
Benchmarking Conversation Routing in Chatbot Systems
Based on Large Language Models

Daniil Maksymenko1, Danylo Kryvoshein1, Olena Turuta1, Dmytro Kazakov2 and
Oleksii Turuta1

1 Kharkiv National University of Radio Electronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine
2 National Technical University "Kharkiv Polytechnic Institute", Kyrpychova str. 2, Kharkiv, 61002, Ukraine

Abstract
Large language models (LLMs) get quickly implemented into question answering and support systems to
automate customer experience. Models in such environments should solve multiple problems like general
knowledge questions, questions about specific domain, which require grounding from an external source,
function calling and many others. Some cases might not even require a full-on text generation. They can
require different prompts or even models. All of it can be managed by semantic routing step. This paper
presents a comparison of multiple semantic routing approaches for environments with a cold start problem.
This work proposes a routing benchmark dataset and extensive experiments set with results interpretation
and visualization. The results show best practices for building a semantic router layer of chat application
and provide insights on main advantages and disadvantages of tested methods.

Keywords
Semantic Routing, LLM, NLI, Model, Classification, Zero-shot1

1. Introduction

Modern assistants and agents based on LLMs require complex approaches to cover a growing list of
use cases and scenarios. This includes function calling, answers grounded by external knowledge
bases (Retrieval augmented generation or RAG) [1], answers based on model’s pretrained knowledge
base, etc. Such cases cannot be implemented with just a single prompt as they can require additional
actions performed not by LLM itself, they can require different generation parameters [2] or even
contradict each other (when one use case requires a more creative approach and another tells model
to strictly follow certain rules or provided context).

Routing can ease it by allowing us to switch between multiple agents for each type of question or
action. This layer of chat-based systems provides an ability to customize parts of conversation by
calling RAG pipelines, sending requests to external APIs, giving just LLM response when necessary
or even to return a default predetermined response. Routing can also serve as a guardrail to prevent
unwanted usage or jailbreaks [3] of the LLM agent. It gives more control over each use case as we
can customize not only prompts or additional actions around LLM, but also the model itself to choose
the best one for each target case.

Implementation of semantic router can also come with a cold start problem, which would make
it difficult or even impossible to train a traditional supervised classifier at first. This leads to usage
of zero-shot or few-shot classifiers like cross encoders or LLM in-context learning classifier [4] as
they don’t need an extensive fine-tuning to learn the task.

The work presented in this paper compares multiple zero-shot and few-shot classification
approaches for semantic routing in terms of a question answering system, like LLM classifier, NLI
BART [5] by Meta and router based on semantic retrieval. Multilingual benchmark dataset for

ProfIT AI 2024: 4th International Workshop of IT-professionals on Artificial Intelligence (ProfIT AI 2024), September 25–27,
2024, Cambridge, MA, USA

 daniil.maksymenko@nure.ua (D. Maksymenko); danylo.kryvoshein@nure.ua (D. Kryvoshein); olena.turuta@nure.ua
(O. Turuta); dmytro.kazakov@cs.khpi.edu.ua (D. Kazakov); oleksii.turuta@nure.ua (O. Turuta)

 0000-0003-3223-5130 (D. Maksymenko); 0009-0001-9557-7296 (D. Kryvoshein); 0000-0002-1089-3055 (O. Turuta); 0009-
0006-6458-2152 (D. Kazakov); 0000-0002-0970-8617 (O. Turuta)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

semantic routing gets proposed and a number of experiments to illustrate different approaches
advantages and disadvantages are conducted with this dataset.

2. Dataset

Task of conversation routing can be formulated as a text classification problem, so we construct a
dataset to measure the accuracy of routes classification. Dataset is based on wine online store
chatbot, which should handle following cases:

• Answer questions about general wine knowledge and the store itself (wine making, history,
terms, geography, etc.). Most of these questions should be answered from LLM pretrained
knowledge as it would require a large vector database to cover all possible wine-related
questions and ground responses;

• Recommend goods from the store based on user’s preferences and wishes. Such answers
should be grounded by relevant semantic search results;

• Small talk messages, like gratitude, greetings or just casual messages, which do not require
specific knowledge or grounding;

• Off topic messages, which either do not relate to the topic of wine at all or try to jailbreak
the LLM agent. Should be ignored completely.

