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Abstract  
Accurate and up-to-date forest type maps are crucial for effective monitoring and management of forest 
ecosystems across Europe. However, the availability of up to date high-resolution forest type maps has 
been limited. This study introduces an innovative semi-supervised approach for mapping European forest 
types by harnessing the power of high-resolution Sentinel-1 and Sentinel-2 satellite data from the 
Copernicus program. The novelty of the approach lies in the integration of various data sources for training 
dataset creation and the utilization of the Random Forest classifier on the Google Earth Engine cloud 
computing platform. This innovative combination enables efficient processing and classification of vast 
amounts of satellite imagery for large-scale forest type mapping. In particular, the LUCAS Copernicus 2018 
and 2022 datasets were employed for training and validation, ensuring the robustness of the classification 
model. The resulting forest type map for 2022 has a fine spatial resolution of 10 meters and distinguishes 
between three key classes: broadleaved, coniferous, and mixed forests. Accuracy assessment using 
independent validation data demonstrated the reliability of the proposed approach, yielding an impressive 
overall accuracy of 93%. Comparative analysis with existing forest products revealed both consistencies 
and differences, underscoring the dynamic nature of forest ecosystems. The generated map fills a gap in 
up to date geospatial information on European forest types, empowering informed decision-making in 
forest management, conservation efforts, and environmental impact assessment. This study demonstrates 
the potential of synergizing cutting-edge remote sensing, cloud computing, and machine learning 
technologies to tackle complex environmental challenges at a continental scale, paving the way for future 
advancements in forest monitoring and management. 
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1. Introduction 

This study was carried out within the scope of the Horizon Europe project Satellites for Wilderness 
Inspection and Forest Threat Tracking (SWIFTT - https://swiftt.eu/), the main tasks of which are 
developing and improving models for forest health monitoring and damage detection (windthrow 
damage, tree health, forest volumes and data for fire risk mapping and early fire detection). Having 
an up-to-date geospatial map of forest types is critical to effectively monitor forest damage such as 
fires [1], logging, windstorms, disease [2], and other natural and anthropogenic forest events [3]. 
Geospatial information makes it possible to accurately determine the location of forest ecosystems 
[4] and determine their types. This provides the possibility of prompt response to potential threats 
to forests, which allows preserving biodiversity and ecological balance [5]. Geospatial mapping also 
aids in resource management and conservation planning by providing the ability to track changes in 
forest cover over time [6]. The use of modern technologies of geospatial analysis allows collecting, 
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processing and analyzing data in real time, which is key to timely response to events that may affect 
the health and sustainability of forests. Therefore, within the SWIFTT project there is a pressing 
need for the timely and cost-effective creation of contemporary forest maps, particularly those that 
classify European forests by type.  

In the next section, existing products containing forest maps or forest type maps for European 
countries were analyzed. Their main gap is that there is no single product for 2022 that would include 
different types of forests (coniferous, deciduous, mixed) and would have a high spatial resolution (10 
meters). The task of the SWIFTT project was to obtain a modern map of forest types for the entire 
territory of Europe using time series of open Sentinel-1,2 satellite data with a maximum spatial 
resolution of 10 meters. 

1.1. Overview of Available Forest Cover Products 

At present, there exists a range of geospatial solutions featuring forest mapping layers. The 
Copernicus program marks a significant stride forward by integrating satellite imagery and machine 
learning algorithms to generate highly detailed and accurate forest classification maps. A noteworthy 
example is the ESA WorldCover initiative, which has released comprehensive global land cover 
products for 2020 [7] and 2021 [8], boasting a spatial resolution of 10 meters. Leveraging Sentinel-1 
and Sentinel-2 data, these products are crafted and verified in near-real time. The classification 
scheme encompasses 11 distinct classes, aligning with the Land Cover Classification System (LCCS) 
devised by the Food and Agriculture Organization (FAO) of the United Nations (UN). Independent 
validation conducted by Wageningen University demonstrates an overall accuracy of 74.4% for the 
WorldCover product [9] across the globe, with continent-specific accuracy rates ranging from 68% 
to 81%. While this map includes a forest class, it lacks a division into specific forest types, which is 
important information for monitoring the dynamics of the state of forests and their damage. For our 
task within the project, the division of the forest into different types of forests is important, because 
there are different pests for coniferous and deciduous forests and these forests behave differently 
throughout the year. 

