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Abstract 
This article presents a methodology for building an intelligent system for approximate solutions of the 
Hodgkin-Huxley equation, which models the conduction of an electrical impulse in nerve axons. Given the 
complexity of this nonlinear differential equation and the non-uniqueness of its solutions, we use advanced 
computational methods, including Physical Information Neural Networks (PINN) and Deep Learning 
Galerkin Method (DLGM). These methods allow us to transform infinite-dimensional stochastic 
optimization problems into finite-dimensional ones, providing efficient and accurate numerical simulations. 
Our approach combines machine learning with classical biological modeling to overcome the limitations of 
traditional numerical methods. We develop an algorithm that approximates solutions for electrical impulse 
conduction models by capturing both quantitative and qualitative characteristics of nerve impulse 
dynamics. Numerical results confirm the effectiveness of our methodology, demonstrating accurate 
approximations and stability of traveling wave solutions for various parameter settings. This research 
provides a deeper understanding of neuronal behavior and offers potential applications in the development 
of new therapeutic strategies. 

Keywords  
reaction-diffusion equations; multivalued interaction functions; machine learning; physics-informed 
neural networks; approximate solutions  
MSC2020: 35-04, 35R70 1 

1. Introduction 

The Hodgkin-Huxley equation describes the conduction of the nerve impulse in the optic nerve. The 
equation has the form  

	
 

where  is a complicated nonlinear function of  and its past values. A detailed description of the 
function  is not necessary here. The physiological fact modeled by this equation is as follows: if the 
nerve is stimulated below the threshold, the disturbance simply dampens out, but if stimulated above 
the threshold, the disturbance quickly forms a particular shape and moves along the line like a 
traveling wave. Hodgkin [4] presents the physiological background and compares the results of 
numerical integration with experimental observations. The mathematical problem is to classify the 
possible waveforms  and prove that any disturbance  of appropriate initial size and shape, 
traveling at the appropriate speed , stabilizes to a translation of one of these forms:  
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see [7] and references therein. The complexity of this equation has led to the introduction of 
simplified models of the Hodgkin-Huxley equation to understand the stabilization mechanism in 
similar but simpler circumstances. This issue is reviewed in the works of Cohen [2] and Rinzel [9]. 
The first simplification is the Fitzhugh-Nagumo equation [3]. Considering that the process is 
described by a reaction-diffusion differential equation with discontinuous nonlinearity, the 
uniqueness of solutions to the Cauchy problem is not always guaranteed. Therefore, the quantitative 
analysis of solutions to such equations requires a methodology for finding all solutions to the Cauchy 
problem or, at the very least, a sufficient variety of approximate methods that can potentially provide 
an approximation of another solution to the corresponding problem without uniqueness. In this 
work, we continue the developments laid out in the work on the quantitative study of solutions of a 
class of differential inclusions using so-called physics-informed neural networks (PINNs) [6]. We 
note that the qualitative analysis and stability theory for differential inclusions with partial 
derivatives were developed in [11]. In the future, the developed methodology will be applied to 
systems of discontinuous nonlinearities with applications to both the original Cohen [2] and Rinzel 
[9] models, FitzHugh-Nagumo, as well as to other mathematical models such as climatology models, 
heat-mass transfer, unilateral problems, problems on manifolds with and without boundaries, 
differential-operator inclusions with pseudomonotone type operators, and evolutionary 
hemivariational inequalities with possibly nonmonotone potentials. In addition to computational 
studies, considerable attention will be given in the future to empirically validating the obtained 
results through a series of experiments 

2. Problem definition 

In this paper, we study an intelligent system methodology designed to approximate solutions for the 
model of electrical impulse conduction in nerve axons. We explore the integration of advanced 
computational techniques with biological modeling, aiming to overcome the limitations of classical 
numerical methods. Recent advancements in intelligent systems, including machine learning and 
neural networks, offer promising new avenues for developing approximate solutions to these 
complex models. By leveraging the computational power and adaptability of intelligent systems, we 
can enhance the accuracy and efficiency of simulations, providing deeper insights into neuronal 
behavior and potentially informing the development of novel therapeutic strategies. 

