
Kubernetes Edge/Cloud Continuum Task Offloading
Framework for Vehicular Computing
Alireza Bakhshi Zadi Mahmoodi, Ella Peltonen

Empirical Software Engineering in Software, Systems, and Services, University of Oulu, Finland

Abstract
Cars have significantly been transformed to the point of autonomously driving in complex situations by sensing their
surroundings and inferring insights based on sensor inputs. Even though smart cars can process the vast majority of data
coming from various in-vehicle-installed sensors such as radars, LiDAR, cameras, and so on, the amount of data processing
required is ever-growing, along with the demand for more real-time services for novel driving applications. In addition,
sustainability and battery-longevity perspectives appreciate the computation of the vehicle-sensor data to be offloaded to the
edge-cloud continuum. This article introduces a Kubernetes-based framework that can be utilized on cloud/edge servers to
facilitate various tasks and computation offloading for smart vehicles. The work is ongoing, and we present the preliminary
results about the framework’s validity by employing an object recognition task on both edge and cloud computing servers to
showcase the proposed architecture’s feasibility. An incidental finding regarding latency is also presented in the experiment.
Moreover, we discuss development challenges related to implementing an edge-cloud continuum on vehicular computing.

Keywords
Vehicular Computing, Task Offloading, Kubernetes, Edge-Cloud Continuum, Microservices, Software-Defined Vehicles (SDVs)

1. Introduction
A lot has changed since the first invention
of the three-wheeled gasoline-powered Benz
Patent-Motorwagen by Carl Friedrich Benz in 1885.
Today’s cutting-edge smart vehicles are capable of
a multitude of autonomy regarding navigation and
manoeuvring, like being able to perceive and understand
their surroundings, plan and execute safe roads, handle
complex driving situations such as navigating busy
intersections, roundabouts, or even merging onto
highways seamlessly. Advancements in communication
and computing technologies have significantly impacted
how cars have morphed into such an autonomous
state. Information and Communication Technology
(ICT)-enhanced vehicles, which include autonomous
vehicles, connected vehicles, and the Internet of Vehicles
(IoV), continue to appear increasingly on the horizon [1].
While contemporary smart cars can provide such a degree
of autonomy, some considerations should also be given
to sustainability and energy efficiency perspectives,
especially for battery-operated vehicles. Constant
data is provided by myriad sensors, such as LiDAR,
radar, cameras, GPS, Inertial Measurement Unit (IMU),
microphone, and ultrasonic sensors. The aggregate data
can reach as high as 20 TiB [2] and require constant
computation to acquire the level of knowledge that is

TKTP 2024: Annual Doctoral Symposium of Computer Science,
10.-11.6.2024 Vaasa, Finland
Envelope-Open Alireza.BakhshiZadiMahmoodi@oulu.fi (A. B. Z. Mahmoodi);
Ella.Peltonen@oulu.fi (E. Peltonen)
Orcid 0009-0004-3192-7711 (A. B. Z. Mahmoodi); 0000-0002-3374-671X
(E. Peltonen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

essential for autonomy.
Smart cars are empowered to handle the computational

needs for such data via their internal systems, which
include high-performance processors like GPUs and
CPUs, Field-Programmable Gate Arrays (FPGAs),
memory, communication interfaces, etc. However,
processing via the internal systems comes at the
expense of the limited capacity of the battery that
provides the required energy for the entire car, not to
mention computation-generated heat that requires
cooling, which in turn adds to the overall energy
consumption. That is where computation offloading
comes into the picture; it can be defined as transferring
a task from a resource-constrained device to a more
robust system that can handle it officially [3]. By
leveraging the transfer, the resource-constrained device
can conserve resources to improve its performance and
battery longevity [4, 5]. Smart vehicles can also benefit
from computation offloading by delegating the required
real-time computation to cloud or edge servers, which
are more powerful and have “unlimited” capacities, to
save battery consumption, spare storage, and access to
more computation.

