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Abstract
Increased sensing and computing capabilities in cars are crucial for advanced traffic and driving automation. However, novel
data delivery, testing, and machine learning pipelines are still needed to harness the full capabilities of automotive sensing
solutions. At the same time, vehicular digital twins are needed to enable versatile testing and simulation capabilities. This
paper depicts the Vehicle-In-The-Loop (VIL) cloud interface and verifies data consistency regardless of the source. The
study aims to determine how data collected from simulation corresponds to real test drive data. The data is collected from
both simulation and actual test drives. Utilising the MQTT protocol, data is stored on a cloud server and further fed into
Unreal Engine 5, where the test drive is replayed, and its correspondence to the real drive is ensured. This work offers a new
perspective on verifying data consistency between simulated and real test drives and complements the vehicle abstraction
opportunities provided by Eclipse KUKSA. Our results highlight digital twin creation as a part of automotive software
development and set premises for testing and validating complex use cases, such as traffic accidents and extreme weather,
that can rarely or only with severe expenses be tested in real-life situations.
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1. Introduction
Today’s cars hold considerable computational and sens-
ing capabilities that are crucial for advanced traffic and
driving automation, applications spanning from safety
features to fully automated vehicles. However, data de-
livery and management protocols and interfaces that are
required for machine learning pipelines are still primar-
ily closed in company-specific silos [1]. The first efforts
for creating open-source data transfer protocols and in-
terfaces from the car to the cloud environment include
Eclipse Kuksa [2], of which this work also bases, but con-
siderable work is still required for data validation and
benchmark efficiency of the proposed frameworks. Data
sharing through open interfaces can boost innovation by
more efficient and accurate machine learning models that
cover more expansive geographic areas and use cases [3].

At the same time, digital twins can enable versatile
testing and simulation capabilities as seen with applica-
tions in industry, energy, and transportation verticals [4].
Indeed, digital twins have attracted much research inter-
est in recent years [5, 6]. The concept of the digital twin
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is broad, and definitions may vary. Still, the main idea is
to model physical systems with digital means and update
these digital models dynamically based on measurement
data. In essence, digital twin methods provide digital
spaces where reality can be modelled virtually [7] as it
is or would be in unseen but possible situations. Indeed,
the creation of the digital twin as part of automotive
software development sets premises for testing and vali-
dating complex use cases, such as traffic accidents and
extreme weather, that can rarely or only be tested in real-
life situations with severe expenses. The utilisation of
digital twins for automotive software development opens
avenues for testing different sensors and components in
actual use cases, such as studying the longevity of such
components and proposing novel learning strategies that
combine multiple data sources.

This paper describes the Vehicle-In-The-Loop (VIL)
cloud interface. It verifies data consistency regardless of
the source: a real car on the road or a virtual object in
the digital twin environment. The overview of the Kuura
platform is provided in Figure 1. We use KUKSA.val
[8] that provides a vehicle abstraction layer to enable
the management and use of vehicle signals. As a dig-
ital twin modelling framework, we use Unreal Engine
5. Capabilities of utilising such a game engine in digital
twin creation have been successfully demonstrated in
wind power plants [9] and cultural tourism [10]. Using
a game engine and a VIL cloud interface enables visual
simulation that complements the capabilities provided
by KUKSA.val; KUKSA.val is used to collect data from a
test drive in a real car. For validation, we determine how
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Figure 1: Overview of Kuuras overall architecture.

data collected from the simulation corresponds to real
test drive data in a real-life driving scenario. Utilising
the MQTT protocol, data is stored on a cloud server and
further fed into Unreal Engine 5, where the test drive
is replayed, and its correspondence to the real drive is
ensured. This work offers a new perspective on verifying
data consistency between simulated and real test drives
and complements the vehicle abstraction opportunities
provided by Eclipse KUKSA.

The main contributions of this work are the following:
1) We provide the Kuura platform for similarly collecting
vehicular sensor data to a real car and similar test runs
in a digital twin environment. With this, we extend the
KUKSA.val environment to better fit digital testing and
validation tasks. 2) We explore Unreal Engine 5 as a ve-
hicular digital twin environment and provide a pipeline
to deploy such digital twins with simulated and real test
drives. 3) We experiment with the data consistency be-
tween simulated and real test drives and further demon-
strate the power of game engine-based digital twins in
vehicular computing and sensing scenarios.