The University of Maryland's Global Land Analysis and Discovery (GLAD) laboratory, in 
collaboration with Global Forest Watch (GFW), offers annually updated global forest loss data, 
utilizing Landsat time-series imagery with a resolution of 30 meters [10]. This dataset spans from 
2000 to 2022 and is segmented into 10×10-degree tiles, each containing seven files. The data, 
represented in unsigned 8-bit values, has a spatial resolution of 1 arc-second per pixel, or roughly 30 
meters per pixel at the equator. It includes a tree cover map expressed as a percentage per grid cell 
(ranging from 0 to 100), a forest gain map for 2000-2012, and a forest loss map for 2000-2022. The 
disadvantage lies in its 30-meter spatial resolution, inability to differentiate between coniferous and 
deciduous forests, and variations in forest mask determination across countries, leading to some 
inaccuracies compared to other products. 

Additionally, Landsat satellite data has been employed to derive annual forest disturbances 
among 35 European countries, covering the period 1986-2020. This includes maps of disturbance 
severity (up to 2016) and a forest mask [11], utilizing the LandTrend time-series segmentation 
approach in the Google Earth Engine environment [5]. 

The CGLS-LC100 product, part of the Copernicus Global Land Service, offers a global land cover 
map based on PROBA-V 100 m satellite data for 2015-2019, with various forest types represented 
[12]. However, its 100-meter spatial resolution remains a limitation, though the product maintains 
an accuracy of 80%. 

Copernicus Land Monitoring Service provides the Forest Type (2018) product [13] for the EEA39 
countries, offering 10-meter rasters with a forest classification into three thematic classes (non-
forest, broadleaved forest, coniferous forest) with a minimum 90% accuracy for both forest classes, 
albeit only for 2018. In [14] have created a global forest cover product for 2017 utilizing Sentinel-1 
satellite data, including distribution between broadleaved and coniferous forests. 



There's been a notable increase in geospatial products formed by integrating existing datasets. 
For instance, two earth-observation products [15], [16] have been combined with statistical data to 
produce a new pan-European forest map at a 1 km spatial resolution, aligning with official forest 
inventory statistics at national and/or regional levels. 

Given the SWIFTT project aimed at creating a classification map based on Sentinel satellite data 
with a 10-meter spatial resolution, products like WorldCover (which has the appropriate spatial 
resolution and updated to the nearest 2022) and Forest Type 2018 (which has the appropriate spatial 
resolution and has a distribution between coniferous and deciduous forests) serve as pertinent 
references for both training dataset creation and validation of the resulting products, considering 
their suitable spatial resolution and updated information up to 2022. 

Within the scope of the project, monitoring of all forests in Europe is planned. Therefore, this 
paper analyzes various algorithms and cloud platforms for building a forest classification map. 
Taking into account the amount of satellite data and the speed of the algorithm for large-scale 
construction of the forest map, the Random Forest algorithm was chosen in free Google Earth Engine 
cloud platform, since all satellite data are already ready for use in it. The obtained forest maps and 
area was compared with existing products. 
 

2. Study Area 

The forest type classification maps were created for European countries. The information about 
countries boundary were the Geographic Information System of the Commission [17]. A critical 
aspect of this study area lies in its varied topography, including mountainous terrains that introduce 
shadows and elevation variations. These geographical features can complicate the interpretation of 
satellite imagery, influencing the accuracy of forest classification. Additionally, the presence of snow 
cover during certain seasons further adds complexity to the satellite data analysis, impacting the 
differentiation between land cover types. Also, taking into account the area of all countries included 
in the study area - 6.5 MLN km2, the question of solving the problem of big data arises. To optimize 
the work, the countries were divided into groups based on their geo-location, size of the countries, 
and availability of the training data. The distribution of countries by groups is shown in the Table 1 
and in the Figure 1. 

Table 1 
Country division by groups 

Group number List of countries 
1 Spain, Portugal 
2 France, Belgium, Luxemburg 
3 Switzerland, Netherland, Germany 
4 Slovakia, Liechtenstein, Hungary, Czechia, Austria 
5 Slovenia, Italy, Croatia, Malta 

6 Bosnia and Herzegovina, Albania, Bulgaria, Serbia, Greece,  
North Macedonia, Romania, Montenegro, Cyprus, Turkey 

7 Poland, Ukraine  
8 Lithuania, Latvia, Estonia 
9 Finland 
10 Sweden, Denmark, Norway 
11 United Kingdom, Ireland, Iceland 



 
Figure 1: Country division by groups. 