Cloud is one of the candidates that can be employed
for computation offloading by smart vehicles. However,
some impediments are associated with the cloud,
namely latency and network congestion. Edge
computing, particularly Multi-access Edge Computing
(MEC), is a paradigm considered for vehicular
computing environments to reduce latency and improve
performance for latency-sensitive applications [6]. MEC
servers are typically deployed at the cellular network’s
edge, giving them low latency and high bandwidth. This

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Alireza.BakhshiZadiMahmoodi@oulu.fi
mailto:Ella.Peltonen@oulu.fi
https://orcid.org/0009-0004-3192-7711
https://orcid.org/0000-0002-3374-671X
https://creativecommons.org/licenses/by/4.0


makes them ideal for offloading tasks from autonomous
vehicles, such as path planning, object recognition, and
high-definition map processing, which are essential
for automated driving [7] when considering the design
of Software-Defined Vehicle paradigm as a whole [8].
However, consensus must be reached for scheduling
and optimising the offloaded computational tasks from
autonomous vehicles to edge/cloud servers.
Motivation: deciding what data to send, how to

split tasks, which servers to use, and how to manage
everything efficiently are all complex challenges in the
task-offloading realm, especially when considering
a multitude of underway vehicles in a flowing
traffic. Figuring out the best communication methods,
infrastructure setup, and technologies like virtualization,
containers, microservices, and orchestration all add to
the complexity that must be considered and evaluated
in simulations and in practice with real-world scenarios.
Not much work has been done to tackle the concerns laid
out so far, highlighting the research gap for our work.
Research question: how can task-offloading be

optimized to improve efficiency and performance,
considering the complexities of data transmission, task
distribution, server utilization, and the integration
of technologies such as virtualization, containers,
microservices, and orchestration in real-world scenarios
while considering all the concerns mentioned in the
motivation section?

Contribution: our final goal is to implement, validate,
and benchmark a real-life vehicle-edge-cloud continuum
with a real-life vehicle testbed (Figure 1) based on
microservices technology orchestrated by Kubernetes
(k8s for short; pronounced /keIts/). This article
presents a towards-the-final-goal work-in-progress
Kubernetes-based framework that can be employed
on cloud and edge servers to facilitate task offloading
from smart vehicles. In addition, we discuss the main
lessons learned up until now: 1) We showcase the
feasibility of the framework that can run through the
whole vehicle-edge-cloud continuum, enabling dynamic
task offloading. 2) We underline that much of the
promised potentiality of the vehicular edge is still not
shown in practice with real-world test cases. And 3) we
call for considering and utilising such real-world testbeds
instead of naive simulations and synthetic data.

2. Literature Review
Advancements in automotive technology, particularly
connected and self-driving vehicles, have endowed
cars with increased computing, storage, and sensor
capabilities [9]. Today’s cutting-edge cars can control
the steering wheel to change lanes, accelerate and

1Original image by Mikko Törmänen. © 2023 Mikko Törmänen.

Figure 1: Driving university testbed’s vehicle at Oulu during
winter, 2023. 1

decelerate to adjust the speed, assist when parking the
car, etc. They can function with greater efficiency
compared to vehicles driven by humans, smoothly
accelerating and decelerating while keeping a safe
following distance [10]. This heightened efficiency can
result in shorter travel duration and decreased fuel usage,
alleviating traffic congestion and reducing greenhouse
gas emissions [11]. The Internet of Vehicles (IoV) is
envisioned as a decentralized transportation network
that can autonomously determine how to transport
passengers to their intended destinations efficiently [12].

Autonomous self-driving vehicles can retrieve
extensive image andmap data from the cloud, eliminating
the need to store or process this data locally [13].
While both Intelligent Transportation Systems and
connected vehicles can benefit from the scalability and
cloud’s on-demand nature, restrictions in the network
infrastructure connecting to cloud servers can hinder
certain services, particularly those that demand ultra-low
latency or high bandwidth [14]. With many benefits
coming from the cloud, we still face some challenges
that are crucial for some applications in autonomous
vehicles that need to be tackled. These applications
could be categorized into either of three interactive,
real-time, or auxiliary applications — an example of an
auxiliary application is a system diagnostic for error
prediction [15].