Consider the problem: 
 

 
(1) 

 
with initial conditions: 
 

 (2) 
 

where  and  is the Heaviside step function. 

For a fixed  let  According to [13] (see the book and references 
therein), there exists a weak solution  , with 
, of Problem (1) – (2) in the following sense:  



 

(3) 

 
for all  where  be a measurable function such that  

 (4) 
The main goal of this paper is to develop an algorithm for approximation of solutions for classes 

of electrical impulse conduction in nerve axons con with multivalued interaction functions allowing 
for non-unique solutions of the Cauchy problem (1) – (2) via the PINNs; [1, 5, 6, 8] and references 
therein. 

3. Methodology of Approximate Solutions for Electrical Impulse 
Conduction Equations with Multivalued Interaction Functions 

Fix an arbitrary  and a sufficiently smooth function  with compact support 
 We approximate the function  by the following 

Lipschitz functions:  
 

 

(5) 

 
For a fixed  consider the problem:  

 
(6) 

with initial conditions:  
 (7) 

According to [11] and references therein, for each  Problem (6)–(7) has an unique 
solution  Moreover, [12] implies that each convergent sub-sequence 

 of corresponding solutions to Problem (6)–(7) weakly converges to a 
solution  of Problem (1)–(2) in the space  

 
(8) 

endowed with the standard graph norm, where  
 

Thus, the first step of the algorithm is to replace the function  in Problem (1)–(2) with  
considering Problem (6)–(7) for sufficiently large  cf [6].  

For this purpose let us now consider Problem (6)–(7) for sufficiently large  Theorem 16.1.1 from 
[5] allows us to reformulate Problem (6)–(7) as an infinite dimensional stochastic optimization 
problem over a certain function space. More exactly, let ,  let 

 be a probability space, let  and  be independent random variables. 
Assume for all ,  that  

 
 

Note that  be Lipschitz continuous, and let  satisfy for all 
 that  



 

 
Theorem 16.1.1 from [5] implies that the following two statements are equivalent: 

1. It holds that .  
2. It holds  is the solution of Problem (6)–(7).  

Thus, the second step of the algorithm is to reduce the regularized Problem (6)–(7) to the infinite 
dimensional stochastic optimization problem in   

 
(9) 

However, due to its infinite dimensionality, the optimization problem (9) is not yet suitable for 
numerical computations. Therefore, we apply the third step, the so-called Deep Galerkin Method 
(DGM) [10], that is, we transform this infinite dimensional stochastic optimization problem into a 
finite dimensional one by incorporating artificial neural networks (ANNs); see [5, 10] and references 
therein. Let  be differentiable, let  satisfy 

, and let  satisfy for all  that  
 

 
 

(10) 

 
where  is the -dimensional version of a function  that is,  

  
is the function which satisfies for all ,  with 

  that  
  

for each  satisfying  and for a function 
  we denote by  the realization function of the 

fully-connected feedforward artificial neural network associated to  with  layers with 
dimensions  and activation functions  defined as:  

 

 

for all  and for each    satisfying 
 the affine function  from  to  associated to  is defined as  

 

 

 

 



for all  
The final step in the derivation involves approximating the minimizer of  using stochastic 

gradient descent optimization methods [5]. Let , ,  for each  
 let  and  be random variables. Let for each  
    

 (11) 
Let  is defined as  
 

 

(12) 

 
for each    and let  satisfy for all  

that 
 

 
(13) 

 
Ultimately, for sufficiently large  the realization  is chosen as an 

approximation: 

 
 

of the unknown solution  of (1)–(2) in the space  defined in (8). So, the following theorem is 
justified. 

Theorem 1  Let  and  Then the sequence of  

defined in (12)–(13) has an accumulation point in the weak topology of  defined in (8). Moreover, 
each partial limit of the sequence in hands is weakly converges in  to the solution of Problem (1)–
(2) in the sense of (3)–(4).  

The empirical risk minimization problems for PINNs and DGMs are typically solved using SGD 
or variants thereof, such as Adam [5]. The gradients of the empirical risk with respect to the 
parameters  can be computed efficiently using automatic differentiation, which is commonly 
available in deep learning frameworks such as TensorFlow and PyTorch. We provide implementation 
details and numerical simulations for PINNs and DGMs in the next section; cf. [5, 6, 8] and references 
theerein. 

