-
world traffic, and their feedback should be introduced into
the learning process of ADSs [1].

Nevertheless, although research extensively covers tech-
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nologies, methods, techniques, and algorithms for enhanc-
ing vehicle autonomy and performance, research on hybrid
intelligence autonomous driving systems (HI-ADS) is lim-
ited. Within such research, there is a further gap on how
to design HI-ADS in practice and the relevant requirements
and necessary knowledge. Therefore, the research question
of this paper is as follows:

“What are the design and knowledge requirements for
human-machine hybrid intelligence in autonomous driving
systems?”

Expert interviews were conducted within the scope of
the 6G Visible project to answer the research question and
propose a set of design requirements and knowledge re-
quirements for HI-ADS. The paper is structured as follows.
Section 2 provides the theoretical background on ADS and
human-machine HI. Section 3 covers the research method
and design, including the research process, a description of
the 6G Visible project and the route planning and change de-
cision use case, and a summary of the interviews conducted.
Subsequently, the results are presented and discussed in Sec-
tion 4. Finally, Section 5 concludes the paper and suggests
future work.

2. Theoretical Background

2.1. Autonomous Driving Systems
ADSs are defined by the Society of Automotive Engineers
(SAE) as “vehicle driving automation systems that perform
part or all of the dynamic driving task on a sustained basis”
[4]. There are six levels of driving automation from Lev-
els 0 to 5. Level 0 systems exhibit no driving automation.
Level 1 systems include primitive driver assistance, while
Level 2 systems have partial driving automation into which
advanced driver assistance systems are integrated. Level
3 systems exhibit conditional driving automation where
drivers should be ready to respond and take over. On the
other hand, Level 4 systems have high driving automation
and do not require human attention but can only operate in
limited domains and infrastructures. Finally, Level 5 systems
are those with full driving automation [4][5].
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The scope of this paper focuses on Level 1, 2, and 3 ADSs,
which require some form or degree of human supervision
and intervention. In the future, this research can be devel-
oped for Level 4 ADSs. However, Level 0 and 5 ADSs, which
either require full or no driver control and intervention, are
outside the scope of this research.

The ability of autonomous driving to handle dynamic driv-
ing environments is based on two fundamental components:
decision-making and motion planning. In decision-making,
information is acquired on traffic perception and vehicle
states, and driving tasks are accomplished by generating
desired driving behavior. Next, motion planning occurs by
calculating the desired trajectory or vehicle actuator com-
mands [1].

Higher levels of automation are more complex, although
still lacking in outperforming human drivers, and require a
perception system (which perceives data through sensors
from the environment), traffic rules interpreter, and a ve-
hicle controller in addition to the decision system which
controls vehicle behavior and what reaction the system
should perform [6].

2.2. Human-Machine Hybrid Intelligence in
Autonomous Driving

Despite recent technological advancements, many tasks are
yet unsolvable by machines alone and require sociotechni-
cal ensembles of humans and machines, or HI systems [7].
HI emphasizes human-AI complementarity by utilizing the
senses, perceptions, emotional intelligence, and social skills
of humans with the advanced processing, computational,
and pattern detection capabilities of AI [8].

Furthermore, such human-machine collaboration leads to
collaborative rationality, which is no longer bounded by the
limitations of each and can lead to higher quality and more
informed data-driven decisions [9]. Accordingly, a human
and machine agent collaborate together, informed by data
from various sources. Collaborative rationality and/or HI
then facilitate data-driven decision-making, and the results
of the decisions and their evaluation provide feedback that
can be fed back into the system to enable new types of
learning [10].

Many application areas for HI have been discussed
throughout the literature. For example, HI can be useful for
autonomous vehicles, which require accurate and up-to-date
comprehensive maps to provide real-time environmental
information. Human agents could provide information and
knowledge about the streets, such as rush hour situations,
detours in various times and conditions, and their experi-
ences and recommendations for navigation. On the other
hand, real-world information could be provided by traffic
cameras and monitoring sensors, as well as satellites and
global maps. Advanced algorithms can then suggest navi-
gation controls based on fusing both human and machine
intelligence [11].