Since the connection to the cloud is possible through
the Internet, latency and network congestion become
worrying factors for latency-sensitive applications
because most autonomous driving applications are
delay-sensitive and are required to return the result
in a short period [16]; like Simultaneous Localisation
And Mapping (SLAM) which requires the result to be
ready within five milliseconds [17]. The conventional
vehicle-cloud offloading makes tasks challenging to
complete in time [16]. Furthermore, the wide-area
network (WAN) delays render it unfeasible to widely



introduce advanced services like augmented reality and
virtual reality [18].

Tang et al. [16] provide a container-based offloading
module framework that is composed of an offloading
decision module, offloading scheduler module (aka
node coordinator), and edge offloading middleware (aka
offloading service middleware). The offloading decision
module resides in the vehicle and is responsible for
whether to offload a service to the edge server or not.
This component checks for three criteria: Is there enough
computing power in the edge server to handle the
offloaded application? Is the energy consumption of
the offloaded task less than that of the task executed in
the vehicle? Is enough memory available at the edge
server to handle the offloaded task? The offloading
scheduler module manages multiple edge servers within
a valid scope via the service management module
responsible for monitoring edge servers. Edge offloading
middleware resides in the edge servers and is responsible
for providing the requested services via launching
containers. The authors use a greedy algorithm to
maximize the utility of the Multiple Multidimensional
Knapsack Problem (MMKP)-modelled problem and show
that millisecond-level offloading is possible on the edge.
Their unrealistic evaluation is based on simulated and
lab-generated data for the suggested MMKP-modeled
problem. Moreover, there are a lot of complicated
intermediary modules that exist on both the client
(vehicle) and server side. In contrast, we try to eliminate
the single point of failure in Tang et al.’s architecture by
leveraging the k8s cluster as it can manage an “unlimited”
number of compute resources under its orchestration
control and provide High Availability (HA) in case any
control node fails. In other words, instead of having one
server to control other servers, multiple servers can be
configured to coordinate other servers, hence providing
High Availability (HA). In addition, in the proposed
architecture, smart cars are ignorant of the framework’s
intricacies; this means they don’t need to communicate
back and forth between various edge servers and keep
track of their capabilities to offload their tasks. This
means that smart cars only offload their tasks to the
k8s cluster residing in the edge/cloud, and the cluster
serves the offloading requests immediately without the
need to find the right and capable worker node to handle
the task. This instantaneous serving is possible via the
ready-to-serve running microservices in the cluster. This
rapid availability of the services through containerization
eliminates any overhead imposed by other related works
in which a car tries to keep track of various conditions
and servers before offloading the tasks, which adds to
the overall complexity and intermediary levels.

Blieninger et al. [19] describe a management approach
for real-time Kubernetes clusters in the automotive
mobile edge cloud. They discuss the challenges — like

limited computational capabilities, as well as energy,
space, and weight constraints — and requirements
of future autonomous driving systems and the role
of sensor-equipped MECs in preparing driving tasks.
They introduce a management prototype to show the
approach’s feasibility and provide a timing analysis
to investigate the introduced overhead. The focus is
on the tool chain’s potential to extend and enhance
computational capabilities for real-time tasks in vehicles.
They also discuss the potential challenges in offloading
tasks to the MEC, including time delays and connection
failures. The proposed approach aims to enable the
complete self-sufficiency of both the vehicle and the
MEC, ensuring the safety and predictability of task
behaviour. It emphasizes using a decentralized MEC
designed as a stationary twin of the car, focusing on task
reusability and scheduling. Overall, Blieninger et al.’s
work is more about managing different clusters, and no
specific information about how offloading tasks are to be
done is presented by them. Compared to our proposed
framework, we eliminate any need for middle-man-like
components such as “prototype gateway” presented
in [19] as it checks for some criteria before enabling
offloading, which can add to the overall latency and
unnecessary complexity. As an additional difference,
we can point out that for our proposed framework,
in each region that is under the coverage of Radio
Access Network (RAN), there exists one cluster, which is
composed of multiple powerful compute nodes (servers),
that handles any offload requests by the nearby vehicles
in that region without the need to communicate with
other clusters; simply put, we do not see any point
in communicating between clusters since any car goes
from one RAN-covered region to the other; meaning
a car can directly communicate with clusters without
the need of an intermediary. This is unlike the one
presented by Blieninger et al., where they have multiple
clusters that communicate with each other through the
middle-man-like “central status aggregation.”