4. Numerical Implication 

Let us present a straightforward implementation of the method as detailed in the previous Section 
for approximating a solution  of Problem (1)–(2) with  and 
the initial condition  where 
 

 

(14) 



 Let  This implementation follows the original proposal by [8], where 2.000 realizations 
of the random variable  are first chosen. Here,  is uniformly distributed over  and  is 
uniformly distributed over  A fully connected feed-forward ANN with 4 hidden layers, each 
containing 50 neurons, and employing the Swish activation function is then trained. The training 
process uses batches of size 256  sampled from the 2.000 preselected realizations of  
Optimization is carried out using the Adam SGD method [5]. A plot of the resulting approximation 
of the solution  after  training steps is shown in Figure 1. 
 

 
Figure 1: The birth of a soliton: plots for the functions  where 

 and  is an approximation of the solution  
of Problem (1)–(2) with  where  is defined in (14), computed by means of the PINN 
method as implemented in Source code 1. 

 
import os 
import torch 
import matplotlib.pyplot as plt 
from torch.autograd import grad 
from matplotlib.gridspec import GridSpec 
from matplotlib.cm import ScalarMappable 
 
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
 
T = 1.0  # the time horizon 
M = 2000  # the number of training samples 
k = 5  # the parameter 
 
torch.manual_seed(0) 
 
x_data = torch.rand(M, 1).to(dev) * torch.pi  # Sampling x from (0, 
\pi) 
t_data = torch.rand(M, 1).to(dev) * T 
 
# The initial value 
def phi(x): 
    return 2 / torch.cosh(10 * (x - torch.pi/2)).unsqueeze(1) 
 



# The interaction function H_k(s) 
def H_k(s, a, k): 
    return torch.where( 
        s < a, torch.tensor(0.0, device=s.device), 
        torch.where(s < a + 1/k, k * (s - a), torch.tensor(1.0, 
device=s.device)) 
    ) 
 
# Define the network 
def create_network(): 
    return torch.nn.Sequential( 
        torch.nn.Linear(2, 50), torch.nn.SiLU(), 
        torch.nn.Linear(50, 50), torch.nn.SiLU(), 
        torch.nn.Linear(50, 50), torch.nn.SiLU(), 
        torch.nn.Linear(50, 50), torch.nn.SiLU(), 
        torch.nn.Linear(50, 1), 
    ).to(dev) 
 
optimizer = torch.optim.Adam 
 
J = 256  # the batch size 
a_values = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35] 
 
# Function to train the model for a specific value of `a` 
def train_for_a(a, epochs=M): 
    model = create_network() 
    optim = optimizer(model.parameters(), lr=1e-3) 
    for i in range(epochs): 
        if i % 100 == 0: 
            print(f"Iteration {i} for a = {a}") 
 
        # Choose a random batch of training samples 
        indices = torch.randint(0, M, (J,)) 
        x = x_data[indices, :] 
        t = t_data[indices, :] 
 
        x.requires_grad_() 
        t.requires_grad_() 
 
        optim.zero_grad() 
 
        # Compute u(0, x) for each x in the batch 
        u0_pred = model(torch.hstack((x, torch.zeros_like(t)))) 
        # Compute the loss for the initial condition 
        initial_loss = (u0_pred - phi(x)).square().mean() 
 
        # Compute the partial derivatives using automatic 
differentiation 
        u = model(torch.hstack((x, t))) 
        ones = torch.ones_like(u) 
        u_t = grad(u, t, ones, create_graph=True)[0] 
        u_x = grad(u, x, ones, create_graph=True)[0] 
        u_xx = grad(u_x, x, ones, create_graph=True)[0] 
 
        # Compute the loss for the PDE 
        H_pred = H_k(u, a, k) 
        pde_loss = (u_t - u_xx - H_pred + u).square().mean() 
 