HI can lead to a semi-autonomous driving architecture
through which human and machine agents can coopera-
tively achieve driving tasks with better system performance
than would be achieved by each on their own [12]. Further-
more, data from human guidance and real-time evaluation
reflects the driving preferences of humans and can improve
the learning quality of machine agents [1]. Nevertheless,
such systems are very complex, require high levels of infor-
mation fusion, and are encumbered by several challenges,

such as the integration of complicated systems, ensuring
robustness and reliability in complex scenarios and weather
conditions, incorporating human cognition and knowledge
with existing information for decision-making, and data
privacy protection [12].

2.3. Research Gap
While some studies focus on augmenting human feedback
to reinforcement learning in the decision-making and plan-
ning of autonomous vehicles [1], human input is only ob-
served in ex-post evaluation of the vehicle’s decisions, and
human knowledge is not augmented ex-ante into the deci-
sion. Other studies aim to model human psychology and
cognition into intelligent decision-making systems for au-
tonomous driving [6]. However, such research mainly fo-
cuses on enhancing the autonomy, algorithms, and perfor-
mance of the vehicle (e.g. [13][2][3]) without harnessing
the capabilities and knowledge of human drivers during the
collaborative driving and decision-making process.

Another study emphasized the importance of HI for au-
tonomous urban vehicle control through a theoretical exam-
ple, with no practical guidelines on the design requirements
of such systems [11]. A theoretical architecture for HI in
autonomous driving was also proposed, along with several
research challenges [12]. Nonetheless, the requirements
for designing such systems in practice are not elaborated.
Hence, this research aims to define the design and knowl-
edge requirements for HI in ADSs.

3. Research Method and Design

3.1. Research Process
A design science research (DSR) methodology is planned to
be adopted for designing a HI-ADS. This paper constitutes
the initial stages of defining the requirements of the solu-
tion artifact [14] according to the practical needs derived
from the environment and the knowledge gained from the
knowledge base [15].

First, the 6G Visible project within which this research
is conducted is explained. Next, the data-driven decision-
making use case, which was determined to narrow the scope
of the research, is elaborated. Consequently, data was col-
lected through several semi-structured interviews, which
are covered in subsection 3.5.

3.2. The 6G Visible Project: Looking Around
the Corner

The 6G Visible project aims to develop advanced solutions
for autonomous and semi-autonomous driving while consid-
ering the capabilities of 6G network technologies to support
real-time, safety-critical services. These solutions aim to
provide visibility for objects not visible to drivers or de-
tectable by existing vehicle sensors, even in various weather
conditions. This involves creating dynamic, real-time mod-
els of the environment, traffic, and weather conditions, as
well as detecting obstacles for autonomous driving.

Furthermore, it involves augmenting human rationality
and knowledge with machine rationality and artificial intel-
ligence while utilizing various data and knowledge sources
(e.g. vehicle, sensor, traffic, weather, feedback) to enhance
data-driven decision-making in autonomous driving. The



research is conducted through a collaboration between soft-
ware engineering/information systems, the Finnish Meteo-
rological Institute (FMI), and leading industry collaborators
in AI, digital twins, and autonomous driving.

Current autonomous vehicle solutions rely on static en-
vironmental models (such as maps of city streets and build-
ings, etc.) and integrated sensors on the vehicle. While
they work well for many applications, they are limited in
providing real-time information and rapidly changing situa-
tions beyond the sensor’s range. Furthermore, icy and harsh
weather conditions can affect driving and road conditions
in various ways that may not traditionally be accounted for.
Hence, real-time dynamic environmental data, including
weather adaptation, is essential to enhance autonomous
systems.