3. Method
Kubernetes orchestrates containerized applications for
scalable, automated deployment and management across
the infrastructure. It is considered the operating system
of the cloud composed of different components like
etcd, API server, scheduler, and control manager, all of
which reside on the control plane and are responsible
for managing other nodes (worker nodes). The other
components, such as kubelet, kube-proxy, and container
runtime, are part of worker nodes (compute nodes).
Kubernetes, k8s for short, has a modular structure,
making it resilient and scalable by allowing dynamic
addition or removal of servers as either control plane



nodes or worker nodes. The combination of multiple
worker nodes and control-plane nodes make up a k8s
cluster, which is under the management of control-plane
nodes.

3.1. Our Proposed Kubernetes Framework
for Computation Offloading

Our presented framework takes advantage of k8s’
benefits to provide a structure for computation offloading
to cloud and edge servers by smart vehicles. The
proposed framework supports the containerization of
various applications, scalability, automatic deployment
management, and robustness of the back-end services
provided by k8s. Figure 2 provides a general view of the
offered framework. The back-end servers that form a
cluster are all under the orchestration of k8s as either a
control plane or a worker node. The control plane is like
the brain of the cluster and is responsible for monitoring,
managing, and deploying containerized applications
on the worker nodes. On the other hand, the worker
nodes carry the burden of executing the offloaded tasks
requested by smart cars.

As depicted in Figure 2, various services that are
needed by smart vehicles, such as object recognition, path
planning, blind spot detection, traffic sign recognition,
parking assistance, etc., can already be available at
a ready-to-serve state in the form of a containerized
application running on a worker node to be employed
by any vehicle that wants to receive such a service by
task offloading. For example, car A wants to receive an
object recognition service from the nearby edge server.
Car A sends its request to the edge server, managed
by k8s in our framework, and receives the requested
service already available in one of the worker nodes. At
the same time, any other nearby vehicle can receive the
same or different services along with other vehicles with
their offloaded tasks running in an isolated execution
environment on the cluster of the proposed framework.

Multiple advantages can be attributed to the
framework empowered by k8s. First, the cars are
ignorant of the intricacies involved in how any service is
available for computation offloading. Smart vehicles can
request any service at any time and provide the required
data for the service to be processed by the containerized
app running on the k8s cluster in one of the worker
nodes. The result of the requested task will be returned
to the requester’s vehicle after its execution is complete
in the cluster’s worker node. This ignorance of details
is highly important compared to other architectures,
such as the one presented in Figure 3 by [16]. There,
the car gains access to the nearby edge server through
the Node Coordinator, which is a single point of failure
and can cause lethal problems, as explained in the
following. Whenever the vehicle offloads a task that is

Figure 2: Kubernetes framework for computation offloading
at the edge. Multiple servers can be orchestrated as a
whole entity — known as a cluster — by operating as either
the control plane or worker node. Multiple control planes
eliminate a single point of failure by becoming highly available,
andmultiple worker nodes add to the total computation power
of the whole cluster. Multiple cars can request their services
to be run on any nearby cluster through a wireless connection
to the connected Radio Access Network (RAN).

unmet by the already-established edge server, it needs to
find a new edge server through the Node Coordinator
again. These communications require extra time, which
could be detrimental to some applications, such as
object recognition, which is necessary for the safety
of the passengers inside the vehicle. None of these
unnecessary, time-consuming intermediaries is required
in our proposed k8s framework presented in this article.

