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Abstract 
In this paper, we propose a family of activation functions (AFs) that can be considered as smooth 
approximations of bounded ReLU and similar AFs. These AFs are constructed by using a shifted origin-
aligned S-shaped function as a basis, and weighing it with another S-shaped function, similar to how 
SiLU/GELU AFs weigh the 𝑓(𝑥) = 𝑥 function. The use of both regular and adaptive variants of such AFs is 
explored. The performance of the proposed family of AFs is evaluated in terms of the image classification 
accuracy with CNN models by comparing their multiple variants with the popular existing AFs on CIFAR-
10 and Fashion-MNIST datasets using Adam and stochastic gradient descent (SGD) optimizers with 
different learning rates. Overall, 28 variants of the proposed AFs are compared with 21 variants of popular 
existing AFs (including the ReLU-like functions such as ReLU, Leaky ReLU, SiLU, GELU, PReLU, Swish, etc. 
and some S-shaped AFs), and 6 shifted S-shaped AFs. The experiments have shown that in most cases the 
adaptive versions of the proposed AFs provide a pronounced image classification accuracy advantage over 
all existing AFs that were considered when the Adam optimizer is used, and no consistent advantage with 
the SGD optimizer. Further research regarding the use of these AFs with the SGD optimizer, and the use of 
their non-adaptive variants is required. 

Keywords  
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1. Introduction 

Artificial intelligence (AI) as a field that strives to replicate different kinds of cognitive functions 
pertaining to humans inevitably has to deal with many kinds of computer vision (CV) tasks. The fact 
that CV-related tasks represent a broad part of AI tasks is a natural consequence of the fact that 
humans strongly rely on vision in many of their daily routines, which are in turn eventually being 
targeted for solution by AI. Convolutional neural networks (CNNs) are a class of artificial neural 
networks that proved to be very effective at solving many CV-related tasks, such as image 
classification, object detection, semantic segmentation, etc. 

The performance of neural network models can vary depending on many factors such as the task 
being solved, the network’s architecture being used, scale of the network, hyperparameters involved 
in tuning the model, etc. The choice of activation functions (AFs) is one of such hyperparameters 
that can significantly influence the network’s capability to perform a certain task. In case of CNNs, 
like in many other cases, ReLU AF is a popular choice, along with other AFs that can be said as being 
its variations, such as Leaky ReLU [1], SiLU [2], GELU [3], ELU [4], etc. In this paper, such functions 
are called ReLU-like ones for convenience. 

The ReLU-like functions effectively solve the vanishing gradient problem [5, 6], which is a typical 
problem with S-shaped AFs [6]. In many cases, using ReLU-like functions lead to better model’s 
effectiveness for solving the image classification tasks with CNNs than the S-shaped functions like 
Sigmoid and Tanh [7]. 

It has been shown that bounding of the ReLU function can be beneficial for training stability and 
classification accuracy with functions like BReLU, BLReLU [8]. At the same time there are some 
improved variants of ReLU (LReLU, GELU, SiLU, PReLU) that can show better results, but these 
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functions are not bounded, hence there’s a potential in exploring the bounded versions of such 
functions to see if this could produce a cumulative improvement effect that would lead to better 
results than any of these functions. 

The way that BReLU or similar (ReLU-6 [9]) functions are bounded makes the function to have a 
fixed value with zero derivative after a certain value of its argument, which could degrade the 
network’s training process. Alternative functions, which are formally not bounded, but still limit the 
function’s growth after a certain value of its argument as well are functions like BLReLU [8] and 
PLU [10]. The BReLU, BLReLU, and PLU AFs are piecewise linear functions though. In this work it 
is assumed that smoothing the transitions in such functions by replacing piecewise linear functions 
with smoother approximation functions could improve the overall network’s approximation 
capabilities. The intuition behind this assumption is that real-world data would presumably typically 
be diverse enough to have no or few hard edges in distributions of most of its aspects. 

Some of the functions that can be useful for creating smooth approximations of bounded ReLU-
like functions are the shifted S-shaped functions. The work [11] shows that the modified version of 
the Tanh function, which is shifted horizontally and vertically while still maintaining an intersection 
with the origin, called Shifted Tanh, achieves a better performance than the Tanh function, and can 
show a performance that is similar or slightly higher than that of the ReLU AF. 

In this paper, we take a further look at such shifted S-shaped functions by first evaluating the 
performance of shifted variants of the Atan and Asinh functions, and then modifying them to 
represent better smoothed approximations of bounded ReLU-like functions. In this paper the 
respective shifted AFs conventionally have the “So” prefix added to them (meaning “shifted, origin-
aligned”): SoTanh (same as Shifted Tanh in [11]), SoAtan, SoAsinh. Regarding the Asinh function in 
particular, it is worth noting that unlike most S-shaped functions, it is an unbounded one, which 
could potentially be a useful property for mitigating the vanishing gradient problem as it tends to 
have higher first derivative values for a wider range of 𝑥 than the bounded functions like Tanh and 
Atan. 

More specifically, shifting an S-shaped function to the right is seen to potentially be beneficial 
due to the following reasons: 

• This makes the negative function’s part closer to the 𝑥 axis, similar to the shape of ReLU-like 
functions. It is informally assumed in this work that the proximity of ReLU-like functions to 
0 plays a certain role in their effectiveness with CNNs. One of the explanations might be the 
assumption that such AF’s property encourages learning sparse representations of network’s 
inputs [5, 11]. 