3. Satellite Data Used 

For each group from the Table 1, 12-day mean composites of SAR Sentinel-1 satellite data with VV, 
VH bands with 10-meters spatial resolution were created [18]. The SAR Sentinel-1 preprocessing 
steps were: apply orbit, border noise removal, thermal noise removal, radiometric calibration, 
orthorectification, filter box 3x3 were performed as preliminary processing. As a result, the 12-day 
time series of Sentinel-1 was formed for every group of countries.  

Moreover, in the classification process, Sentinel-2 data with preprocessing Level-2A and a spatial 
resolution of 10 meters are employed, utilizing four bands: Red (B4), Green (B3), Blue (B2), and 
Infrared (B8). The revisit time of Sentinel-2 is every 5 days; however, due to significant cloud cover, 
three composites are generated for each group of countries. These composites represent the median 
value of all available data within every 5-day period for the respective bands. To mitigate the impact 
of clouds on optical data, a Scene Classification Map (SCL) band with a spatial resolution of 20 meters 
is utilized for cloud masking. The specific dates utilized for both Sentinel-1 and Sentinel-2 are detailed 
in Table 2. 

Table 2  
Satellite data used 

Consequently, our input consists of a stack of raster images, comprising a time series of radar 
and optical satellite data, encompassing a total of 76 spectral bands. This includes 32 VV bands, 32 
VH bands from Sentinel-1, and three composites featuring four bands each (red, green, blue, and 
infrared) from Sentinel-2. 

Satellite Dates (2022) 

Sentinel-1 

01.03 - 13.03;  
13.03 - 25.03;  
25.03 - 06.04; 
06.04 - 18.04;  
18.04 - 30.04;  
30.04 - 12.05;  
12.05 - 24.05; 

24.05 - 05.06;  
05.06 - 17.06;  
17.06 - 29.06;  
29.06 - 11.07;  
11.07 - 23.07;  
23.07 - 04.08;  
04.08 - 16.08; 

16.08 - 28.08;  
28.08 - 09.09;  
09.09 - 21.09;  
21.09 - 03.10;  
03.10 - 15.10;  
15.10 - 27.10 

Sentinel-2 01.03 - 01.06; 01.06 - 01.08; 01.08 - 30.09 



4. Train and Validation Data 

For training and testing the creation of forest type maps for Europe, the LUCAS Copernicus 2018 
open dataset [2] serves as the primary resource. Despite being based on 2018 data, this dataset 
remains suitable for forest type classification due to the relatively slow change in forest types over 
time. A five-year span is not considered extensive for a land cover type like forests. To update this 
dataset for 2022, the global land cover data from WorldCover 2021 [8] was utilized. Samples that 
exhibited a change in class between 2018 and 2021 were subsequently excluded from consideration. 
The great advantage of LUCAS Copernicus 2018 data set is that for each sample there were 5 photos 
that confirm the correctness of the class that is entered for this sample.  

As we can see from Figure 2, some countries are not covered by the given data set (Norway, 
Switzerland, Serbia, Montenegro, Albania, Bosnia and Herzegovina, North Macedonia, Turquie, 
Iceland, and Ukraine). Therefore, additionally, based on the image interpretation of the Sentinel-2, 
forest and another land cover samples were added for those areas where there was a lower coverage 
with the initial Lucas Copernicus data set. Also, two classes — rocks and snow — were added to the 
data set, because due to the mountainous terrain, there was a confusion of forest classes due to 
shadows and slopes.  

The Figure 3 shows an example of the difference between broadleaved and coniferous forest in 
summer and winter season, as well as an example of a classification map that separates them. This 
confirms the need to use a time series of satellite data and necessarily composites of optical data. 
 

 
Figure 2: The preprocessed LUCAS Copernicus 2018 dataset serves as the foundation for the forest 
type classification in 2022. 