We faced a cold start problem during the construction of dataset, as the bot was not yet launched
and the website did not have a live chat before. We only had 119 examples of possible messages and
an outline of possible scenarios for the bot.

General questions on wine topic are easier to fill in as they can be scrapped from the web, which
we ended up doing. However, catalog recommendations require lots of examples with different level
of expertise. We also need to verify that router would understand the same request if it was rewritten
with same sense and different words. The router should handle samples with wrong spelling,
grammar or punctuation.

Gathering real-life chat messages would take to much time to get those samples and label them,
so we used Gemini 1.5 Pro as a synthetic data generator to fill the benchmark with more samples.
We constructed prompts for 3 different levels of user’s expertise: a wine newbie, a multiple times
wine customer without deep topic knowledge, and a wine expert, who understands and uses specific
terms and knows what they need. Around 20% of the generated messages were then corrupted with
a prompt, which makes LLM rewrite the message with spelling, grammar or punctuation errors.
Messages may contain emojis, unnecessary spaces or line breaks which should still be handled by
router.

Off topic messages were sampled from SQUAD [6] dataset gathered by Stamford University as
we wanted to check how router is going to handle just random questions on anything in general.

Also, we used a machine translation [7] to create a subset of questions in German, French, Italian
and Ukrainian to check how each router implementation handles multilingual queries.

More details on dataset are provided in the Table 1.

Table 1
Routing Benchmark Dataset Statistics

Label Number of
samples

Median length in
words English texts By other

languages
general-wine /
general-questions 931 13 468 116

catalog 757 32 442 78
small-talk 304 35 172 33
Offtop 884 11 500 96
Total 2,876 16 1,584 323

Table 2 shows distribution of texts by their origin (original examples, scraped from the web or
generated by Gemini 1.5 Pro, SQUAD).

Table 2
Distribution of Texts by Origin

Label Original
examples

Generated by
LLM

Scrapped from the
web SQUAD QA

general-wine /
general-questions 30 283 618 0

catalog 82 675 0 0
small-talk 7 297 0 0
Offtop 0 0 0 884

Also, we created a small subset of the benchmark data with just 80 samples (20 random texts per

each label) to check the stability of LLM routing with multiple settings.
Current limitation of the benchmark is that all messages here are considered as first ones in the

chat, so we plan to extend the benchmark further with additional chat context to check the
performance on long conversations.

3. Models and Approaches

Due to a cold start problem and lack of a train dataset only zero and few shot classifiers were chosen
for conversation routing task. We test 3 different general approaches: Natural Language Inference
(NLI) router, LLM with in-context learning classifier [8] and a latent embeddings router. Each
approach was tested with multiple models and modes.

3.1. Natural Language Inference Router

Natural Language Inference (NLI) models can be used as zero-shot classifiers [9]. The goal of such
model is to determine the relationship between a premise (a user message in our case and a
hypothesis). The model gets pretrained on a large NLI dataset, which allows to conduct a zero-shot
classification with it on previously unseen domains. The class with highest entailment score will be
the label of NLI zero-shot classifier for input text.

We tested Meta’s facebook/bart-large-mnli model, which was trained on MultiNLI dataset [10],
in 2 modes:

• just provide labels as a set of hypotheses (general-wine, small-talk, catalog, offtop);
• provide detailed descriptions of classes as a set of hypotheses (same ones will be used later

in LLM in-context learning prompt)

3.2. LLM In-Context Learning Router

We used LLMs in-context learning ability to create a zero-shot classifier. Such models are pretrained
on a massive amount of text, which gives them an ability to solve tasks out of training scope with
just a few examples in the prompt or even a general description.

In our approach we combine in-context learning, a short chain of thought reasoning and JSON-
restricted generation to make a router out of LLM.

We use role prompting combined with multiple evidence calibration (MEC) [11] to improve the
route classification results. MEC should reduce the positional bias of the LLM in-context learning
classifier by adding an intermediate explanation step, in which model reasons further choice. It can
provide both interpretability and higher stability for predictions. Decoding is restricted to JSON
grammar to help model preserve the schema and avoid format breaking jailbreaks. If JSON dictionary

does not have a key class with one of 4 possible values it is considered as a broken format (schema
restriction was not used during experiments). Generation is done with temperature 0 and 300 output
tokens limit. Classification system prompt can be seen in Figure 1.