• This makes the function in its positive part to have a longer range where the functions value 
is closer to the 𝑓(𝑥) = 𝑥 function, compared to a regular unshifted version of the same S-
function, which also makes their shape closer to that of Bounded ReLU or BLReU AFs, while 
also having smooth transitions. The proximity of the positive function’s part to the 𝑓(𝑥) = 𝑥 
function is hypothesized to contribute to preventing both vanishing gradients and exploding 
gradients in deep networks. 

After testing the performance of SoTanh, SoAtan, and SoAsinh functions, we introduce their 
modified versions, which make them closer to bounded ReLU-like functions. One of the notable 
differences of SoTanh, SoAtan, SoAsinh functions from functions like ReLU, SiLU, GELU is that the 
negative part of SoTanh, SoAtan, and SoAsinh AFs is notably farther away from the 𝑥 axis than 
ReLU/SiLU/GELU. Hence, it is hypothesized that these shifted S-shaped functions might fail to 
introduce the activations sparsity that can be seen with ReLU/SiLU/GELU. Thus, there could be a 
potential for improving their performance by “pushing” their negative part closer to the 𝑥 axis. Since 
we strive to create smooth approximations of bounded ReLU-like functions, we choose to explore 
the same method of “pushing” negative part to the 𝑥 axis as the one used by the SiLU and GELU 
functions in this work. As a result, we create shifted S-shaped functions, which are weighted by 
another S-shaped function that has a range of (0; 	1) and a value of 0.5 at 𝑥 = 0. In this paper we 



call such a family of functions as weighted shifted origin-aligned S-shaped functions (WSoS 
functions). By using two variants of weight functions and three variants of base S-shaped functions 
in this work we introduce and investigate the following specific WSoS AFs: SiSoTanh, SiSoAtan, 
SiSoAsinh, GeSoTanh, GeSoAtan, GeSoAsinh (see section 2.2). 

Considering the fact that bounded functions are prone to causing the vanishing gradient problem, 
in this work we try to mitigate the likelihood of this problem by prolonging the range of the function 
in its positive range where the function has values close to the 𝑓(𝑥) 	= 	𝑥 function. We do this by 
introducing the scaling parameters. Besides, there’s one more adjustable parameter that identifies 
the amount by which the base S-function is shifted along the 𝑥 axis. 

Finding a good combination among permutations of all AF’s parameters can potentially be hard, 
so we first perform experiments with certain fixed parameter values, and then make these 
parameters to be trainable by creating adaptive versions of these AFs. In case of adaptive versions of 
the AFs, we share the parameters across the entire model rather than introducing different trainable 
parameter sets per each network’s neuron. 

2. Method 

2.1. Shifted origin-aligned S-shaped AFs 

The notion of shifted origin-aligned S-shaped functions is not new (the Shifted Tanh function 
was explored in [11]), but we include them into the comparison to see how the AFs proposed in this 
work stack up against them along with other existing AFs. Besides, in addition to the Shifted Tanh 
function (which is called SoTanh in this work for brevity and consistency with the proposed AFs), 
this work also explores the shifted versions of Atan and Asinh functions, which follow the same 
pattern, and evaluates the performance of their adaptive variants.  

The general form of such shifted origin-aligned S-shaped functions 𝑆𝑜(𝑥) used in this work can 
be described with the following formula: 

 
𝑆𝑜(𝑥) = 𝑆(𝑥 − 𝛼) + 𝑆(𝛼), (1) 

 
where  

S is an arbitrary S-shaped function, which is also called a base function in this paper, and 
α is a value by which the function is shifted horizontally. 

This results in the following three AFs, which represent the shifted versions of Tanh, Atan, and 
Asinh functions (see Table 1). Examples of such AFs can be seen in Figure 1. 

 
Table 1 
Shifted origin-aligned AFs evaluated in this work 

Base function Shifted, origin-aligned AF formula 
Tanh 𝑆𝑜𝑇𝑎𝑛ℎ(𝑥) = 𝑇𝑎𝑛ℎ(𝑥 − 𝛼) + 𝑇𝑎𝑛ℎ(𝛼) 
Atan 𝑆𝑜𝐴𝑡𝑎𝑛(𝑥) = 𝐴𝑡𝑎𝑛(𝑥 − 𝛼) + 𝐴𝑡𝑎𝑛(𝛼) 
Asinh 𝑆𝑜𝐴𝑠𝑖𝑛ℎ(𝑥) = 𝐴𝑠𝑖𝑛ℎ(𝑥 − 𝛼) + 𝐴𝑠𝑖𝑛ℎ(𝛼) 

2.2. Weighted shifted origin-aligned S-shaped AFs 

The family of AFs proposed in this work (by convention called as WSoS AFs family in this paper) 
contains the modifications of shifted origin-aligned S-shaped functions (see section 2.1), whose 
negative part is softly pushed closer to the 𝑥 axis by weighing them with another S-shaped function, 
as can be described in a general form by this formula: 

 



𝑊𝑆𝑜(𝑥) = 𝛾𝑊(𝑥)𝛽𝑆𝑜(
1
𝛽
𝑥), (2) 

 
where  

𝛾 is a function’s vertical scaling parameter. 
𝑊(𝑥) is any S-shaped function in range (0; 1) symmetric with respect to the point (0, 0.5). 
𝛽 is a horizontal and vertical scaling parameter for the 𝑆𝑜 function. 
𝑆𝑜(𝑥) is a shifted origin-aligned S-shaped function (1). 
 

 
Figure 1: Shifted origin-aligned S-shaped functions with 𝛼 = 1.0 

 
The way of weighing a shifted origin-aligned S-shaped function, which was chosen in this work, 

is similar to the way of weighing the 𝑓(𝑥) = 𝑥 function in the SiLU and GELU AFs, where the logistic 
sigmoid and Gauss error functions are used respectively as the weight function 𝑊(𝑥). The respective 
variants used in this work, informally called 𝑆𝑖 and 𝐺𝑒, are shown in Table 2. 
 