 
For Ukraine, we used a data set that we have been collecting along the roads to create a land cover 

map [19]. In 2022, while collecting data along the roads, we also separated different types of forests 
(coniferous, broadleaved and mixed), which gave us the opportunity to build a map of forest types 
for the territory of Ukraine. Note that no other data, such as LUCAS 2018, forest type map 2018, 
which divide forests into different types and have a high spatial resolution, were not available for 



Ukraine. Besides that, this dataset was extended with new samples using satellite image 
interpretation approach. The total number of samples in the dataset for Ukraine is 934 forests and 
7862 other land and is shown in the Table 3. The generated data set was divided into training and 
test dataset in a ratio of 80:20 for each oblast of Ukraine. 

 

 
a) 10.06.23 

 
b) 08.02.23 

 
c)  

   
Figure 3: An example of broadleaved and coniferous forest in summer (a) and winter (b) season, and 
forest type map (c) to separate them. 
 

Table 3  
Dataset for Ukraine 2022 

The Table 4 displays the distribution of data across European countries by class, while Figure 4 
illustrates the geospatial distribution of the resulting dataset for three types of forests (broadleaved, 
coniferous, and mixed) within selected groups, as Table 1. To train the model and validate the 
resulting product, the dataset was divided into an 80:20 ratio within each distinct group. 

Land cover classes Train Test Total 
Artificial 567 131 698 
Cropland 3274 759 4033 
Gardens 245 56 301 

Broadleaved forest 420 94 514 
Coniferous forest 216 43 259 

Mixed forest 133 28 161 
Grassland 1427 343 1770 
Bare land 242 50 292 

Water 623 145 768 
Total Forest 769 165 934 

Total  7147 1649 8796 



 
Figure 4: The geospatial distribution of the prepared data set for 3 types of forests (broadleaved, 
coniferous and mixed) by selected groups. 
 

Around the beginning of October 2023, after the SWIFTT project was started and forest type 
classification map were created, the LUCAS preliminary micro data (2022) [20] was published as 
open data source. This dataset is similar to LUCAS Copernicus 2018 but contains more samples. In 
this regard, we have used this dataset for validation, and for the correctness of the experiment, we 
removed from this data set those elements that were used for training and validation of the obtained 
forest map and used the obtained data set as a completely independent data set for testing the 
obtained product. The last column of Table 4 shows the distribution of elements by land cover classes 
and forest types of LUCAS 2022. 

Table 4  
Train and validation data used (Lucas 2018 and Lucas 2022) 

Class Name Lucas 2018 Lucas 2022 
  Train Test Total Test (Total) 
1 Artificial 9901 2880 12781 3519 
2 Cropland 16774 5207 21981 85216 
3 Gardens 476 122 598 4085 
4 Broadleaved woodland 7690 2426 10116 58855 

5 Spruce dominated coniferous 
woodland  2977 899 3876 8804 

6 Pine dominated coniferous woodland 2553 1098 3651 11889 
7 Other coniferous woodland 347 150 497 2821 
8 Spruce dominated mixed woodland 1112 500 1612 5532 
9 Pine dominated mixed woodland 1228 483 1711 4598 
10 Other mixed woodland 951 340 1291 4478 
11 Grassland 26295 8120 34415 91969 
12 Water 4355 1837 6192 10268 
13 Bare, Rocks 12500 3798 16298 3138 
14 Permanent Snow 1172 347 1519 0 
 Total Forest 16858 5896 22754 96977 
  Total 88331 28207 116538 295172 



5. Methodology 

Within the project, we have developed an automatic technology for forest type classification map 
for Europe in the Google Earth Engine cloud platform, which is repeated for each individual group 
of countries listed in the Table 1. 

The prepared stack of satellite Sentinel-1 and Sentinel-2 composites (section 3) together with 
prepared pre-filtered LUCAS Copernicus 2018 train data (section 4) were used as input data for forest 
type classification [21], [22]. All data (satellite and train data set) is contained in cloud and we don’t 
need extra resource to train the classifier. For each separate group of countries, we trained different 
Random Forest models due to GEE capacity with 100 number of trees.  

The model generates a raster georeferenced image as output, with each pixel representing the 
respective land cover or forest type class. Notably, this approach offers an advantage as it enables 
the creation of maps even in regions with limited training data, such as Turkey and Iceland. This is 
achieved through the utilization of a common Random Forest model for each group of countries. 
Leveraging the cloud platform Google Earth Engine facilitates seamless scalability and utilization of 
the model across extensive areas, particularly throughout Europe, as demonstrated by previous 
studies [23], [24]. 