Secondly, the framework is highly scalable and reliable
since multiple servers can be added to the cluster as
either compute or control plane nodes, eliminating a
single point of failure that is present in Figure 3. The
third advantage is that the running services in the cluster
are instantaneously ready to serve smart cars as soon
as the required data for processing is provided over
the network. Fourth, the number of running services
on the cluster in the ready-to-serve state does not add
to the overall computation usage of the worker nodes,
which is illustrated in a work by [16] using Docker
technologies. Fifth, the offloaded tasks by smart cars



Figure 3: The classic Node Coordinator architecture relies
on a single point of failure, the Node Coordinator, to connect
to nearby edge servers. If the established edge server cannot
execute the requested task, the vehicle needs to establish
a new connection to another edge server via the Node
Coordinator. The communication overhead between the
vehicle and the Node Coordinator can negatively affect critical
tasks like real-time object recognition essential for passenger
safety.

run in an isolated environment inside the compute node
operating inside the cluster — a feature that comes
naturally with a micro-service execution environment.
This means that none of the various services running on
the same compute node can access each other’s resources,
such as data, memory, processes, file descriptors, network
sockets, etc., which is a positive point from the security
perspective.

3.2. The Experimental Setup
For the preliminary evaluation of the feasibility of the
framework, two identical environments were set up. The
first one in the main building of the University of Oulu’s
5GTN test network 2 acted as the edge server. The server
is located in the same building with k8s installed to form
the required cluster. The cluster provides the necessary
environment to run multiple containerized applications,
leveraging the server’s processing power. Currently, we
have one service, YOLOv3 [20], which identifies objects
in pictures offloaded via layer-7 HTTP protocol and
returns the results as recognized objects in the image.
For this particular setup, five identical instances of the
set-up service are running simultaneously to handle
five concurrent offloading requests. Choosing number
five suffices for our small-scale needs. The second
environment, the OKD/Kubernetes container cloud called
Rahti 3, served as a cloud located 200 km away from Oulu
in Kajaani, Finland, and provides the same service as our
edge server with same settings and configurations. A
client computer, located in Oulu and connected to the
University of Oulu’s WiFi, acts as a vehicle and sends

2https://5gtn.fi/
3https://rahti.csc.fi/

offloading requests for images to the local edge server
and the Rahti cloud. The choice to substitute a computer
for a car is because of the lack of some devices for the
time being in our testbed. However, the experiment is
preliminary, and future works will explore more realistic
scenarios.

The preliminary task example: Both environments
provide an object recognition containerized service
implemented via YOLOv3 [20] algorithm. The example
was chosen due to its many possible application
areas in autonomous driving and extended service
capabilities, as image processing is widely utilised in
vehicular computing. The service is employed under the
control of the Deployment resource from k8s. Through
the Deployment resource, five replicas of the object
recognition service are declared to always be available
in the cluster for instant availability — meaning at any
given time, five object recognition offloading requests
can be executed simultaneously in the cluster.

Whenever an object recognition service request is
sent along with the to-be-processed data — in this
case, images — to the server residing in the edge
or cloud, the requested service is provided via one
of the already-available-to-be-employed services in
the edge/cloud. While the employed service in the
edge/cloud server is busy computing the requested
task, the other available services can provide the same
functionality to new requesters.

In the experiment, the connectivity to the edge server
is established through WLAN; again, because of the
lack of some devices in the testbed. Smart vehicles
should be connected via cellular networks such as 5G,
which aims for 1-millisecond latency [21], and future
cellular generations with even less latency and higher
bandwidth than previous generations. A comparison
between different network technologies, as such, is again
on the agenda of our future works, as this paper focuses
on the feasibility of the proposed framework.

4. Results
The end result for the feasibility of the framework is
shown in Figure 4 after requesting offloading task, object
recognition in this case, to the framework and receiving
the computed result. An offloading request for object
recognition takes about 30 seconds, more or less, for an
image to be processed by either the edge or cloud servers.
This long time taken for object recognition is mainly due
to the service being run on a CPU of the worker node
instead of a GPU. It has been noted that GPU computation
of YOLOv3 can be done within 20 ms [20], which will be
experimented with in our future works.