Figure 1: LLM in-context learning classifier prompt for the conversation routing task

Message to be routed is provided as a user message to avoid instruction injection into system

prompt and chat history is provided into <chat> tag with offtop messages replaced with a boilerplate
message “offtop message”.

We tested the approach with following models:

• GPT 3.5 Turbo [12]: 69.8% on MMLU [13], 78 tokens per second;
• GPT 4o: 88.7% on MMLU, 83.8 tokens per second;
• GPT 4o mini: 82% on MMLU, 166 tokens per second;
• Gemini 1.0 Pro [14]: 71.8% on MMLU, 87 tokens per second;
• Gemini 1.5 Pro [15]: 85.9% on MMLU, 58 tokens per second;
• Gemini 1.5 Flash: 78.9% on MMLU, 165 tokens per second.

GPT 4 [16] and GPT 4 Turbo were rejected due to their high price and slower tokens generation
(around 12 and 35 tokens per second correspondingly), as routing requires a low latency and price
due to being used on each input message.

Also, we tested XML format without a grammar restriction during decoding in order to check if
the format affects classification accuracy too.

3.3. Latent Embeddings Router

Bi-encoders, which are used for retrieval stage of semantic search, can actually be used for few-shot
routing too. For this we need to create a set of examples for each class [17]. Set should not be large,
so it can be created synthetically or just manually. In our case we wrote 20 examples for each class
except offtop, which will be explained later. Samples can be seen in Figure 2.

Figure 2: Samples for latent embeddings-based routing

Once the message comes from the user, top 5 examples get retrieved from vector storage and

aggregated by their label (we used sum aggregation for cosine similarities of retrieved samples). The
label with highest aggregated score will be the chosen route. However, each route has a rejection
threshold value, so if the aggregated score is lower than the threshold, route will not be chosen even
if it is the best one available. Such cases should be considered offtop (questions unrelated to chatbot
primary topic or jailbreak attempts).

We used a semantic router implementation by Aurelio labs with following encoders:

• textembedding-gecko@003 by Google (DOCUMENT RETRIEVAL mode) (256 size).
• textembedding-gecko-multilingual@002 (DOCUMENT RETRIEVAL mode, 256 size).
• multilingual e5 base (768 size) [18].
• text-embedding-3-large by OpenAI (256 size).

Each setup uses same routes examples, rejection threshold was set as 0.6 and aggregation type is
sum.

4. Experiments Setup

We conduct a set of 3 experiments:

• calculate classification report [19] on full dataset for each approach and model (2
measurements for NLI router, 11 measurements for LLM router and 4 measurements for
embeddings semantic router);

• calculate classification accuracy of LLM router with different order of routes in system
prompt on a 80 samples subset of benchmark dataset to check how positional bias affects
routing accuracy (calculate all 24 combinations of routes order and measure it on 6 LLMs)
[20];

• repeat classification of 80 samples subset 5 times on 6 LLMs with a default system prompt
shown in chapter III and measure mean, median accuracy and standard deviation in order to
check how much each models changes its prediction with the same inputs and instructions
during classification.

5. Results and Interpretation

5.1. General Performance of Routers

Table 3 shows classification results for all tested approaches. NLI router gives worst results with in
both modes. While it was not expected to get the highest accuracy, it is still surprising to get such a
low score for this approach, which deems it unsuitable for routing.

Table 3
Performance of tested zero-shot classifiers on conversation routing task

Approach Model
Catalog
F1

General
wine F1

Small
talk
F1

Offtop
F1 Accuracy

Median
time

NLI
facebook/bart-large-
mnli just labels 0,002 0,046 0,299 0,604 0,321 0,108

NLI
facebook/bart-large-
mnli full description 0,426 0,000 0,000 0,000 0,260 0,141

embedding
s

intfloat/multilingual-
e5-base 0,630 0,603 0,625 0,000 0,505 0,013

embedding
s

textembedding-
gecko@003 0,834 0,762 0,567 0,699 0,736 0,091

embedding
s

text-embedding-3-
large 0,852 0,278 0,209 0,594 0,573 0,225

embedding
s

text-multilingual-
embedding-002 0,870 0,775 0,812 0,927 0,856 0,094

LLM

gpt-3.5-turbo
(general-questions
label) 0,952 0,712 0,883 0,439 0,737 0,582

LLM
gpt-3.5-turbo
(general-wine label) 0,942 0,890 0,873 0,925 0,912 0,623

LLM gpt-4o-mini 0,927 0,917 0,816 0,931 0,905 0,645
LLM gpt-4o 0,939 0,899 0,819 0,930 0,909 0,822