The next steps no require large computing resources and can be done on a personal computer 
(PC). 

The list of classes on the received map corresponds to the list of classes in the educational data 
(Table 4). Aggregation of the received forest types into three generalizing classes (Broadleaved, 
Coniferous, and Mixed) took place according the [20] (Table 5). All other classes not related to forest 
cover were set to 0. 

Table 5  
Forest type aggregation according LUCAS classification 

A portion of the LUCAS 2018 validation dataset (outlined in section 4), along with the LUCAS 
2022 data, served as independent data for validating the aggregated forest type map. To evaluate the 
accuracy of the land cover classification maps, a confusion matrix [25] derived from an independent 
test sample was utilized. This matrix is presented as a rectangular table, where each cell represents 
the number of pixels nij belonging to the actual class "i" but classified as class "j" on the classification 
map. Additionally, the assessment included metrics such as Overall Accuracy (OA), Producer 
Accuracy (PA), and User Accuracy (UA). UA and PA values are ways of representing the accuracies 
of the individual classes. The UA value is the probability that the pixel class on the classification map 
corresponds to the sample class in the test data, whereas PA indicates the probability that a pixel 
from the test data is recognized correctly on the map. By analyzing the correlation between these 

Description Class LUCAS Description Class LUCAS 

Broadleaved woodland 4 C10 Broadleaved 
woodland 1 C10 

Spruce dominated 
coniferous woodland 5 C21 

Coniferous 
woodland 2 C20 Pine dominated coniferous 

woodland 6 C22 

Other coniferous woodland 7 C23 
Spruce dominated mixed 

woodland 8 C31 
Mixed  
woodland 3 C30 Pine dominated mixed 

woodland 9 C32 

Other mixed woodland 10 C33 
Non forest 1 - 3, 11 -14 - Null 0 - 



quantities, the map user can obtain information on reliability of class recognition on the map, as well 
as assess the quality of the geospatial product itself. 

Overall Accuracy (OA) is an indicator of the overall quality of land cover map. In fact, this is the 
ratio of the sum of the elements of the main diagonal (i.e., correctly classified pixels) and the sum of 
all elements in the error matrix.  

The User, Producer, and Overall accuracies are calculated according to the formulas 1-3: 
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where q is the number of classes on the land cover map and test data. 
One more metric for the assessment of the classifier quality is F1-score. It reduces the two other 

metrics, UA and PA, down to one number, and it is defined as an average-weighted harmonic mean 
value between them (formula 4). 

𝐹% = 2
PA ∗ UA
PA + UA (4) 

 
The above-described methodology for obtaining a classification map of forest types for Europe 

is schematically presented in the Figure 5. 
 

 
Figure 5: Workflow of forest type map creation. 

6. Machine Learning Model Selection 

The Random Forest classifier was chosen as a basis in this work, because it showed relatively good 
results compared to deep neural networks, it is built into the GEE cloud platform and can be used in 
contrast to deep networks, and it is also significantly superior in algorithm execution time. In the 
study [26], researchers introduced and investigated two modifications of Random Forest (RF) models 
and two modifications of Convolutional Neural Network (CNN) U-Net for forest type classification. 
The raster Forest Type (2018) map [13] served as training labels. During the development of these 
models, it was observed that RF might not be the optimal tool for addressing this problem, primarily 
due to its architectural constraints, which hinder training the model on large datasets. However, for 



point-based datasets, this method remains reasonable due to its relatively low learning and execution 
time. The Random Forest model exhibited an overall accuracy ranging from 86% to 86.5% for the pilot 
territories in Germany. Conversely, within this study, the U-Net model demonstrated significantly 
improved overall accuracy, ranging from 91% to 91.7%, along with higher prediction speed. 
Nonetheless, as with deep learning methods, the learning process of the U-Net model extends to tens 
of hours, unlike the minutes required for RF. In this work, all experiments were conducted on the 
CREODIAS cloud platform (within ORCE project [27]), which contains ready-to-use satellite data, 
but still requires time and resources for their partial pre-processing (cloud extraction, filtering, etc.), 
unlike the GEE cloud platform. 