4Original image by Mikko Törmänen. © 2023 Mikko Törmänen.

https://5gtn.fi/
https://rahti.csc.fi/


Figure 4: Recognized objects detected by the ready-to-serve
object recognition service in the cloud/edge. 4

Regarding the incidental finding, Figure 5 shows the
scatter plot of the latency in each request sent to the
edge server (the green plot) and the Rahti cloud (the blue
plot), which is less than 500 ms. The x-axis represents
time, and the y-axis represents latency in milliseconds.
From the plot, we observe that even though the edge
server is within the same vicinity, about 100 meters, as
the computer requesting the service, most of the time,
the latency lies between 45 ms and 75 ms. In contrast,
the latency for the cloud lies between 20 ms and 50 ms
even though the Rahti cloud is about 200 km away from
the requester of the service in the experiment. Standard
deviations for both cloud and edge are 23.66 and 14.17,
respectively.

Figure 6 shows the latency grouped into various 5 ms
intervals for the edge server. It can be observed that most
of the time (38 %), the latency lies within intervals of 55
to 60 ms. This insight is counter-intuitive compared to
the pie chart of the Rahti cloud shown in Figure 7, with
the dominant latency interval (33 %) lying between 25 to
30 ms. The non-obvious higher latency observed in the
edge server reveals that the closeness of the requester of
service to the edge server can still suffer from latency if
the underlying network infrastructure fails to meet the
high expectations of the required connectivity.

5. Discussion & Conclusions
So, earlier on, we highlighted the research gap as the
complex challenges in task-offloading for vehicular
computing, such as deciding what data to send, how
to split tasks, which servers to use and managing
these processes efficiently. We then mentioned
the escalated complexity that arises from selecting
appropriate communication methods, infrastructure
setups, and technologies like virtualization, containers,
microservices, and orchestration. Then, we identified the

Figure 5: The scatter plot of the latency for both Rahti cloud
and the edge server that is less than 500 ms presented by blue
and green colours, respectively. Latency for the Rahti cloud
is between 20 to 50 ms mostly, while for the edge, it is split
between 15 to 20 ms and 45 to 75 ms; it appears as if there is
a white line cutting through these two intervals for the edge
server latency.

research gap concerning optimizing task-offloading for
efficiency enhancement and performance improvement
while considering all the complexities.

In this paper, we presented a Kubernetes framework
architecture for task offloading by self-driving cars to
overcome some challenges. The framework requires
the edge/cloud servers to have various replicas of
containerized services for multiple applications running
in a ready-to-serve state, prepared to be employed



Figure 6: Pie chart of the latency for the edge server. 38 % of
the time, latency lies between 55 to 60 ms. 78 % of the time,
latency lies between 50 to 65 ms — the three exploded wedges
of the pie chart. Counter-intuitively, latency is usually greater
than the edge server’s counterpart, the Rahti cloud.

Figure 7: Pie chart of the latency for the Rahti cloud. Most of
the time (33 %), latency lies between 25 to 30 ms. 84 % of the
time, latency lies between 20 to 50 ms. Non-obviously, most
of the time, the latency is less than Rahti cloud’s compeer, the
edge server.

by smart vehicles. Hence, vehicles offload their
computational tasks, such as object recognition, path
planning, traffic sign recognition, blind spot detection,
etc., to edge/cloud and receive their required results
once the data is provided by the smart vehicles to the
containerized services.