Table 2 
Variants of the weight function W(x) used in this work 

Weight function Formula 

Si 𝑆𝑖(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒!"
 

Ge 𝐺𝑒(𝑥) =
1
2
(𝐸𝑟𝑓(𝑥) + 1) 

 
With the three variants of shifted S-shaped functions listed in Table 1, this results in 6 specific 

AFs that belong to the class of WSoS AFs, which are explored in this work (see Table 3).  
In an attempt to identify some concrete efficient AF variants, each of these functions is tested 

with several different sets of 𝛼, 𝛽, and 𝛾 parameters. Some examples of these functions with different 
values of α, β, 𝛾 parameters can be seen in Figure 2 and Figure 3. 

 
 
 
 
 
 
 



Table 3 
The proposed WSoS AFs 

Activation function Formula 

SiSoTanh 𝑆𝑖𝑆𝑜𝑇𝑎𝑛ℎ(𝑥) = 	𝛾𝛽𝜎(𝑥) B𝑇𝑎𝑛ℎ B
1
𝛽
𝑥 − 𝛼C + 𝑇𝑎𝑛ℎ(𝛼)C 

SiSoAtan 𝑆𝑖𝑆𝑜𝐴𝑡𝑎𝑛(𝑥) = 	𝛾𝛽𝜎(𝑥) B𝐴𝑡𝑎𝑛 B
1
𝛽
𝑥 − 𝛼C + 𝐴𝑡𝑎𝑛(𝛼)C 

SiSoAsinh 𝑆𝑖𝑆𝑜𝐴𝑠𝑖𝑛ℎ(𝑥) = 	𝛾𝛽𝜎(𝑥) B𝐴𝑠𝑖𝑛ℎ B
1
𝛽
𝑥 − 𝛼C + 𝐴𝑠𝑖𝑛ℎ(𝛼)C 

GeSoTanh 𝐺𝑒𝑆𝑜𝑇𝑎𝑛ℎ(𝑥) = 	
1
2
𝛾𝛽(𝐸𝑟𝑓(𝑥) + 1) B𝑇𝑎𝑛ℎ B

1
𝛽
𝑥 − 𝛼C + 𝑇𝑎𝑛ℎ(𝛼)C 

GeSoAtan 𝐺𝑒𝑆𝑜𝐴𝑡𝑎𝑛(𝑥) = 	
1
2
𝛾𝛽(𝐸𝑟𝑓(𝑥) + 1) B𝐴𝑡𝑎𝑛 B

1
𝛽
𝑥 − 𝛼C + 𝐴𝑡𝑎𝑛(𝛼)C 

GeSoAsinh 𝐺𝑒𝑆𝑜𝐴𝑠𝑖𝑛ℎ(𝑥) = 	
1
2
𝛾𝛽(𝐸𝑟𝑓(𝑥) + 1) B𝐴𝑠𝑖𝑛ℎ B

1
𝛽
𝑥 − 𝛼C + 𝐴𝑠𝑖𝑛ℎ(𝛼)C 

 

  
Figure 2: Weighted shifted origin-aligned S-shaped functions with α, β, 𝛾 all equal to 1.0 
 
 

 
Figure 3: Weighted shifted origin-aligned S-shaped functions with 𝛼 = 1, 𝛽 = 10, 𝛾 = 2 



2.3. Adaptive AF variants 

In addition to the functions mentioned in Table 1 and Table 3, this work considers respective 
adaptive variants of these AFs, which use the same AF formulas, but treat α, β, 𝛾 as trainable 
parameters, which are shared across the whole model. The resulting adaptive variants of shifted 
origin-aligned S-shaped AFs: ASoTanh, ASoAtan, ASoAsinh. The adaptive variants of the WSoS AFs 
(later called AWSoS functions for conciseness) are as follows: ASiSoTanh, ASiSoAtan, ASiSoAsinh, 
AGeSoTanh, AGeSoAtan, AGeSoAsinh. 

The ASoTanh, ASoAtan, ASoAsinh functions are tested with one variant of the initial α 
parameter’s value for each AF, and the ASiSoTanh, ASiSoAtan, ASiSoAsinh, AGeSoTanh, 
AGeSoAtan, AGeSoAsinh AFs are tested with several sets of initial parameter values. 

2.4. Experimental setup 

All activation functions are tested and compared on the image classification task with various 
CNN models, datasets, and hyperparameters. Below are the details on the respective experiments 
that are performed. 

2.4.1. Activation functions being compared 

In this paper, we compare the proposed activation functions belonging to the WSoS/AWSoS 
family with a set of existing activation functions by evaluating the average best test accuracy for 
each AF over several runs. The comparison includes the following functions: 

 
Table 4 
Activation functions compared in this work 

Category of AFs AFs Sets of parameter values/ 
initial parameter values 

The proposed WSoS and 
AWSoS AFs 

SiSoTanh, SiSoAtan, SiSoAsinh,  
GeSoTanh, GeSoAtan, GeSoAsinh,  
ASiSoTanh, ASiSoAtan, ASiSoAsinh,  
AGeSoTanh, AGeSoAtan, AGeSoAsinh 

𝛼 = 1, 𝛽 = 1,	𝛾 = 1 
𝛼 = 1, 𝛽 = 10, 𝛾	 = 2.6 

SiSoTanh, GeSoTanh 𝛼 = 1, 𝛽 = 1.5, 𝛾 = 3.64 
SiSoAtan, GeSoAtan 𝛼 = 1, 𝛽 = 1.2, 𝛾 = 3.2 