3.3. Data-Driven Decision-Making Use Case:
Route Planning and Change

To narrow the scope of the research, three data-driven
decision-making use cases were determined based on their
dependence on the changing conditions of the external en-
vironment. First, in the route planning and change use case,
the HI system should determine the optimal route and adapt
to complex road situations, changes in the environment,
and unexpected weather conditions. Second, in the parking
use case, the system should support automating the parking
process according to the relevant external conditions. Third,
in the weather and lighting adaptation use case, the system
should adjust to various weather and lighting conditions
based on data and the environment.

The first data-driven decision-making use case, route
planning and change, was selected as the most comprehen-
sive and highest-priority use case to start with.

Finding the route on the road network from the origin
to the final destination is the responsibility of the global
planner in the ADS, where high performance has become
an industry standard through advancements in GPS and
offline map navigation systems. However, depending on the
country or location, road hierarchies differ, and the shortest
path may not be the fastest or most desirable. Furthermore,
there are other considerations, such as avoiding obstacles,
satisfying optimization criteria, and understanding road
semantics, lanes, and drivable surfaces [5].

In many countries, such as Finland, weather conditions
complicate autonomous driving. Winter conditions that
cause slippery and icy road surfaces and low visibility due
to fog, heavy snowfall, or blizzards and blowing snow are
challenging for ADSs and may require making sudden or
precautionary changes to particular routes. Precise and
real-time weather information is necessary, along with in-
formation about road conditions, obstacles, flooding, or
other unexpected situations. Additionally, instruments that
detect the driving circumstances, such as sensors, cameras,
LiDAR, and radar, are crucial for autonomous driving and
yet face many vulnerabilities in harsh weather and winter
conditions [16].

3.4. Interview Data Collection
An iterative top-down approach was adopted for designing
semi-structured, qualitative interview questions and for data
collection, as shown in Figure 1. Rather than defining the
available data that can be used to support the data-driven
decision, we started by defining the decision scenario and

Figure 1: An iterative top-down approach for defining knowledge
and data requirements based on the data-driven decision scenario

Table 1
Interviewee details

No. of Interviewees Organization

2 Finnish Meteorological Institute
1 Siili Auto
1 Elektrobit
1 Driving school teacher in Finland
1 Local taxi company

context and drilling down to the knowledge and then the
data required to support such decisions. By following this
approach, we can focus our resources to utilize only the
necessary knowledge and data.

The interview questions were structured into themes
according to the components of the framework proposed
in Section 3.1. and the elements of data-driven decision-
making [1]. Hence, there were questions about the deci-
sion, decision-making process, knowledge, data, human
decision-maker, machine, and decision evaluation as sepa-
rate attributes.

Deductive thematic analysis [17] was then applied to
group the requirements discussed during the interviews
according to the predefined themes.

A total of 6 interviews, each approximately 2 hours long,
were conducted as summarized in Table 1. Accordingly, the
interviewees were provided with the interview questions,
and open discussions were held.



4. Results and Discussion

4.1. Dynamic Route Planning and Change
Decision Considerations

The dynamic route planning and change decision scenario
is a complex data-driven decision with various internal and
external factors. The considerations that must be accounted
for within the decision scenario that resulted from the in-
terviews are synthesized below. They are categorized into
themes based on the seven attributes upon which the inter-
views were structured.

4.1.1. Decision

The decisions involve selecting and adapting the optimal
route based on the combination of a variety of factors, in-
cluding weather conditions, road friction, road conditions,
visibility, accident alerts, traffic information, speed limits,
familiarity with the route, road maintenance, traffic jams,
construction or roadwork, rest points, personal preferences
such as scenery and facilities, how busy the route is, and the
driver’s urgency. Additionally, considerations like vehicle
type (personal vs. public transport), driver experience, and
road safety are important to account for.

The necessity for route adaptation or change usually
arises from emergent conditions such as changes in weather,
mostly based on road friction from icy conditions, sudden
traffic changes, accidents or emergencies, or alterations in
driver preferences or requests.