LLM
Gemini 1.5 Flash
(XML) 0,912 0,913 0,745 0,952 0,909 0,534

LLM
Gemini 1.5 Flash
(JSON) 0,899 0,911 0,720 0,946 0,901 0,455

LLM

Gemini 1.0 Pro (XML,
general-question
label) 0,942 0,821 0,707 0,826 0,840 0,809

LLM

Gemini 1.0 Pro
(general-question
label) 0,924 0,812 0,673 0,783 0,821 1,288

LLM
Gemini 1.0 Pro
(general-wine label) 0,922 0,863 0,685 0,891 0,871 1,294

LLM Gemini 1.5 Pro 0,893 0,935 0,671 0,949 0,904 1,129

Larger models like GPT 4o and Gemini 1.5 Pro achieve highest accuracy around 0.9. Their faster

versions (4o-mini and Flash) achieve comparable scores with quicker and cheaper generation (0.900
vs 0.905 for larger models).

4o and 1.5 Pro keep the required dictionary structure well, while previous generation models like
GPT 3.5, 4o-mini or Gemini 1.0 Pro tend to either hallucinate schema or class names. The most drastic
case was spotted with Gemini 1.0 Pro, which generated an array of JSON dictionaries with multiple
classes predictions in 40% of cases. It happened when message was on the verge of both routes (like
a mix of small talks and catalog inquiries). Gemini 1.5 Flash tends to break the schema by creating a
long explanation and reaching output tokens limit if the message possibly requires more context
(like a clarification).

GPT 3.5 and Gemini 1.0 Pro are more sensible to label names as they get a significant accuracy
boost from changing the name of general wines questions route from “general-questions” to
“general-wine” (0.75 to 0.91 for GPT 3.5 Turbo). Also, the change of output format may affect the
accuracy too as XML formatted predictions gave slightly higher accuracy than JSON. However, they
are more prone to broken schema or format ignorance (around 2% against 0.2% for JSONs). Such

sensitivity to prompt details proves the need for additional prompt tuning during in-context learning
classification.

Latent embeddings semantic router gave results comparable to LLMs with multilingual gecko
model. Clear advantage of this approach is ability to interpret the prediction by analyzing retrieved
examples and their similarity scores. This allows to clean and adjust examples set until it covers
enough use cases. It would be easier to fix such router by replacing misleading examples or extending
sets with new samples from production environment. This router should not be susceptible to classic
LLM jailbreaks, however attacks on semantic router need further investigation. Also, all tested
variations of semantic router generated prediction faster than LLMs (x3-x6 acceleration) and cheaper
(cheapest full dataset prediction costed 0.34$ for GPT 4o-mini, while full dataset prediction with
gecko or OpenAI embeddings costed 0.02$ in average). One of the main cons of this approach is a
reproducibility of results on the same model with a fixed seed, which is not possible with LLMs due
to their non-deterministic nature.

We created a TSNE 2D projection of multilingual gecko embeddings to research how benchmark
samples distribute. The plot is shown in Figure 3, where greens are offtops, yellows are general wine
questions, reds are catalogs and blues are small talks (OX – TSNE 1st dimension, OY – TSNE 2nd
dimension).

Figure 3: TSNE 2D projection of benchmark questions embeddings obtained from gecko
multilingual colored by their target route

Most offtops are clearly separated from main classes, which There are many overlaps of general

wine questions with other routes due to the wide nature of this class, especially with offtops. It makes
this route the most vulnerable to possible unwanted usage. Both LLMs and embeddings router tend
to confuse them as questions can be related to geography, climate, history or culture of certain
regions. Such questions can be interpreted as both wine-related and off topic messages about
common world knowledge.

Some samples have double interpretation, which puts them on the verge of 2 clusters (like “what
new region should I try?” in context of wine origin region, which can be both general question and
a catalog recommendation).

A cloud in the left top corner, which contains all 4 classes, is centered around price topic (for
example an offtop “How much fine should I pay for price sharing”, small talk “Wow, you have a
really good pricing here” and a general one “Does price of a wine really matter?”). Such questions
get misclassified as catalogs by both LLM router and embeddings, which should be explored and
fixed further to avoid wrong behavior by the chatbot.