Shifted origin-aligned S-
shaped AFs, and their 
adaptive variants 

SoTanh, ASoTanh 𝛼 = 1  
SoAtan, ASoAtan 𝛼 = 1  
SoAsinh, ASoAsinh 𝛼 = 1  

Popular existing AFs ReLU, ReLU-6, SiLU, GELU, ELU, Softsign, 
Sigmoid, Tanh, Arctan, Asinh 

N/A 

Leaky ReLU 0.01 
0.1 
0.3 
0.6 

PReLU (with per-neuron trainable param.) 0 
PReLU 
(with trainable parameter shared across 
the whole model) 

0.01 
0.2 
0.4 

Swish 
(with trainable parameter shared across 
the whole model) 

0.33 
1 
3 

 



All the proposed AWSoS AFs share the trainable α, β, 𝛾 parameters across the entire model in 
this work. This means that using an adaptive variant of the AFs add just a single set of three trainable 
variables to the entire model, which means that the memory footprint from using these AFs remains 
practically unaffected. 

2.4.2. Testing metrics and configurations 

Each of the functions is tested several times in each of the test configurations listed in Table 5. 
Within the same testing configuration, for every AF, an average image classification accuracy (as 
well as the standard deviation) across several test runs is evaluated for each training epoch. Only the 
accuracies obtained from the test dataset (not the training dataset) are used. The maximum average 
accuracy value that was achieved by a certain AF on any of the training epochs in certain test 
configuration is considered as the accuracy of this AF in this test configuration. After obtaining 
accuracies for each AF in each configuration, a common comparison chart for each of the 
configurations is made, where accuracies of all AFs can be compared with each other within the 
respective testing configuration. 
Table 5 
AF testing configurations 
Configuration 
Name 

Dataset Model Optimizer Learning 
Rate 

Batch 
Size 

No of 
epochs 

No of 
runs 

CAL CIFAR-10 CIFAR10-cls Adam 0.001 32 30 10 
CAH CIFAR-10 CIFAR10-cls Adam 0.002 32 30 3 
CSL CIFAR-10 CIFAR10-cls SGD 0.03 32 30 10 
CSH CIFAR-10 CIFAR10-cls SGD 0.06 32 30 3 
FAL Fashion-MNIST FMNIST-cls Adam 0.001 32 30 10 
FAH Fashion-MNIST FMNIST-cls Adam 0.01 32 30 3 
FSL Fashion-MNIST FMNIST-cls SGD 0.03 32 30 10 
FSH Fashion-MNIST FMNIST-cls SGD 0.3 32 30 3 

In all cases, CNN kernel weights are initialized with the Glorot uniform weight initialization 
method, and biases are initialized with zeros. 

Besides evaluating AF classification accuracies for each configuration, this work explores whether 
some AFs tend to have better/worse accuracy across configurations. In order to make this possible 
while dealing with different datasets, models, and hyperparameters, which can result in different 
accuracy ranges, a notion of AF accuracy rank is introduced. For any given AF, its accuracy rank 
𝑅#$,&  within a specific configuration 𝐶 is defined as a 1-based index in a list of AFs sorted by their 
classification accuracy in an ascending order within this configuration 𝐶. Provided that all 
configurations are performed over the same set of AFs, for any set 𝑀 of multiple test configurations 
𝐶'…𝐶(, a combined rank for each AF 𝑅#$,) can be calculated by averaging the respective per-
configuration ranks for this AF: 

𝑅#$,) =
1
𝑛
L𝑅#$,&!

(

*+'

, (3) 

In this work, combined AF ranks are calculated for three configuration combinations: 
Configurations from Table 5 that use the Adam optimizer. 
Configurations from Table 5 that use the stochastic gradient descent (SGD) optimizer. 
All configurations from Table 5. 

2.4.3. CNN models used 

As can be seen in Table 5, each dataset is used with its respective model. The CIFAR-10 dataset is 
used with the CIFAR10-cls model (see Figure 4), and Fashion-MNIST dataset is used with the 
FMNIST-cls model (see Figure 5). 



 
Figure 4: The CIFAR10-cls model used for CIFAR-10 image classification in this work 

 
Figure 5: The FMNIST-cls model used for Fashion-MNIST image classification in this work 

3. Results 

The image classification accuracies that were identified in experiments for each AF in Table 4 in each 
of the test configurations listed in Table 5 can be seen in  
 
Table 6 (for the proposed WSoS and AWSoS AFs) and Table 7 (for existing AFs). 

The AF measurements sorted by classification accuracy for the configurations CAL and CSL in 
Table 5 are visualized on charts depicted in Figure 6 and Figure 7 respectively.   