Based on the literature, numerous advantages can be
claimed by using the k8s framework, like scalability,
offloading simplicity from the vehicle’s side, constant
availability of the containerized services, low overhead
on the edge/cloud servers for running ready-to-serve
containerized services [16], and the isolation of various
services while running on the same cluster. In our future

works, we will focus on these aspects individually to
evaluate whether the Kubernetes-based architecture is
right for vehicular task offloading scenarios or if more
underlying system design should be studied. Compared
to many previous use cases, such as robotics, IoT,
and manufacturing, smart vehicle mobility and latency
demands are significantly higher. Special considerations
should be given to the risk and safety management of the
system: a failure over task orchestration cannot, under
any circumstances, lead to a fatal failure in the vehicle’s
operations. In such a case, fatal can become lethal.

Experimental environments for edge and cloud with
the same settings were set up as means of validity
assessment of the framework. Thus, we can agree
that the step towards vehicular edge-cloud continuum
architecture is reasonable to consider with similar
settings, allowing for more flexibility of dynamic
decision-making on the continuum, which was foreseen
mainly in visions but less in the practical results [22].
At the same time, our results reveal some non-obvious
longer delays with geographically nearby edge servers
compared to the cloud. We highlight that, for future
work of ours and others, the network specifications
and settings should be carefully considered to make a
comparison between edge and cloud more reliable. We
agree that this is, indeed, easier to control in a simulated
environment than in the real-world case. However, we
wish to highlight that real-world problems cannot be
diminished forever and should be addressed in a timely
manner now that we see more and more autonomous
cars becoming ubiquitous. In this paper, we can “fix” the
network problems as researchers by running optimised
test cases for optimal latency. In reality, the wide variety
of different network configurations (bad and good ones)
of the real world should be considered as a design feature.

Acknowledgments
The work has been supported by the EU HORIZON
project CHIPS-JU CIA FEDERATE (grant number
101139749), Business Finland project 6G Visible (grant
number 10743/31/2022, and the Finnish Research Council
project Northern Utility Vehicle Laboratory Consortium
GO!-RI (grant number 352726).

References
[1] C.-M. Huang, M.-S. Chiang, D.-T. Dao, W.-L.

Su, S. Xu, H. Zhou, V2v data offloading for
cellular network based on the software defined
network (sdn) inside mobile edge computing (mec)
architecture, IEEE Access 6 (2018) 17741–17755.

[2] D. Katare, D. Perino, J. Nurmi, M. Warnier,
M. Janssen, A. Y. Ding, A survey on approximate



edge ai for energy efficient autonomous driving
services, IEEE Communications Surveys &
Tutorials 25 (2023) 2714–2754.

[3] A. Islam, A. Debnath, M. Ghose, S. Chakraborty,
A survey on task offloading in multi-access edge
computing, Journal of Systems Architecture 118
(2021) 102225.

[4] J. Yang, A. A. Shah, D. Pezaros, A survey of energy
optimization approaches for computational task
offloading and resource allocation in mec networks,
Electronics 12 (2023).

[5] P. K. Nandi, M. R. I. Reaj, S. Sarker, M. A. Razzaque,
M. M. or Rashid, P. Roy, Task offloading to
edge cloud balancing utility and cost for energy
harvesting internet of things, Journal of Network
and Computer Applications 221 (2024) 103766.

[6] C. Chen, Y. Zeng, H. Li, Y. Liu, S. Wan, A multihop
task offloading decision model in mec-enabled
internet of vehicles, IEEE Internet of Things Journal
10 (2022) 3215–3230.

[7] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, X. S. Shen,
Toward efficient content delivery for automated
driving services: An edge computing solution, IEEE
Network 32 (2018) 80–86.

[8] E. Peltonen, A. Sojan, T. Päivärinta, Towards
real-time learning for edge-cloud continuum with
vehicular computing, in: IEEE World Forum on
Internet of Things (WF-IoT), IEEE, 2021.

[9] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou,
L. Gui, X. Shen, Cooperative task scheduling for
computation offloading in vehicular cloud, IEEE
Transactions on Vehicular Technology 67 (2018)
11049–11061.

[10] L. Hernandez, M. Hassan, V. P. Shukla, Applications
of cloud computing in intelligent vehicles: A
survey, Journal of Artificial Intelligence and
Machine Learning in Management 7 (2023) 10–24.