2. Background

2.1. Vehicle as a Sensing Device
Modern cars implement technologies for automatic brak-
ing, Cooperative Adaptive Cruise Control (CACC), pre-
vention of unwanted lane crossing, distance keeping, and
so on, to supply drivers’ own cognition and prevent acci-
dents. For further technological advancement, vehicles
will require artificial intelligence (AI) and machine learn-
ing (ML) capabilities depending on effective data transfer
and management systems. With increased networking
and computing capabilities, vehicles and their supporting

edge and cloud back-ends can perform challenging infer-
ence and learning tasks to support drivers’ cognition and
automate the driving scenario [11, 12]. Such intelligent
systems demand training data, which in-vehicle sensors
and external databases can provide. How to make the
data available, processed, and utilised in a challenging
real-time and mobile environment is a timely research
question.

Vehicular safety systems (and any other relevant ap-
plications) of any level of driving autonomy require data
from in-vehicle sensors [13], such as cameras, LiDARs,
radars, and speed meters [14, 15]. This information can
be used to, for example, improve lane [16] and road pot-
hole [17] recognition. Solutions for detecting drivers’
behaviour while using smartphones during driving [18]
and drunk driving [19] have been explored. However,
the results underline that human drivers’ perception and
reasoning still maintain an advantage compared to fully
automatic vehicles [20].

However, most of the in-vehicular and driver’s per-
sonal sensors and interfaces are brand-specific or closed,
limiting access to the data, computing, and networking
capabilities and thus hindering vehicular application de-
velopment. To enable connected vehicles to utilise all
the available data sources, AI/ML computing resources,
and networking capabilities, open-sourced general in-
terfaces and software platforms need to be defined [1].
On-board diagnostics (OBD) protocol refers to a vehi-
cle’s self-diagnostic and reporting capability. The more
advanced OBD-II is a protocol homogenised into the vehi-
cle itself, allowing software-defined onboard operations
and, most importantly, collecting a wide range of vehic-
ular data to the software-defined vehicle’s case. This
includes but is not limited to engine load, coolant tem-
perature, fuel pressure, engine revolutions per minute
(RPM), vehicle speed, intake air temperature, airflow rate,



throttle position and many types of sensor data like oxy-
gen sensors and fuel system status. OBD-II has relatively
easy access to the mentioned sensors, which is enough to
prove the concept. In the future, research conducted with
vehicular sensors can utilise direct access to the vehicle’s
controller area network (i.e. CAN bus) and standardised
architectures such as AUTOSAR for wider data access.

2.2. Automotive Simulations
Driving and traffic simulators are used in the automo-
tive industry as an alternative to costly and potentially
dangerous real-life testing [21]. The advantages of such
practices highlight effectiveness in analysing human driv-
ing behaviour and essential traffic situations often too
hazardous to test in real-life scenarios, such as extreme
weather, congestion, and accidents [22]. This can be
especially emphasised in the increasing reliance on sim-
ulation technologies for assessing human driving factors.
The more real-life, photo-realistic simulations enable si-
multaneous testing of vehicle dynamics and stochastic
pedestrian, driver, and vehicle interactions in various
scenarios [23].

However, traditional simulators often have limitations
in emulating real-life behaviour and perception. This has
led to a growing interest in game engines as simulation
platforms for developing and testing autonomous vehi-
cle control systems [24]. Several vehicular simulators,
such as CARLA, AirSim and CarSIM, provide simula-
tion capabilities and environments to support vehicle
research and development. These platforms have been
used to study vehicle autonomy, safety and performance.
CARLA is a free open-source simulator to support au-
tonomous vehicle systems’ development, training, and
validation. AirSim is a simulator for drones and cars
developed by Microsoft. It can also provide the possibil-
ity to experiment with deep learning, computer vision
and reinforcement learning algorithms in autonomous
vehicles and the creation of complex and changeable envi-
ronments and additional sensor modalities [25]. CarSim
is a vehicle dynamics simulation platform that allows the
simulation of vehicle behaviour in different conditions
and environments, including motor dynamics, through
Simulink models. It can be used to create accurate models
of vehicles and simulate their behaviour under different
road surfaces, weather conditions, and traffic situations
[26], but is not open-sourced.