Human preferences, experience, and input play a large
role in route planning and change. For instance, drivers
may prefer particular routes based on services (e.g. cer-
tain gas stations), familiarity with the route, avoidance of
roadwork, or other preferences, regardless of the expected
time for taking the route or other variables. Additionally,
icy roads complicate driving and are difficult to account for.
They require consideration of the road lanes, which are not
visible in such conditions, friction, speed, traffic, and other
variables.

For example, one interviewee remarked, “We have tested
the automatic vehicle withmachine vision that works during
summer somehow, but not very reliably even then, and
winter would be impossible because it’s trying to search for
the white [lane] lines.” Additionally, sensors are not always
accurate (e.g. may be blocked and sense a normal road as
icy). This usually requires an experienced driver who can
realize whether or not the road is actually icy.

As another example, one interviewee stated, “I know I
don’t change the route because basically, I know that there’s
no traffic jam there. There’s, for some reason, a slow car
driving there, and it’s giving false readings to that server,
and the server is sending to my GPS in my own vehicle data
that there’s a traffic jam in front, because there are slow cars
there…it’s not really necessary to drive 20-30 kilometers
more because of that.”

Hence, traffic congestion may be due to a few cars which
are slow (e.g. due to weather or road conditions) and may
not require a route change. However, the system might
usually suggest changing to another, longer route due to
traffic congestion. An experienced driver would know that
this is not actual congestion, but due to a slow car which
will pass soon. Accordingly, it would not be necessary to
change to a less desirable route.

While route planning and optimization is an important
aspect for autonomous driving, both for individuals and
public personal transportation, such as taxis, it is currently
mainly managed by the personal knowledge and experience
of the drivers.

4.1.2. Decision-Making Process

The decision-making process requires environmental aware-
ness and starts with the collection of data regarding available
routes, estimated travel times, and current and predicted
road and weather conditions. This data is then evaluated
against a set of criteria that may include safety consider-
ations, efficiency metrics, and personal preferences. Ac-
cordingly, the alternatives may be prioritized, and a route
choice is made. The process should be iterative and allow
reassessing and modifying the decision and plans based on
incoming information and changing conditions.

The process is highly dependent on the level of automa-
tion of the ADS. Lower levels require more human involve-
ment in the decision-making process, while higher levels
would necessitate more automated processes with less hu-
man intervention.

4.1.3. Knowledge

Informed decision-making in the context of route planning
and change requires access to and understanding of var-
ious knowledge areas. Essential knowledge includes ac-
cess to and interpretation of reliable traffic, road condition,
and weather information, as well as their implications on
the route, safety, and driving speed. Furthermore, while
knowledge about other vehicles is crucial, current vehicle-
to-vehicle communication is limited.

Additionally, the application of real-time data from
weather stations and the utilization of algorithms for rapid
data analysis and interpretation are critical for making in-
formed decisions about route adaptations. Human intuition
and experience remain to be important sources of knowl-
edge and understanding of the environmental context.

4.1.4. Data

The decision is heavily reliant on multiple data sets, which
include accurate GPS and location data, sensor, camera, and
LiDAR data, detailed road weather information, traffic con-
gestion reports, construction and accident updates, visibility
(e.g. fog or increased sunshine), and precise road surface
temperatures and conditions (e.g. ice, snow, or water pres-
ence). Nevertheless, GPS routes, and maps are not always
precise. One interviewee commented, “We need accurate
GPS routes, but the maps aren’t usually so accurate. You
need to go and measure them yourself with [real time kine-
matic] RTK GPS, usually.”

Regarding weather data, one interviewee said, “We need
to be wary in situations where it is below 0 degrees [C] or
close to 0 degrees, and then we have observations, and we
also model the road conditions; which means if there is ice
or snow or water on the road.”