[11] C. R. Charles, J. Savier, An overview on
hybrid energy storage systems for electric vehicles,
International Journal of Electric and Hybrid
Vehicles 14 (2022) 56–64.

[12] M. Gerla, E.-K. Lee, G. Pau, U. Lee, Internet of
vehicles: From intelligent grid to autonomous cars
and vehicular clouds, in: 2014 IEEE world forum on
internet of things (WF-IoT), IEEE, 2014, pp. 241–246.

[13] K. Goldberg, B. Kehoe, Cloud robotics and
automation: A survey of related work, EECS

Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2013-5 (2013) 13–5.

[14] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder,
A. Mouzakitis, A taxonomy and survey of edge
cloud computing for intelligent transportation
systems and connected vehicles, IEEE Transactions
on Intelligent Transportation Systems 23 (2022)
6206–6221. URL: https://doi.org/10.1109/tits.2021.
3084396. doi:10.1109/tits.2021.3084396.

[15] Y. Wang, S. Liu, X. Wu, W. Shi, Cavbench: A
benchmark suite for connected and autonomous
vehicles, in: 2018 IEEE/ACM Symposium on Edge
Computing (SEC), IEEE, 2018, pp. 30–42.

[16] J. Tang, R. Yu, S. Liu, J.-L. Gaudiot, A container
based edge offloading framework for autonomous
driving, IEEE Access 8 (2020) 33713–33726. URL:
https://doi.org/10.1109/access.2020.2973457. doi:10.
1109/access.2020.2973457.

[17] J. Van Brummelen, M. O’Brien, D. Gruyer,
H. Najjaran, Autonomous vehicle perception: The
technology of today and tomorrow, Transportation
research part C: emerging technologies 89 (2018)
384–406.

[18] H. Li, G. Shou, Y. Hu, Z. Guo, Mobile edge
computing: Progress and challenges, in: 2016
4th IEEE international conference on mobile
cloud computing, services, and engineering
(MobileCloud), IEEE, 2016, pp. 83–84.

[19] B. Blieninger, A. Dietz, U. Baumgarten, Mark8s-a
management approach for automotive real-time
kubernetes containers in the mobile edge cloud,
RAGE 2022 (2022) 10.

[20] J. Redmon, A. Farhadi, Yolov3: An incremental
improvement (2018).

[21] G. A. Akpakwu, B. J. Silva, G. P. Hancke, A. M.
Abu-Mahfouz, A survey on 5g networks for the
internet of things: Communication technologies
and challenges, IEEE Access 6 (2018) 3619–3647.

[22] A. Y. Ding, E. Peltonen, T. Meuser, A. Aral,
C. Becker, S. Dustdar, T. Hiessl, D. Kranzlmüller,
M. Liyanage, S. Maghsudi, N. Mohan, J. Ott, J. S.
Rellermeyer, S. Schulte, H. Schulzrinne, G. Solmaz,
S. Tarkoma, B. Varghese, L. Wolf, Roadmap
for edge ai: a dagstuhl perspective, SIGCOMM
Comput. Commun. Rev. 52 (2022) 28–33. URL: https:
//doi.org/10.1145/3523230.3523235. doi:10.1145/
3523230.3523235.

https://doi.org/10.1109/tits.2021.3084396
https://doi.org/10.1109/tits.2021.3084396
http://dx.doi.org/10.1109/tits.2021.3084396
https://doi.org/10.1109/access.2020.2973457
http://dx.doi.org/10.1109/access.2020.2973457
http://dx.doi.org/10.1109/access.2020.2973457
https://doi.org/10.1145/3523230.3523235
https://doi.org/10.1145/3523230.3523235
http://dx.doi.org/10.1145/3523230.3523235
http://dx.doi.org/10.1145/3523230.3523235

	1 Introduction
	2 Literature Review
	3 Method
	3.1 Our Proposed Kubernetes Framework for Computation Offloading
	3.2 The Experimental Setup

	4 Results
	5 Discussion & Conclusions