In this study, we use Unreal Engine, renowned for its
versatility, high-quality graphics and realistic physics
simulation, which is useful for simulating vehicles [21].
Competing game engines include Unity and CryEngine,
of which CryEngine is the smaller project. The main
arguments that favour Unreal Engine are it is free of
cost for research and commercial projects until making
one million revenue, has open source code even it is

precisely under source made available license, making
it suitable for various applications in autonomous and
driving-support test cases [22]. The key differences be-
tween Unity and Unreal Engine are summarised in Table
1. Unreal Engine has typically been considered a better
choice for 3D games, while Unity has been considered a
strong choice for 2D games.

The previous literature emphasises the importance
of determinism in simulation environments to ensure
repeatability, allowing for trustworthy and easily debug-
gable results. Game engines still may come with chal-
lenges of non-deterministic behaviours. For example, the
investigation by Chance et al. [24] reveals significant
simulation variance in CARLA, particularly due to ac-
tor collisions and system-level resource utilisation. As
such, accuracy investigation is one of the key goals in
our preliminary work presented in this paper.

2.3. Automotive Digital Twins
Digital twins (DT) in the context of vehicles is an emerg-
ing field that has attracted significant attention in both
industry and academia [27]. Digital twins are virtual
representations of physical entities, such as vehicles, that
aim to mirror the lives and behaviours of their real-world
counterparts [28]. These digital replicas use the best
available physical models, sensor updates, and other data
sources to simulate and predict the behaviour of the cor-
responding physical twin [29, 30]. One area where digital
twins have shown great potential is in the automotive
industry, particularly for electric vehicles [31]. Digital
twins can greatly benefit electric vehicles, which have
gained greater market share in recent years. By creating
a digital twin of an electric vehicle, manufacturers and
researchers can simulate and optimise its performance,
energy consumption and other key parameters. Unlike
traditional simulators, digital twins provide beyond capa-
bilities for human-machine interaction and performing
data-driven actions in real-world scenarios.

Digital twins also play a key role in the design and
development of autonomous vehicles [32]. The concept
of digital twins is closely related to the transition to data-
driven vehicles, as it enables the analysis and validation
of autonomous vehicle designs [33]. By exploiting digital
twin technologies, researchers can assess the safety and
security of autonomous vehicles and identify potential
risks and vulnerabilities. Furthermore, combining digi-
tal twins with combined vehicle technology and cloud
computing has led to the development of the Mobility
Digital Twin (MDT) framework [34]. These frameworks
consist of digital representations of people, vehicles, and
transport, which enable the analysis and optimisation
of mobility and large-scale traffic systems. By exploit-
ing real-time data and simulations, MDT frameworks
can support decision-making processes and improve the



Feature Unreal Engine Unity
Developer Epic Games Unity Technologies
Programming Languages C++, Blueprint C#
Source Code Open source Not open source
Pricing Free for research and for commercial use

up to 1 million revenue, 5% comission after
that

Free version available

Learning Curve Steep Easy to learn with intuitive user interface
Graphics Photorealistic graphics, used in AAA games High-quality graphics, but not as refined

as Unreal
Physics and Simulation Ragdoll physics, physics-based destruction,

fluid simulation
Easily integrated and well-rounded with
other engine features

2D vs. 3D Excellent 3D-development, especially for
creating photorealistic environments and
visual effects

Strong 2D development capability, excel-
lent choice for 2D game projects

Table 1
Comparison of Unreal Engine and Unity

efficiency and safety of transportation systems.
Digital twins enable the simulation, optimisation, and

analysis of vehicle performance, energy consumption,
and safety and security. Combining digital twins with
connected vehicle technology and cloud computing will
extend their capabilities to optimise mobility systems.
As technology advances, digital twins can be expected
to play a key role in shaping the future of vehicles and
transport systems. As such, current technologies aim to
create models for distributed multi-agent cyber-physical
systems using co-simulation [35]. Such large-scale digi-
tal twins should be able to make predictions about the
future condition and behaviour of the vehicle [36]. How-
ever, AI-based digital twin capabilities require data co-
operation and load-balancing, scheduling, and network
security schemes over vehicle-to-cloud computing con-
tinuum [37].

2.4. Open-sourced Automotive Software
Open source software refers to software that has a pub-
licly available and editable source code. This allows col-
laborative development and innovation. One of the most
remarkable benefits of open-source software is its flexi-
bility and customizability, as user communities can adapt
the software to their specific needs. Open source is also
cost-effective as it is free and reduces dependencies on
specific software providers. The use of open source also
offers opportunities for innovation in automotive soft-
ware development and promotes the use of new tech-
nologies and solutions [38, 39].