 
Figure 6: CIFAR-10 classification accuracies for all AFs with the Adam optimizer and learning rate 
of 0.001—testing configurfation CAL, demonstrates an advantage of AWSoS AFs 
 



 
Table 6 
Image classification accuracies for the proposed WSoS and AWSoS AFs along with std. deviations, 
% 
AF Dataset CIFAR-10 Fashion-MNIST 

Optimizer Adam SGD Adam SGD 
Configuration CAL CAH CSL CSH FAL FAH FSL FSH 

SiSoTanh(1, 1, 1) 75.39 
±0.40 

75.73 
±0.43 

12.19 
±6.57 

54.14 
±20.47 

89.81 
±0.29 

84.89 
±0.64 

89.13 
±0.30 

87.93 
±0.67 

SiSoTanh(1, 10, 2) 76.26 
±0.39 

74.66 
±0.29 

74.48 
±0.42 

75.62 
±0.90 

90.45 
±0.21 

84.48 
±0.82 

89.43 
±0.49 

88.39 
±0.23 

SiSoTanh(1.0, 1.5, 3.64) 73.58 
±0.71 

56.91 
±1.94 

35.59 
±31.35 

10.00 
±0.00 

90.07 
±0.27 

77.25 
±1.86 

89.52 
±0.18 

10.00 
±0.00 

SiSoAtan(1, 1, 1) 75.95 
±0.38 

75.51 
±0.66 

35.76 
±26.18 

60.76 
±7.16 

90.22 
±0.31 

84.67 
±0.57 

89.34 
±0.28 

88.19 
±0.35 

SiSoAtan(1, 10, 2) 75.93 
±0.45 

74.14 
±0.51 

74.73 
±1.05 

75.40 
±0.23 

90.36 
±0.23 

83.24 
±0.70 

89.65 
±0.33 

88.25 
±0.62 

SiSoAtan(1.0, 1.2, 3.2) 72.94 
±0.76 

57.76 
±1.62 

60.01 
±25.03 

10.00 
±0.00 

90.18 
±0.18 

78.38 
±0.81 

89.47 
±0.30 

35.46 
±36.00 

SiSoAsinh(1, 1, 1) 76.02 
±0.41 

74.38 
±0.45 

72.76 
±0.73 

75.19 
±0.35 

90.38 
±0.18 

85.19 
±0.43 

89.19 
±0.26 

88.37 
±0.29 

SiSoAsinh(1, 10, 2) 74.97 
±0.35 

72.50 
±0.47 

75.21 
±0.75 

73.29 
±0.84 

90.37 
±0.30 

81.43 
±1.17 

89.75 
±0.29 

10.00 
±0.00 

GeSoTanh(1, 1, 1) 75.59 
±0.52 

75.97 
±0.30 

41.08 
±23.24 

68.89 
±1.25 

89.64 
±0.19 

83.86 
±0.38 

89.13 
±0.45 

35.91 
±36.64 

GeSoTanh(1, 10, 2) 76.53 
±0.59 

74.89 
±0.48 

75.09 
±0.45 

75.15 
±0.58 

90.24 
±0.33 

84.02 
±0.25 

89.52 
±0.32 

86.38 
±0.36 

GeSoTanh(1.0, 1.5, 3.64) 73.74 
±0.74 

42.08 
±22.77 

10.00 
±0.00 

10.00 
±0.00 

89.90 
±0.24 

79.54 
±0.88 

89.03 
±0.36 

10.00 
±0.00 

GeSoAtan(1, 1, 1) 76.07 
±0.41 

75.58 
±0.19 

68.01 
±3.88 

72.02 
±0.23 

89.91 
±0.32 

84.55 
±0.47 

89.22 
±0.26 

87.48 
±0.16 

GeSoAtan(1, 10, 2) 76.17 
±0.52 

74.17 
±0.66 

75.19 
±0.76 

75.16 
±0.35 

90.20 
±0.33 

83.31 
±0.72 

89.51 
±0.26 

58.96 
±34.63 

GeSoAtan(1.0, 1.2, 3.2) 66.80 
±18.94 

54.14 
±3.70 

10.00 
±0.00 

10.00 
±0.00 

89.90 
±0.28 

76.56 
±1.04 

89.16 
±0.26 

31.54 
±30.46 

GeSoAsinh(1, 1, 1) 76.32 
±0.41 

74.71 
±0.44 

72.97 
±0.74 

74.19 
±0.58 

90.25 
±0.24 

84.50 
±0.25 

89.16 
±0.35 

87.44 
±0.33 

GeSoAsinh(1, 10, 2) 75.56 
±0.46 

73.26 
±0.52 

75.13 
±0.81 

73.51 
±0.20 

90.06 
±0.21 

82.15 
±0.50 

89.48 
±0.14 

81.77 
±0.62 

ASiSoTanh(1, 1, 1) 76.95 
±0.31 

77.38 
±0.03 

35.74 
±31.57 

10.00 
±0.00 

90.48 
±0.18 

90.18 
±0.16 

90.10 
±0.26 

35.96 
±36.71 

ASiSoTanh(1, 10, 2) 76.87 
±0.31 

77.46 
±0.16 

49.87 
±32.56 

10.00 
±0.00 

90.53 
±0.28 

89.89 
±0.25 

90.06 
±0.22 

10.00 
±0.00 

ASiSoAtan(1, 1, 1) 77.09 
±0.39 

78.16 
±0.18 

62.03 
±26.10 

75.68 
±1.52 

90.45 
±0.27 

90.07 
±0.11 

90.06 
±0.22 

36.20 
±37.05 

ASiSoAtan(1, 10, 2) 77.06 
±0.37 

77.86 
±0.48 

69.75 
±19.93 

10.00 
±0.00 

90.49 
±0.15 

90.10 
±0.04 

90.15 
±0.26 

36.27 
±37.16 

ASiSoAsinh(1, 10, 2) 76.96 
±0.40 

77.61 
±0.29 

76.37 
±0.13 

32.33 
±31.58 

90.51 
±0.18 

90.05 
±0.16 

90.07 
±0.23 

10.00 
±0.00 

ASiSoAsinh(1, 1, 1) 77.63 
±0.24 

77.97 
±0.30 

77.01 
±0.27 

76.83 
±0.40 

90.64 
±0.17 

90.18 
±0.28 

90.13 
±0.24 

36.25 
±37.12 

AGeSoTanh(1, 1, 1) 77.07 
±0.60 

78.19 
±0.24 

49.42 
±32.19 

10.00 
±0.00 

90.47 
±0.25 

89.95 
±0.45 

89.93 
±0.38 

35.03 
±35.39 

AGeSoTanh(1, 10, 2) 77.16 
±0.29 

77.90 
±0.40 

62.33 
±26.19 

10.00 
±0.00 

90.33 
±0.30 

89.68 
±0.33 

89.98 
±0.21 

10.00 
±0.00 

AGeSoAtan(1, 1, 1) 76.93 
±0.54 

77.32 
±0.04 

68.42 
±19.65 

55.03 
±31.84 

90.51 
±0.25 

90.00 
±0.02 

89.98 
±0.22 

35.99 
±36.76 

AGeSoAtan(1, 10, 2) 77.61 
±0.31 

78.11 
±0.28 

62.8 
2±26.42 

10.00 
±0.00 

90.39 
±0.23 

89.91 
±0.09 

89.78 
±0.16 

10.00 
±0.00 

AGeSoAsinh(1, 10, 2) 77.47 
±0.33 

77.82 
±0.30 

76.00 
±0.56 

32.19 
±31.39 

90.47 
±0.19 

90.05 
±0.36 

89.73 
±0.16 

35.96 
±36.71 

AGeSoAsinh(1, 1, 1) 77.20 77.80 76.89 76.63 90.51 89.92 90.08 61.67 



±0.32 ±0.51 ±0.49 ±0.10 ±0.20 ±0.27 ±0.26 ±36.53 
Table 7 
Image classification accuracies for existing AFs along with std. deviations, % 

AF Dataset CIFAR-10 Fashion-MNIST 
Optimizer Adam SGD Adam SGD 
Configuration CAL CAH CSL CSH FAL FAH FSL FSH 