In the work [28] authors compare the productivity of cloud platforms AWS and CREODIAS for 
the land cover classification for Ukraine using Multilayer perceptron. On average, it takes 400 
minutes and 50-80 euros to build a classification map based on a time series of satellite data for 1 
year, covering an area of about 200,000 km2. Taking into account the territory area of 6.5 MLN km2, 
for which we need to obtain a forest type classification map, the necessary time to obtain the map 
will be about 9 days of continuous work of the instance and 1700 - 2600 euros for one iteration of 
obtaining the classification map. Given the complexity of the mountainous terrain in some countries, 
sometimes there is a need to adjust the sampling in difficult areas and rerun the training model 
several times. 

Therefore, taking into account the area for which we need to obtain a classification map, in this 
work the authors decided to use the Random Forest algorithm in the GEE cloud platform. 

7. Results 

The main outcome of this study is the forest type classification map for the year 2022 covering the 
European territory, featuring a spatial resolution of 10 meters. This map was generated utilizing a 
time series of Synthetic Aperture Radar (SAR) Sentinel-1 and optical Sentinel-2 satellite data. The 
resulting map includes 3 forest type classes (broadleaved, coniferous and mixed) and presented in 
the Figure 6. The Table 6 shows the accuracy assessment of the obtained map on the test data, which 
was formed on the basis of the Lucas 2018 data set.  
 

 
Figure 6: Forest type map 2022 for European countries. 
 
 
 



Table 6  
Overall accuracy of forest map for Europe based on LUCAS 2018 and LUCAS 2022 test dataset 

The class of mixed forests turned out to be the most problematic, since it contains various types 
of trees that can be contained in other classes. Accordingly, the confusion for this class is the highest, 
and the recognition accuracy is the lowest. Accordingly, since it may contain trees of other classes, 
it also leads to an underestimation of the accuracy of other classes of forest types. 

In contrast to the Lucas 2018 dataset, the Lucas 2022 dataset contains sampling elements on a 
grid. Very often there are cases when the point, which is responsible for the forest class, falls into a 
forest strip or in a city in a cluster of a few of trees. Or a point from the Lucas 2022 data set is very 
close to the cluster of trees, but does not physically fall into the forest mask, as well as the sample 
could be incorrect. In such cases, given the spatial resolution of the satellite data we work with, the 
created classification map may not correspond to the class given in the Lucas 2022 set. These 
examples certainly affect the classification accuracy estimation, but in this case we have an accuracy 
estimate from the bottom of our product, which is 88.5% on independent data, which is a good 
indicator at the level of Europe as a whole. 

Also, we compared the resulting areas of forest types and total forest in 2022 with the 
corresponding existing global products. With Forest type 2018, the areas of broadleaved and 
coniferous forest are compared (Figure 7). There is a decrease in the area of coniferous forests 
compared to 2018. This may be due to the fact that coniferous forests suffer more from bark beetles 
and various diseases. Trees dry out, and as a result, they are cut down. 

 
Figure 7: Area comparison of SRI coniferous and broadleaved forest 2022 with Forest type 2018 
product. 
 

If we compare the total area of the forest (Figure 8, Figure 9), there is a difference between the 
Hansen 2022 data set (Hansen underestimates the forest compared to our product). For Hansen's data 
set, a threshold of 30% of pixels belonging to the forest was chosen, below which we consider it 
inappropriate to take. The reason for the lower forest area in Hansen's data set is that every year 

 Test LUCAS 2018 LUCAS 2022 
Class UA PA F1 UA PA F1 
Forest 87,9 92,8 90,3 86,2 77,5 81,6 

Broadleaved woodland 76,1 84,3 80 69,6 68,6 69,1 
Coniferous woodland 75,9 78,2 77,1 65,7 57,1 61,1 

Mixed woodland 64,1 39,1 48,5 41,4 24,8 31 
Non forest 98,1 99 98,6 89,5 93,9 91,7 

Overall accuracy 93,2 88,5 



deforestation is subtracted from the forest area, and the last layer of forest growth (gain layer) was 
only in 2012. 

 

 
Figure 8: Area comparison of SRI forest 2022 with Forest type 2018 product, WorldСover 2021 and 
Hansen 2022. 
 

 
Figure 9: Area comparison of SRI forest 2022 with Forest type 2018 product, WorldСover 2021 and 
Hansen 2022. 