For the automotive industry, open-source software
presents some unique challenges as vehicular software,
by default, has life-critical safety and reliability require-
ments [40]. Technically, anyone can modify the source
code, which may create unwanted surprises and vulner-

abilities. The maintenance and support of open-source
software can be uncertain if their developers and com-
munity are not active or committed. While open-source
software is dynamic and constantly changing, vehicles
purchased today will remain in traffic for decades. In
addition, there is a need for precise quality control and
software certification in the automotive industry, which
can be challenging to implement in an open-source en-
vironment because access to representative designs and
industry-standard methodologies is limited. This limi-
tation challenges researchers as automotive companies
do not openly share their development life-cycles and
verification methods, each maintaining proprietary tech-
niques. Given this scenario, there is a growing demand
for open-source solutions to support the development
and research of automotive applications, emphasizing
the need for open-source benchmarks to facilitate re-
search across various aspects of automotive application
development. [41].

3. Kuura Implementation

3.1. Design Principles
The cornerstone of our framework is grounded in the
principle of open-source development, ensuring trans-
parency and collaborative potential. Simplicity is at the
core, paving the way for effortless future evolution. Our
design philosophy revolves around creating a system that
is not just functional today but remains adaptable and
maintainable for tomorrow’s innovations. The essence
of this framework is to avoid complexity instead of em-
bracing a minimalist approach that prioritises ease of
understanding and operation. One must consider the
life cycle of software components, as updates and de-
pendencies are inevitable. The framework architecture



Figure 2: Deployment diagram of the Kuura vehicular data collection system.

is designed to handle these, avoiding obsolescence and
incompatibility.

3.2. Kuura Architecture Design
The general architecture of Kuura is shown in Figure 2.
We chose the Unreal Engine 5 game engine because of
its versatility in creating realistic simulations. This is
an essential part of the research objective to verify the
consistency of the data between the simulation and the
real test runs. The MQTT protocol was chosen to collect
and transfer the data to the cloud server and the game
engine, as it is reliable and efficient for real-time data
transfer, which might be the next step in the research
and, thus, critical requirements in our study. The MQTT
protocol operates asynchronously and is considered an
ideal choice for IoT applications that often operate on

limited devices or low-bandwidth networks.
The Kuura framework presents a cohesive suite of

components, each selected for robustness and simplicity.
At its foundation lies the integration of Kuksa, SMAD,
and Kuura, delineating a timeline of iterative progress
as detailed in Table 2. Each iteration is a response to the
evolving needs and challenges encountered. Kuksa, ini-
tially misaligned with its focus on automotive app stores
and firmware updates, has since been archived [8, 2].
SMAD was unsustainable due to its complexity and poor
documentation [42]. Our simplified stack emerges as
a response, stripping away the superfluous to focus on
functionality. It leverages OpenShift (run on CSC Rahti
container cloud 1) for its cost-efficiency compared to Mi-
crosoft Azure. This pragmatic approach is engineered
to reduce complexity, cost, and maintenance overhead,

1https://rahti.csc.fi/

https://rahti.csc.fi/


Purpose Eclipse Kuksa Cloud SMAD stack Kuura (this paper)
Cloud Service Provider Microsoft Azure Microsoft Azure OpenShift
Deployment Platform Kubernetes Kubernetes OKD
Client-Server Messaging In-
frastructure Broker

Eclipse Hono Eclipse Hono Eclipse Mosquitto

Serverside Messaging Infras-
tructure

- Ambassador and Kafka
with Zookeeper

Python script

Client Message Persistence InfluxDB MongoDB InfluxDB
Client Message Data Mod-
elling

Kuksa.VAL Kuksa.VAL Client implementation

Client Firmware Updates Eclipse hawkBit - -
Client Appstore Kuksa Appstore - -
Messaging Telemetry Storage - MongoDB -
Data Visualization - Node-RED Grafana
Deployment Monitoring - Prometheus Monitoring,

InfluxDB, and Grafana
-

Message Tracing - Jaeger Trace -

Table 2
Eclipse Kuksa Cloud, SMAD stack, and Kuura software components.

streamlining operations without compromising capabil-
ity.