The sources of data range from the vehicle and its sensors
and systems to external weather stations or other services
and data sources. Derived or calculated variables are also
necessary, such as friction levels, driving condition indices,
and precipitation information. One interviewee informed,
“We also calculate these kinds of more advanced variables



like friction that tell us if the friction value is low, then
it’s slippery, and if it’s high, then it’s not slippery and also
gives this kind of three-level index that is the driving condi-
tion: normal, bad, or very bad. Precipitation information is
probably important, like if there’s a storm or something.”

Additionally, for route changes, new information ac-
quired en route is crucial. The availability of traffic ac-
cident data, changes in weather forecasts (according to an
interviewee, “They [weather data] can also change because
sometimes the forecast is wrong and then we suddenly no-
tice…sometimes there can be these kinds of exceptional
changes.”), and real-time traffic flow data further inform
decision-making. Metadata and decision variables can be
recorded in logs to monitor the decision and inform future
decisions.

4.1.5. Human Decision-Maker

The role of the human is highly dependent on the level of
ADS automation. Within the scope of this research, humans
play a critical role in overseeing and finalizing decisions,
with the ability to adjust or override automated suggestions
based on their personal judgment, experience, and real-time
observations. The human decision-maker generally evalu-
ates automated recommendations, verifies machine obser-
vations (e.g. from sensors), ensures safety, and considers
personal preferences or knowledge of local conditions.

Some limitations to human drivers exist. For example, not
all drivers are effective at predicted driving, or predicting
and reacting to driving scenarios, due to limitations in cog-
nitive and memory functions. Furthermore, emotions may
also lead to poor decisions. For example, if there is a traffic
delay, a driver’s mood may become negatively affected and
lead to rash decisions that wouldn’t have otherwise been
made.

Nevertheless, while such human errors and biases exist,
these can be reduced through the provision of simplified
information and reliable data to support decision-making.
For example, knowing what is causing the traffic delay and
possible predictions may prevent negative moods and lead
to better decisions. Additionally, more minor errors can
automatically be corrected or alerted to by the vehicle, such
as lane keeping. For example, an interviewee added, “I
would say in normal cars, there are cameras monitoring
humans, so if they fall asleep or something like that, then
their vehicle can try to stop at least some of them…Of course,
the lane keeping and stuff like that, there’s a lot of that
already in modern cars.”

Furthermore, humans may have more experience as well
as environmental and situational awareness than machines.
For example, if the ADS suggests a route change based on
a traffic jam, a human who has more experience with that
particular route may know that the traffic jam is due to a
slow car, which will clear up quickly, and that the current
route remains more optimal than a route change.

4.1.6. Machine

The role of the machine is also dependent on the level of
the ADS automation, with higher levels requiring larger ma-
chine roles. Nevertheless, the current status of technology
requires human oversight, validation, and control. Thus,
humans generally make the final decisions. Machines can
support (or make) the decision by suggesting (or taking)
routes based on programmed criteria, preferences, safety,

and efficiency, while drawing on quality data and updated
maps. However, current systems remain subpar in terms of
data and recommendation reliability, availability of more
comprehensive information and environmental awareness,
consideration of a variety of human preferences, and effec-
tive and efficient communication with the human driver.

Particularly in route change scenarios, such decisions
need to be made on the spot and communicated to the driver
in the fastest, simplest, and least disturbing way possible.
Additionally, there should be some degree of transparency
for the human driver to understand why the route is being
changed, and to be given the chance to override the decision
as long as it does not compromise safety requirements.

On the other hand, vehicles need more situational aware-
ness about the environment and decision context, as is em-
phasized by Siili Auto. While not all available data is used
by the vehicle, such data may be crucial to other vehicles.
Accordingly, there should be vehicle-to-vehicle communica-
tion, and data can be shared across a network.

Some companies, such as Elektrobit, have developed au-
tomated driving software that aims to make the vehicle
aware of the surroundings and road ahead, see beyond the
range of sensors through predictions, provide precise po-
sitioning, and model the vehicle environment. With such
features, vehicle capabilities may be enhanced and provide
more knowledge to the HI-ADS for supporting data-driven
decision making. Nevertheless, renewing vehicle-level in-
strumentation, which deploys the latest technologies, takes
time.