Table 4 demonstrates the performance of tested models for all 5 languages present in dataset.
LLM routers are quite consistent across all of them (even low resource Ukrainian). However, we can

clearly see how different embeddings models exceed at certain languages. For example, OpenAI large
embeddings model gives its best performance for French language and drops the quality for
Ukrainian. Even a multilingual gecko loses 0.1 accuracy for non-English messages. It suggests that a
latent embeddings router should ideally contain routes examples in all target languages to smooth
that accuracy drop.

Table 4
Performance of tested zero-shot classifiers on routing task by language

Approach Model

ENG
Accurac
y

FR
Accurac
y

DE
Accurac
y

IT
Accurac
y

UKR
Accurac
y

NLI
facebook/bart-
large-mnli just labels 0,369 0,272 0,317 0,344 0,115

NLI

facebook/bart-
large-mnli full
description 0,275 0,239 0,245 0,238 0,242

embedding
s

intfloat/multilingual
-e5-base 0,568 0,505 0,361 0,424 0,509

embedding
s

textembedding-
gecko@003 0,791 0,654 0,671 0,610 0,217

embedding
s

text-embedding-3-
large 0,635 0,703 0,514 0,551 0,342

embedding
s

text-multilingual-
embedding-002 0,904 0,783 0,762 0,786 0,804

LLM

gpt-3.5-turbo
(general-questions
label) 0,709 0,758 0,799 0,759 0,767

LLM
gpt-3.5-turbo
(general-wine label) 0,901 0,945 0,931 0,926 0,898

LLM gpt-4o-mini 0,887 0,948 0,903 0,929 0,929
LLM gpt-4o 0,905 0,933 0,909 0,910 0,901

LLM
Gemini 1.5 Flash
(XML) 0,895 0,927 0,925 0,923 0,925

LLM
Gemini 1.5 Flash
(JSON) 0,894 0,896 0,922 0,913 0,907

LLM

Gemini 1.0 Pro (XML,
general-question
label) 0,833 0,847 0,862 0,845 0,829

LLM

Gemini 1.0 Pro
(general-question
label) 0,809 0,838 0,856 0,845 0,807

LLM
Gemini 1.0 Pro
(general-wine label) 0,858 0,878 0,909 0,885 0,876

LLM Gemini 1.5 Pro 0,898 0,911 0,912 0,910 0,913

5.2. LLM Router Accuracy after Labels Order Change

Obtained results on 24 shuffles of routes measured on 6 LLMs show that smaller models like GPT
4o-mini, GPT 3.5 Turbo, Gemini 1.0 Pro and 1.5 Flash are more susceptible towards significant
changes in routing accuracy due to the change of labels order in system prompt. Measures are
presented in Table 5.

Worst result was shown by the most recent GPT 4o-mini (0.106 standard deviation). Its accuracy
bounces from 0.51 to 0.94 with the change of labels order. We reviewed predicted labels of the worst

routes order (offtop | general-wine | small-talk | catalog) and found out that model tends to violate
the JSON schema with such order of routes. It either generates a JSON, which cannot be parsed
(model reaches output token limit and does not close the dictionary). Figure 4 shows the comparison
of confusion matrices of the worst and the best labels orders for GPT 4o-mini.

Figure 4: Confustion matrices of the worst and the best routes orders for GPT 4o-mini routing
prompt

The order small-talk, catalog, offtop, general-wine on GPT 4o-mini, which gave the best accuracy

around 0.94, returned all responses with a correct schema. We repeated this test another 5 times and
average accuracy for this order was still 0.94 without incorrect JSONs.

The most stable models were GPT 4o and Gemini 1.5 Pro as they have standard deviation 0.02,
which proves the idea that larger LLMs are less sensitive towards labels order inside in-context
learning classification prompt.

Results show that LLM classifier cannot be used for routing task without a voting mechanism
over multiple shuffles as usage of MEC did not smooth the positional bias of models for routing task.
Another solution would be to conduct a few predictions at once with random orders of routes and
ensemble their results by voting. This would make them even more expensive and possibly slow (in
case of iterative calls) in comparison to latent embeddings router.