Each framework iteration — Kuksa, SMAD, and Kuura
— brings new insights. Kuksa’s archival signals a
pivot away from its original automotive-centric fo-
cus. SMAD’s downfall was its complexity and reliance
on now-inaccessible Kubernetes Helm charts. Kuura
emerges as the distilled essence of its predecessors, em-
bodying simplicity and sustainability. By eliminating
non-essential components, Kuura adapts existing func-
tionalities with more straightforward tools, significantly
reducing cost and complexity and enabling an environ-
ment conducive to continuous development and opera-
tion.

3.3. Vehicle Data Reader
The OBD-II is a port designed for diagnostic purposes.
It has multiple buses available. These buses include the
CAN bus, SAE-1850 and ISO-9141-2. The automotive
manufacturers can also provide other networks at their
discretion [43]. The bus we are most interested in is
the CAN bus. On some vehicles, the CAN bus available
at the OBD connector can be protected by a gateway
device restricting access to some data from the OBD port.
Unlike the CAN bus inside the car, you must poll the
OBD port to receive any data. While we could get most
of the data we wanted from the OBD port, some data,
like the steering wheel position, was unavailable. This
makes the OBD port unsuitable as a data source for our
purposes, as it would make it quite difficult to drive the
virtual car in Unreal accurately.

In the evaluation phase, we collected data from an
OBD-II Bluetooth adapter connected to a Toyota RAV4

car. A laptop computer running Linux was connected to
the adapter, and a script was run to record data from the
vehicle in a log file. The successful log file collection was
further important in developing the auto-client script
for future larger tests and ensuring the whole system’s
functionality. Practical testing in the first phase was
carried out by driving the car and ensuring the data was
stored correctly and its format was manageable.

3.4. Data Transmission
MQTT makes it trivial to multi-cast the collected data if
we want to enable multiple clients to listen to the gen-
erated data simultaneously. One example of such a sce-
nario is live visualisation of the data while saving it to a
database without additional latency. While we could also
save the data and then fetch it from the database, this
would add latency to the visualisation. MQTT also has
built-in, easy-to-configure security mechanisms. Setting
up MQTT with SSL is very easy, and configuring the
MQTT broker to require client certificates for communi-
cation is also very easy. The connection can also be set
up to require a username and password.

We could also use HTTP or raw TCP/UDP sockets as
an alternative for MQTT. While HTTP offers security
measures similar to MQTT, it does not have multi-cast
by default. While it is not hard to implement, MQTT has
it built in and is most likely already done correctly. One
advantage HTTP has over MQTT is the ability to com-
municate directly between two applications, eliminating
the need for a broker in cases where there is only one
client.

Raw sockets are the most basic option, and they don’t
come with any of the advanced features included in



Figure 3: Sequence diagram of the vehicular data transferred to Unreal Engine 5.

MQTT out of the box. However, they are very versa-
tile and can be used for various purposes. One advan-
tage the sockets would offer is the ability to write raw
can data as is to the socket. This would enable saving
raw can dumps in a database with minimal overhead
if we ever needed/wanted to support it. One problem
with multi-cast solutions is that the provider has no idea
if any clients are listening for the sent data unless the
clients have been programmed to provide feedback when
they are listening. This makes it harder to implement the
provider in a way that it holds the messages in memory
or saves them locally in case the data is sent to nowhere.

In the experiments, a laptop was used as the in-vehicle
client running Ubuntu 22.04 LTS, and the script collect-
ing the data was written in Python using an OBD library
[44]. The script writes read values into a CSV file locally
and publishes them using the MQTT protocol. The back-
end was deployed on CSC’s Rahti as RedHat OpenShift
deployments. On the server side, Mosquitto MQTT bro-
ker forwards the published messages to subscribers. The
most important subscriber is a Python service that stores
received messages in an InfluxDB instance. As an addi-
tional demonstration, Grafana was deployed to provide
a real-time dashboard for the published and stored data.
The sequence diagram is provided in Figure 3.

3.5. Cloud Environment
The cloud environment receives data from the MQTT
broker. The environment also has a Python script that
connects to the broker to receive the data from the vehicle.
The script stores all of the messages received by InfluxDB.
The point name and field are derived from the MQTT
topic. The timestamp is also gotten from the MQTT
message payload. Since the timestamp is included in the
message, we could use any database solution to store the
data. If the timestamp were missing, however, then a
time series database would be our only option since the
message times are crucial for playback at a later time.
By getting the message time from the provider, we can
ensure that network conditions do not affect the accuracy
of the recorded timestamps.