4.1.7. Decision Evaluation

After the data-driven decision is made, it should be eval-
uated, either during the route or after the destination is
reached. It can be evaluated through several metrics or
criteria, which include passenger satisfaction, safety per-
ceptions, and the accuracy of estimated versus actual travel
times. Manual mechanisms for feedback, such as user rat-
ings or direct input on satisfaction levels, could help in
refining future decision-making processes and should be
supported by the system. Additionally, more automated
feedback mechanisms should also be considered.

Moreover, although it is not generally considered, the im-
pact of the decision on the external environment and other
vehicles should be accounted for. For example, actions such
as unnecessary overtaking may also delay other vehicles
and negatively impact traffic and should be evaluated as
such. However, humans and current technologies may not
consider the effect or consequences of the decision on others
or the external environment.

Furthermore, evaluation could be conducted by incorpo-
rating external data sources, such as weather or accident
data, to perform a more comprehensive evaluation. Local
forecasts can be compared to observation data (e.g., roads
that were predicted to be slippery but weren’t, or vice versa)
to enhance future decisions, not only for the vehicle but
for other vehicles as well. However, more global evaluation
would require communication with other servers, weather
stations, and other vehicles.

4.2. Design Requirements
Based on the results of the interviews and considerations
discussed in the previous subsection, the requirements that
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Table 2
Design Requirements for HI-ADS

Attribute Requirements to be Supported by the Sys-
tem

Decision Define the decision context and goals. De-
termine the factors affecting the decision
context and its change across time.

Decision-
Making
Process

Define the decision-making process accord-
ing to the level of ADS automation.

Knowledge Determine various human and machine
knowledge sources to support the decision.
Map the knowledge sources to an ontology.

Data Determine accurate data sources required
for the decision. Determine how the data
is represented and affects the decision.

Human Determine the role of the human in
decision-making according to the level of
ADS automation. Define areas where hu-
man judgment, environmental awareness,
and experience should have a higher im-
pact on the decision.

Machine Determine the role of the machine in
decision-making according to the level of
ADS automation. Define areas where ma-
chine capabilities should have a higher im-
pact on the decision. Provide the capability
to consider human experience and prefer-
ences. Determine efficient and effective
means for human-machine communication
and interaction. Enhance situational aware-
ness of the vehicle. Determine available
software and toolkits which may support
the system.

Decision
Evaluation

Define evaluation criteria and feedback
mechanisms. Incorporate various aspects
for evaluation, including impact and conse-
quences on the internal and external envi-
ronments. Provide the capability to detect,
reduce, and learn from both human and
machine decision-making and errors.

should be supported when designing a HI-ADS are summa-
rized in Table 2.

4.3. Knowledge Requirements
For representing human and machine knowledge in the sys-
tem, knowledge graphs (KG) can be used to structure the
knowledge and enable HI systems. A KG is a large-scale
knowledge base commonly used for intelligent applications,
which comprises a large number of entities and the rela-
tionships between them [18]. The KG construction process
is as follows. Starting with the knowledge acquisition, the
data for building the ontology is acquired. Knowledge fu-
sion tasks are then performed. The knowledge is stored
and represented, and then processed to create and update
an ontology. Consequently, after the ontology is built, the
knowledge can be utilized, and further iterations can occur
to evolve the KGs [19].

Such aspects can serve as a basis for augmenting human
and machine knowledge within the HI-ADS to support data-
driven decision-making and enable knowledge sharing and
utilization.

As an initial stage, the knowledge requirements that were

Table 3
Knowledge Requirements for HI-ADS

No. Knowledge Requirement

1 Internal knowledge from the vehicle, including
vehicle and tire conditions, fuel status, vehicle
functions, speed, location, time, other measure-
ments, and internal sensors.