        # Compute the total loss and perform a gradient step 
        loss = initial_loss + pde_loss 



        loss.backward() 
        optim.step() 
 
        if i % 100 == 0: 
            print(f"Loss at iteration {i} for a = {a}: {loss.item()}") 
 
    return model 
 
# Function to plot the solution at different times 
def plot_solution(a_index, a, model): 
    mesh = 128 
    x = torch.linspace(0, torch.pi, mesh).to(dev).unsqueeze(1) 
    t = torch.linspace(0, T, mesh).to(dev).unsqueeze(1) 
    x_grid, t_grid = torch.meshgrid(x.squeeze(), t.squeeze(), 
indexing="xy") 
    x_flat = x_grid.reshape(-1, 1) 
    t_flat = t_grid.reshape(-1, 1) 
    z = model(torch.cat((x_flat, t_flat), 1)) 
    z = z.detach().cpu().numpy().reshape(mesh, mesh) 
    return a_index, a, z 
 
def save_plot(results): 
    gs = GridSpec(2, 4, width_ratios=[1, 1, 1, 0.05]) 
    fig = plt.figure(figsize=(16, 10), dpi=300) 
 
    # Find the min and max values for color normalization 
    z_min = min(result[2].min() for result in results) 
    z_max = max(result[2].max() for result in results) 
 
    for a_index, a, z in results: 
        ax = fig.add_subplot(gs[a_index // 3, a_index % 3]) 
        ax.set_title(f"a = {a}") 
        im = ax.imshow( 
            z, cmap="plasma", extent=[0, torch.pi, 0, T], 
aspect='auto', origin='lower', vmin=z_min, vmax=z_max 
        ) 
        ax.set_xlabel('x') 
        ax.set_ylabel('t') 
 
    # Add the colorbar to the figure 
    sm = ScalarMappable(cmap="plasma", norm=plt.Normalize(vmin=z_min, 
vmax=z_max)) 
    cax = fig.add_subplot(gs[:, 3]) 
    fig.colorbar(sm, cax=cax, orientation='vertical') 
 
    # Create the directory if it does not exist 
    output_dir = "../plots" 
    os.makedirs(output_dir, exist_ok=True) 
    fig.savefig(os.path.join(output_dir, "ceur.pdf"), 
bbox_inches="tight") 
 
if __name__ == '__main__': 
    results = [] 
    for i, a in enumerate(a_values): 
        model = train_for_a(a) 
        result = plot_solution(i, a, model) 
        results.append(result) 
    save_plot(results) 
Source code 1: Modified version of source code from Section 16.3 of [5]. 



5. Conclusions 

In this paper, we have developed and validated an intelligent system methodology for approximating 
solutions to models of electrical impulse conduction in nerve axons. The core of our approach 
integrates advanced computational techniques, notably Physics-Informed Neural Networks (PINNs) 
and the Deep Learning Galerkin Method (DLGM), with biological modeling to address the 
complexities inherent in these systems. 

Our methodology transforms the infinite-dimensional stochastic optimization problems 
associated with the Hodgkin-Huxley and FitzHugh-Nagumo equations into tractable finite-
dimensional problems based on the use of artificial neural networks (ANNs). This approach not only 
enhances the accuracy and efficiency of the numerical simulations but also provides a robust 
framework for accounting for the qualitative characteristics of the solutions, such as stability and 
traveling wave phenomena. 

The numerical implementation and empirical results confirm the effectiveness of our method. By 
successfully approximating the solutions for various parameter values, our method demonstrates its 
capability to overcome the limitations of classical numerical methods. The results visually and 
quantitatively affirm that the proposed computational method captures both the quantitative 
approximation and qualitative behaviors of the model solutions. 

Future work will aim to refine the methodology further, exploring more complex models and 
extending the approach to other types of partial differential equations encountered in biological and 
medical applications. The adaptability and computational power of intelligent modeling systems 
promise to further expand the horizons of understanding complex biological processes. 

To summarize, the methodology for constructing an intelligent system for approximating 
solutions to the conduction equations of electrical impulses in nerve axons presented in this study 
represents the next step forward in the numerical analysis of neuronal dynamics, offering a powerful 
tool for both theoretical research and practical applications in computational neuroscience. 
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