InfluxDB, a time series database used to store large
amounts of time-stamped data due to its high perfor-
mance and scalability, was stored at the onset of the pro-
cess. Storage is essential in handling large amounts of
data that emanate from driving vehicles. A Python script
was then used in the next stage of the data-processing
workflow. This script had two main functionalities: First,
it reads GPS point data pre-recorded into a JSON file,
which is vital in mapping out routes of vehicles. Sec-
ondly, this script establishes a connection with InfluxDB
to retrieve useful information within a particular range.
This recovery is critical for evaluating the vehicle’s per-
formance and environmental conditions during various



experiment stages.
At this point, the processed data goes through an

MQTT broker using a Python script. Once more, this pro-
tocol provides lightweight messaging, providing fast and
reliable real-time information transmission that would
be needed for the simulation environment.

3.6. Simulation Environment
Multiple reasons contributed to the choice of Unreal En-
gine 5 game engine, including the capacity to create real-
istic simulations of real car driving and the possibility of
driving a car in a simulation, thereby generating corre-
sponding data. The research aimed to ensure uniformity
between the simulation and actual driving, thus requiring
realistic simulations. Unreal Engine 5 is also open-source,
which meets one of the implementation principles of the
study, making future development as easy as possible.

The research utilised the MQTT protocol, one of the
key IoT connections and data collection components. Un-
real Engine does not have native MQTT support. For this
reason, we used the NinevaStudios MQTT-utilities exten-
sion with some modifications. This extension allowed
MQTT data communication, which is essential for col-
lecting data from the simulation, with minor adjustments
made to transfer it to cloud storage securely. Through
this connection, it was possible to develop a dynamic and
interactive simulation environment.

Lastly, we simulate a car running along received GPS
points as shown in Figure 4. In the simulation, the vehi-
cle’s movement was driven by speed data acquired from
the MQTT broker. As a result, real-time synchronisa-
tion between the GPS points and speed data gave an
actual representation of the journey made by the vehi-
cle, hence allowing for the immersion of details about
its performance in different circumstances. Such a holis-
tic approach to data storage, processing, transmission,
and visualisations shows how diverse technologies can
be integrated into high-level vehicular data analysis and
simulation.

The initial version of the Kuura presented in this paper
has a dynamic road generated as the car moves around,
thus simplifying testing by making it independent of
environmental conditions. This method enables better
flexibility in the testing process because it does not re-
quire a predefined route or special environmental cir-
cumstances. Generating dynamic roads is essential to
ensure the reliability of the data collection system. This
phase, built on the multiple approaches used in the study,
emphasises adaptability and precision. By generating
the road during runs accuracy of collected data could be
instantly evaluated. It is particularly advantageous to
work within this dynamic environment for the purposes
of identifying and solving prospective issues within a
workflow for data processing that would make it strong

Figure 4: Simulated route in the virtual environment, based
on the real data points collected during the experiments.

and efficient. This technique also makes Unreal Engine
simulation more elaborate. It allows different scenarios
to be run on a platform without sticking to a single static
map, giving the evaluation process more flexibility.

4. Experimentation

4.1. Real-life Experiment
The real-world tests were conducted in the OuluZone
vehicle testing area using a Toyota RAV4 Hybrid 2019
vehicle. A closed area, such as OuluZone, was chosen
because it allows for assessing the drives and their safety.
The significance of this place is that it helped gather and
analyse information in real-life scenarios, thus allowing
comparison and verification with data collected from
virtual and actual driving instances. Besides being a
recreational driving and sports centre, OuluZone is also
a notable site for research and learning, especially on
autonomous cars and related technologies.

Several laps were driven during the tests, some with
the cruise control set at different speeds (30km/h, 40km/h,
and 50km/h) to facilitate the validation of results in the
simulation with data collected at a constant speed. Laps
were also driven without cruise control at varying speeds.
Driving data was collected during the test via an OBD-II
Bluetooth adapter connected to a laptop running Linux.
This allowed for the vehicle data to be logged and its
format managed. Towards the end of the tests, a USB
adapter enhanced data collection.