SoTanh(1.0) 75.40 
±0.25 

70.38 
±0.31 

74.06 
±0.67 

75.17 
±0.02 

90.30 
±0.23 

83.19 
±0.17 

89.57 
±0.40 

88.24 
±0.15 

SoAtan(1.0) 74.71 
±0.49 

70.53 
±0.62 

74.65 
±0.56 

75.37 
±0.02 

90.45 
±0.34 

83.49 
±0.36 

90.10 
±0.31 

88.59 
±0.24 

SoAsinh(1.0) 74.18 
±0.76 

71.36 
±0.65 

74.50 
±0.85 

74.30 
±0.21 

90.21 
±0.18 

84.79 
±0.44 

89.99 
±0.29 

61.12 
±36.15 

ASoTanh(1.0) 75.80 
±0.32 

75.92 
±0.46 

75.48 
±0.49 

75.71 
±0.44 

90.46 
±0.35 

86.95 
±0.06 

90.20 
±0.22 

87.99 
±0.24 

ASoAtan(1.0) 75.44 
±0.28 

75.67 
±0.26 

75.86 
±0.69 

75.89 
±0.15 

90.39 
±0.33 

89.69 
±0.15 

90.14 
±0.24 

88.79 
±0.17 

ASoAsinh(1.0) 74.76 
±0.26 

74.45 
±0.50 

75.19 
±0.34 

75.41 
±0.59 

90.15 
±0.14 

89.21 
±0.18 

90.06 
±0.20 

90.16 
±0.09 

Sigmoid 62.70 
±0.69 

63.72 
±1.34 

10.00 
±0.00 

10.00 
±0.00 

88.57 
±0.33 

10.00 
±0.00 

37.71 
±34.03 

10.00 
±0.00 

Tanh 70.53 
±0.54 

63.43 
±0.81 

72.50 
±0.74 

71.56 
±0.14 

90.21 
±0.21 

80.40 
±0.28 

90.14 
±0.27 

86.99 
±0.05 

Atan 71.62 
±0.58 

66.82 
±0.47 

72.69 
±0.69 

71.81 
±0.55 

90.05 
±0.23 

82.41 
±0.53 

90.21 
±0.19 

87.82 
±0.17 

Asinh 71.75 
±0.52 

69.54 
±0.46 

71.83 
±0.51 

70.44 
±0.59 

89.89 
±0.24 

84.83 
±0.38 

89.99 
±0.21 

35.53 
±36.11 

Softsign 73.09 
±0.43 

70.29 
±0.66 

72.65 
±0.83 

72.92 
±0.20 

90.36 
±0.23 

83.95 
±0.28 

90.16 
±0.20 

89.45 
±0.20 

ReLU 74.21 
±0.75 

70.51 
±0.35 

73.67 
±1.05 

73.13 
±0.41 

89.94 
±0.41 

83.00 
±0.36 

89.32 
±0.18 

85.90 
±0.15 

ReLU6 74.22 
±0.40 

68.15 
±0.51 

74.35 
±0.53 

72.68 
±0.19 

90.06 
±0.26 

82.47 
±1.31 

89.39 
±0.27 

85.09 
±0.93 

LeakyReLU(0.01) 75.44 
±0.62 

73.78 
±0.55 

74.08 
±0.44 

73.79 
±0.51 

89.93 
±0.17 

83.12 
±0.11 

89.39 
±0.26 

86.42 
±0.57 

LeakyReLU(0.1) 76.81 
±0.55 

75.16 
±0.53 

75.77 
±0.84 

75.26 
±0.36 

90.27 
±0.34 

82.76 
±0.81 

89.60 
±0.18 

61.53 
±36.43 

LeakyReLU(0.3) 76.18 
±0.58 

73.12 
±0.53 

75.16 
±0.75 

75.12 
±0.62 

90.27 
±0.17 

78.58 
±4.18 

90.03 
±0.28 

35.47 
±36.02 

LeakyReLU(0.5) 73.19 
±0.62 

70.21 
±0.26 

72.91 
±0.89 

68.11 
±1.32 

90.17 
±0.17 

56.23 
±32.69 

90.11 
±0.19 

10.00 
±0.00 

PReLU 75.07 
±0.51 

74.70 
±0.45 

74.37 
±1.26 

74.85 
±0.54 

90.58 
±0.15 

79.11 
±1.51 

89.83 
±0.23 

60.68 
±35.84 

PreLU_shared(0.01) 75.83 
±0.47 

73.80 
±0.96 

72.47 
±0.95 

55.91 
±3.33 

90.28 
±0.25 

82.02 
±0.21 

89.94 
±0.37 

10.00 
±0.00 

PreLU_shared(0.2) 76.12 
±0.47 

74.69 
±0.59 

72.96 
±1.08 

59.11 
±0.20 

90.25 
±0.31 

82.07 
±0.53 

89.79 
±0.32 

10.00 
±0.00 

PreLU_shared(0.4) 76.46 
±0.38 

74.91 
±0.20 

73.24 
±0.80 

59.25 
±3.84 

90.30 
±0.32 

81.74 
±0.80 

89.81 
±0.28 

10.00 
±0.00 

SiLU 75.55 
±0.34 

74.84 
±0.20 

75.08 
±0.32 

75.69 
±0.18 

90.38 
±0.22 

83.73 
±0.16 

89.46 
±0.23 

88.28 
±0.34 

Swish(0.33) 75.93 
±0.45 

74.95 
±0.77 

75.16 
±0.85 

76.45 
±0.01 

90.31 
±0.19 

83.05 
±1.04 

89.69 
±0.30 

88.02 
±0.32 

Swish(1.0) 76.15 
±0.34 

75.03 
±0.33 

75.76 
±0.42 

76.35 
±0.30 

90.48 
±0.31 

82.79 
±0.32 

89.47 
±0.24 

88.04 
±0.08 

Swish(3.0) 76.24 