2 External knowledge from the vehicle, including
information from sensors and cameras about
actual road surfaces and types, road friction,
proximity, and the surrounding (immediate) en-
vironment.

3 Knowledge from the human, including driver
preferences, experience, and continuous feed-
back.

4 Knowledge from external weather services and
stations, including current weather information,
station and road forecasts, road conditions, road
condition severity, and resulting crash risk lev-
els.

5 Knowledge from map and positioning services
about roads, including road segments and loca-
tions, and road types.

6 Knowledge about the road environment and
semantics that may affect human preferences,
including roadside facilities and stops, road
scenery, road surface, and speed limits.

7 Knowledge about the current and predicted traf-
fic situations from traffic or city services, includ-
ing traffic density, emergencies, accidents, and
road maintenance.

8 Knowledge incoming from other vehicles and
external sources.

9 Knowledge from predictions incoming from ad-
vanced systems.

determined from the interviews are summarized in Table 3
and can subsequently be considered for building the ontol-
ogy.

Based on the knowledge requirements and through fur-
ther research and work, an initial ontology is developed.
However, the ontology is not presented within the scope of
this paper and will be developed further in the future for
constructing the KGs within the HI-ADS.

4.4. Theoretical and Practical Contributions
The main contributions of this paper are two-fold: the de-
sign requirements in Table 2 and the knowledge require-
ments in Table 3.

The design requirements cover a range of multi-faceted
attributes that should be reflected in the system, as opposed
to focusing only on vehicular requirements, technological
advancements, or planning and prediction algorithms (e.g.
[13][3][5]). While such focused research is necessary for
advancing ADSs, it generally does not consider the human
aspect or additional decision-making factors. This paper
contributes to such a gap by proposing a more comprehen-
sive viewpoint to the data-driven decision scenario.

Accordingly, the attributes considered in the design re-
quirements include the decision, decision-making process,
knowledge, data, human, machine, and decision evaluation
considerations.

A set of knowledge requirements for the system is sub-
sequently proposed, from which an ontology can be devel-



oped, and the data required by the system can further be
determined. By adopting a top-down approach, resources
can be focused on gathering only the necessary data and
knowledge that support the data-driven decision.

Therefore, the design and knowledge requirements con-
tribute to theory by establishing the initial objectives of a
design science artifact, which can be developed in future
research. Furthermore, they support a more comprehensive
and sociotechnical view for the practical development and
implementation of hybrid intelligence in autonomous driv-
ing systems beyond the prevailing and somewhat myopic
focus on vehicular capabilities.

Moreover, this paper supports existing research that em-
phasizes the need for improving situational awareness of
the vehicle and its understanding of the environment [2],
incorporating human feedback into the learning process for
HI-ADSs [1], and considering various factors from multiple
systems and utilizing human cognition [12]. Such needs
are reflected in the design and knowledge requirements and
extended upon with additional considerations regarding
the data-driven decision context. Additionally, determin-
ing the knowledge requirements is an important, although
commonly overlooked, prerequisite for supporting the de-
velopment of knowledge graphs within the HI-ADSs.

5. Conclusion
In this paper, we aimed to determine the design and knowl-
edge requirements for developing HI-ADSs. Six expert in-
terviews were conducted within the scope of the 6G Visi-
ble project. Consequently, following a top-down approach,
considerations for a dynamic route planning and change
decision scenario were defined based on seven attributes:
the decision, decision-making process, knowledge, data,
human decision-maker, machine, and decision evaluation.
From these considerations, the design requirements were
determined, followed by the knowledge requirements for
HI-ADSs

Future work involves building an ontology and knowl-
edge graph based on the knowledge requirements, merging
the main concepts from the data-driven decision-making
and evaluation model in [10] and the KG construction pro-
cess in [19] into a conceptual framework for augmenting
human-machine intelligence and knowledge, and design-
ing a HI-ADS based on the design requirements. Finally,
data privacy, legal, and ethical regulations and requirements
were not covered within the scope of this research and may
be considered in the future.
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