4.2. Virtual Experiment
Our virtual experiment utilised Unreal Engine 5.3.2 to
drive test drive scenarios comparable to our real-world
data collection efforts. In this experiment, we used the
same logger used during actual test drives with a real car,
ensuring a uniform approach to data acquisition and prov-
ing that the logger could be used without changes in both



Figure 5: Screenshot of influxDB which contains both real-
world data (smad/toyota) and virtually collected data (unre-
al/toyota).

environments. We gathered data on speed and time from
the virtual test drive, which can be cross-verified with the
real car’s outputs. The current limitation of real-world
data collection stems from the OBD-II interface’s inabil-
ity to provide comprehensive vehicle diagnostics. In the
virtual setting, we collected additional data such as gear,
throttle, brake application, and steering angle. These
were predominantly included for illustrative purposes,
aiming to demonstrate the extensive data collection pos-
sibilities within a simulated environment. It is important
to note that verifying these additional parameters will
become feasible with future access to the CAN bus, allow-
ing for a more detailed and accurate comparison between
virtual and real vehicle data.

4.3. Experimentation Results
In our validation process, we specifically focused on com-
paring the collected GPS data and speed data between the
actual and virtual driving tests conducted in Unreal En-
gine 5. As shown in Figure 5, the same InfluxDB database
successfully contains both real-world data (smad/toyota)
and virtually collected data (unreal/toyota). This design
will further allow simultaneous analysis of both virtual
and real-world data sets, allowing us to expand the digital
twin creation capabilities with virtual realities and actual
real-life test runs, independently of the data source.

As illustrated in Figure 6, we successfully mapped the
collected GPS data onto the 3D model of the racetrack in
runtime from cloud and verified its accuracy. This demon-
strates that our virtual environment can accurately repli-
cate real driving conditions. The speed data collected in
the database corresponded with the data obtained in the
Unreal Engine 5 simulation, confirming the consistency
of data in both real and virtual driving scenarios. While
the data transmitted from the game engine to the server
was also accurate, at this stage, our primary focus was
on verifying the accuracy of speed and time information.
Expanding this experimentation to cover a wider range
of variables is possible in future research.

Figure 6: A picture of the car driving in the virtual OuluZone
3D environment using the data collected in the real OuluZone.

5. Discussion and Conclusions
In this study, we have aimed to bring new insights into
vehicular data collection and the creation of digital twins
by using the Eclipse Kuksa platform and Unreal Engine
5 to simulate driving scenarios. Our main focus was
providing an overview of the simplified vehicular data
collection architecture that can be easily developed for
further projects and verifying the consistency between
real and simulated vehicular data through practical real-
world experimentation.

Using the MQTT protocol for sending data and Unreal
Engine 5 for simulation has allowed us to compare real
driving data with simulated ones. This method makes
digital twins more reliable and allows later use for testing
in many conditions that are hard or expensive to create
in real life, like very bad weather or different kinds of
traffic situations.

We encountered challenges in data collection via the
OBD-II protocol because it is filtered and does not allow
the collection of all possible data. This limitation high-
lighted the need for more comprehensive data acquisition
methods like the CAN bus. The data collection limita-
tions prompted us to consider future enhancements in
our methodology to achieve a more accurate and encom-
passing digital representation of the vehicle.

Our findings open up possibilities for future research
directions, including optimising data transmission meth-
ods for improved efficiency and exploring bi-directional
data flow between the digital twin and the vehicle. Such
advancements could potentially enable real-time vehicle
control based on digital twin data.

By integrating additional simulation models and con-
sidering more sophisticated data collection interfaces, we
anticipate that future iterations of this work will address
the current limitations and unlock new capabilities for
digital twins in automotive research and development.
The potential for these technologies to improve vehicle
safety, efficiency, and innovation is immense, paving the



way for a more interconnected and intelligent transporta-
tion ecosystem.

Future efforts should be made using the CAN bus in-
stead of the OBD-II to improve accuracy completeness
and to have access to all possible data the vehicle pro-
vides. Reconsidering data transmission methods, like
MQTT, for more efficient data multicasting is also a pos-
sible future direction. In the future, we are also looking
into sending data from the game engine to the car instead
of just storing it in the cloud, having the car drive in real
life and the game engine simultaneously with as little
latency as possible and importing Eclipse Arrowhead to
extend possibilities with simulationmodels, such as using
the architecture with Matlab Simulink or corresponding
open-sourced physics modelling software.
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