±0.20 

74.93 
±0.53 

75.69 
±0.64 

76.30 
±0.38 

90.44 
±0.25 

84.29 
±0.13 

89.70 
±0.22 

88.01 
±0.48 

GELU 75.92 
±0.34 

74.46 
±0.37 

75.84 
±0.67 

76.14 
±0.83 

90.25 
±0.24 

83.80 
±0.50 

89.70 
±0.29 

86.69 
±0.45 

ELU 75.78 
±0.48 

72.28 
±0.73 

76.32 
±0.74 

74.99 
±0.29 

90.38 
±0.16 

82.24 
±1.81 

90.20 
±0.25 

35.34 
±35.84 



 
Figure 7: CIFAR-10 classification accuracies for all AFs with the SGD optimizer and learning rate 
of 0.03—testing configuration CSL, shows that there’s no consistent advantage of AWSoS AFs with 
the SGD optimizer 
  

 
Figure 8: Combined accuracy ranks for all testing configurations using the Adam optimizer—
configurations CAL, CAH, FAL, FAH (lower is better), demonstrates a pronounced superiority of 
AWSoS AFs over existing AFs with the Adam optimizer 



 
Figure 9: Combined accuracy ranks for all testing configurations using the SGD optimizer—
configurations CSL, CSH, FSL, FSH (lower is better), demonstrates poor performance of WSoS AFs 
with the SGD optimizer 

 
  

 
Figure 10: Combined accuracy ranks for all testing configurations in Table 5 (lower is better), 
shows some AWSoS and shifted S-shaped AFs that are on average better than most Afs 
 



4. Discussion 

4.1. Analysis of the results 

4.1.1. The advantage of adaptive AWSoS AFs with the Adam optimizer 

Overall, reviewing the results from the experiments made in this work shows that the adaptive 
AWSoS AFs perform notably better than all other AFs when the model is trained with the Adam 
optimizer. Here are the respective notes that can be made regarding such observations: 

• The adaptive AWSoS AF variants have a pronounced advantage in image classification 
accuracy over existing popular ReLU-like AFs in all testing configurations that use the Adam 
optimizer. With a few of exceptions all AWSoS AFs have resulted in higher image 
classification accuracies than all other AFs considered in this work in all testing 
configurations that use the Adam optimizer. This can in particular be seen by the respective 
combined AF ranks in Figure 8. 

• The classification accuracy advantage of the AWSoS AFs can be seen to be even more 
pronounced with higher learning rates when using the Adam optimizer. In the CAH testing 
configuration, the highest-accuracy AF AGeSoTanh(1, 1, 1) shows an accuracy of 78.19%, 
which is ~3% higher than the highest-accuracy standard AF LeakyReLU(0.1) of 75.16% in this 
configuration. In comparison, a similar configuration with a lower learning rate CAL shows 
a lower advantage of ~0.8% which the highest-accuracy AWSoS AF ASiSoAsinh(1, 1, 1) 
(77.63%) has over the highest-accuracy existing AF LeakyReLU(0.1) (76.81%). A similar 
tendency can be seen on models trained for Fashion-MNIST image classification with low 
and high learning rates. 

• The choice of initial parameter values for the AWSoS AFs is seen to have no or little decisive 
effect with the Adam optimizer, and they consistently show higher accuracy than the 
existing AFs in most cases. Nevertheless, the choice of their parameter values is still 
important to fine tune the level of accuracy that can be achieved. 