The results need further investigation to find out the origin of such behavior as it can lie in
pretraining data, positional encoding of tokens or attention masks of LLM.

Table 5
Accuracy of Routing after Routes Order Change

Model Mean Median Min Max Standard
Deviation

gpt-3.5-
turbo 0.819 0.830 0.690 0.900 0.065

gpt-4o-mini 0.821 0.845 0.510 0.940 0.106
gpt-4o 0.893 0.895 0.850 0.930 0.021
Gemini 1.0
Pro 0.751 0.745 0.660 0.820 0.046

Gemini 1.5
Pro 0.813 0.815 0.750 0.850 0.024

Gemini 1.5
Flash 0.780 0.770 0.700 0.880 0.051

5.3. LLM Routing Stability with Fixed Prompt and Parameters

We took the default prompt and repeated the classification 5 times for each LLM as it was described
in section IV. This way we wanted to check how much would the routing result differ for same
inputs, generation parameters and prompt as closed-source LLMs do not guarantee reproducibility
of outputs. The order of routes was left default for this experiment (general-wine | catalog | small-
talk | offtop). Results are shown in Table 6.

Table 6
Accuracy of Routing after Routes Order Change

Model Mean Median Min Max Standard
Deviation

gpt-3.5-
turbo 0.878 0.880 0.860 0.890 0.011

gpt-4o-mini 0.850 0.860 0.820 0.860 0.017
gpt-4o 0.896 0.900 0.890 0.900 0.005
Gemini 1.0
Pro 0.820 0.820 0.810 0.840 0.012

Gemini 1.5
Pro 0.826 0.840 0.790 0.850 0.025

Gemini 1.5
Flash 0.820 0.820 0.820 0.820 0.000

These measurements show that even large model tend to change their classification result with

same inputs, generation conditions and temperature equal to 0.0. So LLM hallucinations do not allow
their stable usage for routing task due to their non-deterministic nature.

However, Gemini 1.5 Flash is the only model that gave the same accuracy all 5 times. We decided
to doublecheck this result and conducted another set of 5 measurements on the same 80 samples
subset with the same prompt and parameters in 24 hours. The accuracy and F1 scores for individual
classes still matched previous measurement, but there was still 1 sample, where model gave different
classes: “Oh wow, didn't realize you guys had a rewards program! That's awesome, might have to
stock up then haha 🍷😄”. This sample is labeled as catalog, so we measured it with Gemini 1.5 Flash
another 20 times and got 13 catalogs and 7 offtops. We also checked explanation generated by model
before it generates the class label and it used similar reasoning to choose 2 different classes. Reward
program can be interpreted as a factor to propose a good and at the same time it does not relate to
wines, so model uses those 2 explanations to reason both choices.

Despite having a high accuracy such a lack of reproducibility and means to debug the output
makes LLM router unsuitable for a stable zero or few show classification even with additional chain
of thought reasoning. They could be a great baseline and a model for prototyping or initial labeling
of data for further manual correction. However, their non-deterministic routing and the absence of
clear interpretability makes them too unstable for production usage. Chain of thought reasoning gets
changed by hallucinations too, so it cannot provide a clear description of decision-making process
for route choice.

6. Conclusion

In the scope of this paper, we presented a detailed comparison of zero and few shot routing methods
for chat bot systems (NLI, LLMs, latent embeddings).

We collected a benchmark dataset with over 2,800 records to test how router distinguishes
between specific knowledge questions, recommendations, small talks and off topic messages, which
should be ignored.

LLM based routers with chain of thought reasoning provided the highest accuracy score on
benchmark dataset, however further experiments proved their instability for routing task as they
lack interpretation, reproducibility and are highly sensitive to output format, routes names and even
order. Usage of intermediate reasoning step does not smooth classification results.

NLI router gave the worst results with both hypothesis settings. As a result, we show that latent
embeddings based semantic router can give scores close to LLM classifier and provides high speed,
interpretation and controllability [21] via examples set and rejection boundaries tuning for each
route.

We plan to extend benchmark with a full chat context to test it on long dialog cases (like routing
after 2, 3 and more messages). This further cleaned and extended version will be released openly.
Also, we plan to check how multiple routers handle possible LLM jailbreaks and attacks. Main topic
for further research remains the sensitivity of LLMs to order, labels and output format as it affects
both classification and quality of responses in general. We plan to check it on open source models
further too.