8. Product Availability 

The source codes are available for downloading at the link: https://github.com/IPT-
MMDA/Forest_type_classification. The code is available in Google Earth Engine cloud platform: for 
forest type classification - https://code.earthengine.google.com/0eb34e8a84988ad3dcea334d4ef59805, 
for resulting forest type map using - 
https://code.earthengine.google.com/baa95cfdd09e0630e21f6aa4ffe87eaa, forest type visualization 
within Google App: https://ee-swiftt.projects.earthengine.app/view/foresttype. 

9. Discussion 

The results obtained in this study demonstrate the effectiveness of employing satellite data and 
machine learning techniques for large-scale forest type mapping across Europe. The application of 
the Random Forest classifier in the Google Earth Engine cloud platform has proven to be a reliable 
and efficient approach, addressing the challenges associated with processing and analyzing of big 
satellite data. 

One of the key strengths of the proposed methodology lies in its ability to overcome the 
limitations posed by the lack of ground truth data in certain regions. By leveraging the LUCAS 



Copernicus dataset and satellite image interpretation, we were able to create a comprehensive 
training dataset, ensuring adequate representation of different forest types and land cover classes 
across the entire study area. 

The resulting forest type map exhibits a high overall accuracy of 93% when evaluated against an 
independent test dataset. However, it is essential to acknowledge the challenges encountered in 
accurately distinguishing mixed forests from other classes. The inherent complexity of mixed forests, 
comprising various tree species, likely contributed to the lower accuracy observed for this particular 
class. 

It is noteworthy that the accuracy assessment based on the LUCAS 2022 dataset revealed certain 
inconsistencies, potentially attributable to the grid-based sampling approach employed in this 
dataset. The mismatch between the spatial resolution of the satellite data and the sampling points 
may have resulted in instances where the assigned class did not align with the actual land cover 
observed in the satellite imagery. Nevertheless, the overall accuracy of 88.5% obtained using the 
LUCAS 2022 dataset provides a conservative estimate of the product's performance, further 
validating its reliability. 

The comparison of the obtained forest areas with existing global products, such as the Forest 
Type 2018 and WorldCover 2021, highlights the dynamic nature of forest ecosystems and the 
importance of regularly updating forest maps. The observed decrease in coniferous forest areas 
compared to 2018 may be attributed to factors such as pest infestations, diseases, and subsequent 
deforestation efforts. Conversely, the differences in total forest area compared to the Hansen dataset 
can be explained by the consideration of deforestation and the limited availability of forest gain data 
in the Hansen product after 2012. 

10. Conclusions 

This study successfully developed and implemented a semi-supervised approach for mapping 
European forest types using high-resolution satellite data from the Copernicus program. The 
integration of Sentinel-1 and Sentinel-2 data, combined with the Random Forest classifier deployed 
on the Google Earth Engine cloud platform, enabled efficient and accurate classification of forest 
types across the European continent. 

The resulting forest type map, with a spatial resolution of 10 meters, provides a comprehensive 
and up-to-date representation of the distribution of broadleaved, coniferous, and mixed forests for 
the year 2022. This product addresses a critical need for contemporary geospatial information, 
facilitating informed decision-making in various domains, including forest management, 
conservation efforts, and the assessment of environmental impacts. 

The accuracy assessment, conducted using independent validation data from the LUCAS 
Copernicus dataset, demonstrated an overall accuracy of 93%, highlighting the reliability of the 
proposed methodology. While the mixed forest class exhibited lower accuracy due to its inherent 
complexity, the overall performance of the classification model was satisfactory. 

By leveraging cloud computing resources and machine learning techniques, this study overcame 
the challenges associated with processing and analyzing large volumes of satellite data, enabling the 
efficient generation of a high-resolution forest type map for the entire European region. 

Overall, this study demonstrates the potential of integrating cutting-edge technologies and data 
sources for addressing complex environmental challenges at a continental scale. The developed 
methodology can be further refined and applied to other regions, contributing to a better 
understanding of global forest dynamics and supporting sustainable forest management practices. 

Future research could explore the integration of additional data sources, such as LiDAR or 
hyperspectral imagery, to enhance the accuracy of forest type classification, particularly for mixed 
forests. Additionally, the development of automated monitoring systems, leveraging the capabilities 
of cloud computing and machine learning, could facilitate the timely detection of forest disturbances 
and support proactive conservation efforts. 
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