• In 6 out of 8 testing configurations the ASiSoAsinh(1, 1, 1) AF has provided a classification 
accuracy higher than that of all considered existing AFs. Besides, in 4 out of 8 configurations 
this particular AF had shown an accuracy higher than all other compared AFs. 

• In the testing configurations that use the SGD optimizer, the AWSoS AFs don’t have a 
consistent advantage over the existing AFs. Adaptive versions of these AFs are in many cases 
not stable in the configurations using SGD, where they often fail to converge during training. 
A few exceptions are the ASiSoAsinh(1, 1, 1) and AGeSoAsinh(1, 1, 1) AFs, which in three of 
four SGD-related configurations have provided a higher accuracy than most of the standard 
AFs. 

4.1.2. Comparing non-adaptive WSoS functions to existing AFs 

In many cases the proposed WSoS AFs provide image classification accuracy similar to the 
existing ReLU-like functions. Their performance is very sensitive to the choice of the α, β, 𝛾 
parameter values, so they require respective attention for choosing the suitable parameter values. 
The results of this work don’t provide sufficient data to make recommendations about the potentially 
more suitable parameter values and this topic requires further research. 

4.1.3. Observations related to shifted S-shaped AFs 

The regular (non-weighted) shifted S-shaped AFs can be seen to provide an image classification 
accuracy that is comparable to ReLU-like AFs and typically higher than that of the ReLU AF. This is 



in line with the observations made in [11], which was exploring the Shifted Tanh function (named 
SoTanh in this paper). The experiments made in this work show that the other modifications of such 
a function, which are based on Atan and Asinh functions, can also significantly improve the 
classification accuracy compared to their regular unshifted variants. 

The experiments also show that the adaptive versions of these AFs (ASoTanh, ASoAtan, 
ASoAsinh), which use the value of horizontal shift as a trainable parameter, in most cases provide 
an additional notable improvement in classification accuracy over the non-adaptive forms of these 
AFs (e.g., see Figure 6–Figure 10). 

4.2. Computational performance considerations 

This work primarily focuses on investigating the performance of the proposed AFs in terms of 
the classification accuracy in comparison with the existing ones. The analysis of the computational 
performance of the proposed functions, which measures the time required to train the model, and 
the time required to perform a forward pass when using the model in a production environment, 
was not the target of this work. Nevertheless, preliminary analysis confirms the intuitive assumption 
that using a function which requires more computations resources, like the AWSoS functions, 
requires more time. Preliminary measurements show that, when training on CPU, the AWSoS 
functions can take from ~10% more time than the Swish AF (for ASiSoTanh AF) to ~80% more time 
than the Swish AF (for ASiSoAsinh AF), but a more thorough study is required to identify the relative 
cost of using the WSoS/AWSoS AFs relative to the existing ones. 

Besides, additional research is needed to evaluate the training speed of the proposed AFs in terms 
of the number of epochs required to reach certain accuracy, which, in combination with the 
assessment of the relative computational cost per one epoch, could allow a more realistic evaluation 
of the actual training speed that the proposed AFs can provide. 

Nevertheless, the advantage that the AWSoS AFs can provide in terms of the classification 
accuracy can be important in some applications by itself regardless of the extra computational cost 
that might be required to train the model that achieves a higher performance, or use it in a production 
environment. 

4.3. Future work 

As was mentioned above, a notable tendency about the AWSoS function is their pronounced 
advantage over the considered existing AFs with the Adam optimizer, but a not as good performance 
with the SGD optimizer. This difference requires further research to try to identify ways to improve 
their performance with the SGD optimizer. One hypothesis that might explain this issue is that the 
weight initialization method used in this research (Glorot uniform) might lead the model with these 
AFs to poor convergence while preventing it from finding a global minimum, which is mitigated by 
the Adam optimizer, but not SGD.   

Other directions of further research include exploring the possibility of more computationally 
efficient variants of WSoS/AWSoS functions, exploring whether some parameter configurations for 
WSoS functions can be recommended as potentially more efficient ones, and exploring how the 
WSoS/AWSoS functions perform in significantly deeper networks. 

5. Conclusion 

This work proposes a class of weighted shifted origin-aligned S-shaped activation functions (WSoS 
AFs) and explores their performance in image classification tasks using CNNs in comparison with a 
range of existing AFs. An emphasis is made on comparing the proposed AFs with ReLU-like AFs, 
which are the most popular choice of AFs with CNNs.  

These functions are considered as an evolution of shifted origin-aligned S-shaped functions (e.g. 
the ones similar to Shifted Tanh in [11]), and are at the same time viewed as softly-bounded versions 



of ReLU-like functions GELU and SiLU in this work. The results of experiments show that they can 
indeed be used to improve the classification accuracy of shifted S-shaped functions and can compete 
with most of ReLU-like functions, but the classification accuracy that they provide significantly 
depends on the choice of their three parameters, which can be challenging. 

At the same time, a notable result of this work is that the adaptive versions of the WSoS AFs 
(AWSoS AFs) in most of the tested configurations show a clear advantage over all tested existing 
AFs including the existing adaptive ones, but this advantage holds only when the training is done 
with the Adam optimizer, and not the SGD optimizer, where the training is often not stable with 
these AFs. 

Further research is needed to explore ways of achieving similar advantages of AWSoS AFs with 
the SGD optimizer, which, according to preliminary experiments, could be made with changing the 
weight initialization method. Besides, more computationally effective forms of WSoS/AWSoS 
functions can also be explored in the future research. Another line of future research would consider 
AWSoS AFs in combination with other learning algorithms, including their robust modifications 
[12], and other neural network architectures [13]. 
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