Acknowledgements

This article is based upon work from COST Action Multi3Generation (CA18231), supported by COST
(European Cooperation in Science and Technology). The authors would like to thank Artem
Nikulchenko for the fruitful discussions and inspiration. We would also like to thank paper reviewers
for their comments.

References

[1] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,”
Vancouver, BC, Canada: Curran Associates Inc., 2020.

[2] E. Erdem et al., “Neural natural language generation: A survey on multilinguality,
multimodality, controllability and learning,” J. Artif. Int. Res., vol. 73, 2022, doi:
https://doi.org/10.1613/jair.1.12918.

[3] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,”
Vancouver, BC, Canada: Curran Associates Inc., 2020.

[4] Z. Wang, Y. Pang, and Y. Lin, “Large language models are zero-shot text classifiers,” 2023.
[5] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension,” D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,
Eds., Association for Computational Linguistics, Jul. 2020, pp. 7871–7880. doi:
https://doi.org/10.18653/v1/2020.acl-main.703.

[6] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ questions for machine
comprehension of text,” J. Su, K. Duh, and X. Carreras, Eds., Association for Computational
Linguistics, Nov. 2016, pp. 2383–2392. doi: https://doi.org/10.18653/v1/D16-1264.

[7] D. Maksymenko, N. Saichyshyna, O. Turuta, O. Turuta, A. Yerokhin, and A. Babii, “Improving
the machine translation model in specific domains for the ukrainian language,” 2022, pp. 123–
129. doi: https://doi.org/10.1109/CSIT56902.2022.10000529.

[8] S. Min et al., “Rethinking the role of demonstrations: What makes in-context learning work?,”
Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Association for Computational Linguistics, Dec.
2022, pp. 11048–11064. doi: https://doi.org/10.18653/v1/2022.emnlp-main.759.

[9] W. Yin, J. Hay, and D. Roth, “Benchmarking zero-shot text classification: Datasets, evaluation
and entailment approach,” K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Association for
Computational Linguistics, Nov. 2019, pp. 3914–3923. doi: https://doi.org/10.18653/v1/D19-1404.

[10] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus for sentence
understanding through inference,” M. Walker, H. Ji, and A. Stent, Eds., Association for
Computational Linguistics, Jun. 2018, pp. 1112–1122. doi: https://doi.org/10.18653/v1/N18-1101.

[11] Y. Liu et al., “Calibrating LLM-Based evaluator,” N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S.
Sakti, and N. Xue, Eds., ELRA and ICCL, May 2024, pp. 2638–2656. Available:
https://aclanthology.org/2024.lrec-main.237

[12] T. Brown et al., “Language models are few-shot learners,” H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, Eds., Curran Associates, Inc., 2020, pp. 1877–1901. Available:
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf

[13] D. Hendrycks et al., “Measuring massive multitask language understanding,” 2021.
[14] G. Team et al., “Gemini: A family of highly capable multimodal models,” 2024.

https://arxiv.org/abs/2312.11805
[15] G. Team et al., “Gemini 1.5: Unlocking multimodal understanding across millions of tokens of

context,” 2024. https://arxiv.org/abs/2403.05530
[16] OpenAI et al., “GPT-4 technical report,” 2024. https://arxiv.org/abs/2303.08774
[17] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele, “Latent embeddings for zero-

shot classification,” 2016, pp. 69–77. doi: https://doi.org/10.1109/CVPR.2016.15.
[18] L. Wang et al., “Text embeddings by weakly-supervised contrastive pre-training,” 2024.

https://arxiv.org/abs/2212.03533
[19] Arvind Neelakantan et al., “Text and code embeddings by contrastive pre-training,” 2022.

https://arxiv.org/abs/2201.10005
[20] Pouya Pezeshkpour and Estevam Hruschka, “Large Language Models Sensitivity to The Order

of Options in Multiple-Choice Questions,” Jan. 2024, doi:
https://doi.org/10.18653/v1/2024.findings-naacl.130.

[21] D. Maksymenko, N. Saichyshyna, M. Paprzycki, M. Ganzha, O. Turuta, and M. Alhasani,
“Controllability for English-Ukrainian Machine Translation by Using Style Transfer
Techniques,” Annals of Computer Science and Information Systems, Sep. 2023, doi:
https://doi.org/10.15439/2023f895.

