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Abstract 
Accurate segmentation of the left ventricle in cardiac MRI images is crucial for evaluating cardiac function 
and diagnosing cardiovascular conditions. Traditional approaches, including the commonly used U-Net 
architecture, struggle with capturing the global contextual information required for precise segmentation. 
This study introduces U-Net MHSA, an enhanced version of U-Net that incorporates Multi-Head Self-
Attention (MHSA) in the bottleneck layer to overcome these limitations. By combining the strengths of 
convolution layers and attention mechanisms, our model effectively captures long-range dependencies 
while preserving spatial coherence. Our model U-Net MHSA gives better results as compared to the baseline 
U-Net on the MICCAI 2009 Left Ventricle Segmentation Challenge dataset. U-Net MHSA gives higher scores 
as compared to baseline U-Net in terms of precision 0.799531 and accuracy 0.797943. Although the model 
gives a minor trade-off with slightly reduced recall and Intersection over Union (IoU). The overall results 
shows that the integration of MHSA with U-Net architecture improves the medical image segmentation. 

Keywords  
MRI, Cardiac function, U-Net, Multi-Head Self-Attention, medical image segmentation, Self-Attention 1 

1. Introduction 

Medical image segmentation (MIA) [1] plays a crucial role in modern healthcare, where accurate and 
precise diagnostic tools for example Magnetic Resonance Imaging (MRI), X-ray, and CT scans [2] are 
very crucial in clinical decision-making. Traditional methods like manual and semi-automatic 
segmentation are purely based on human inputs and are not so much accurate and precise but also 
time-consuming. In the last few years machine learning [3], deep learning [4], and convolutional 
neural network [5] have revolutionized the medical image field. U-Net [6], based on a convolutional 
neural network came into the picture in 2015 and revolutionized the field of medical imaging due to 
its unique U-Shaped architecture and skip connections. By using skip connections U-Net 
concatenates the low-level features with high-level features for more accurate and precise 
segmentations of medical images. Despite having a lot of advantages and success U-Net has some 
limitations also. Initial layers of the encoder path have poor representations of feature maps and 
these feature maps also pass through skip connections, which have no use and also increase the time 
and space complexity. U-Net was also not able to handle long-rage dependencies and parallel 
computations. In order to handle these limitations, we propose TU-Net a hybrid model which 
integrates MHSA [7] with U-Net architecture in bottleneck. TU-Net aims to use the strengths of both 
architectures and gives better performance by capturing global image context and also retains fine-
grained spatial feature, which is essential for accurate and precise segmentation.  In further sections 
we explain in detail self-attention, MHSA block and U-Net architecture. 
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2. Methodology 

In this particular section, we explain the methodology used in developing TU-Net, a novel 
architecture that improves the performance of the U-Net baseline model with Transformer-based 
Multi-Head Self-Attention (MHSA) for left ventricle MRI segmentation. The steps of our model are 
shown in Figure 1. In the first step, the input image passes into the encoders after that in the second 
step output of the last encoder passes into the MHSA block and finally output of the MHSA block 
passes into decoders and gets the output segmentation map. 

2.1. U-Net Architecture with Integration of MHSA Block 

The U-Net architecture as shown in Figure 2 was famous for its unique U-shaped encoder-decoder 
architecture, enabling precise localization and segmentation capabilities. In the encoder path, feature 
maps are extracted by two successive 3x3 convolutions followed by ReLU activation functions. After 
that 2x2 max-pooling operations are used to down-sample the image size. The above process is 
repeated five times as five encoders are used in U-Net architecture. After the fifth encoder in the 
bottleneck section, we integrate the MHSA module which processes the feature maps received from 
the last encoder and enables the proposed architecture to capture global contexts and long-range 
dependencies within the image. Conversely, in the decoder path, feature maps are up-sampled by 
using 2x2 convolutions, and after that concatenate the feature maps from the corresponding encoder 
side with the decoder side. After this step two successive 3x3 convolution operations were used 
followed by the ReLU activation function this process was also repeated five times and finally 1x1 
convolution operation was used after the last decoder to give the final segmentation map. 

 

 
Figure 1: Steps of Proposed Model 

 

 
Figure 2: U-Net with MHSA 

2.2. Multi-Head Self-Attention (MHSA) 



MHSA is an advanced technique used in transformer models to improve their ability to process 
information. Instead of relying on a single attention mechanism with queries, keys, and values all 
having dimensionality umodel, MHSA divides this process into multiple, parallel attention operations. 
Each of these operations, known as heads, maps the queries, keys, and values into smaller dimensions 
uk and uv using distinct learned linear projections.  Attention is computed in parallel for each head, 
and the resulting outputs, which are uv-dimensional, are concatenated and re-projected to produce 
the final output. This approach allows the model to focus on various representation subspaces at 
different positions, whereas a single attention head would average these aspects together. 

Overcome U-Net’s limitation in capturing long-range dependencies, we incorporated MHSA into 
the bottleneck of the U-Net architecture. MHSA, which a concept derived from transformers, allows 
the model to attend to various parts of the input image simultaneously, thereby capturing global 
context more effectively as mentioned in Figure 1. The TU-Net architecture retains the basic 
structure of U-Net but integrates MHSA in the bottleneck layer to enhance its ability to capture 
global information. The self-attention mechanism as shown in Figure 4 works by calculating 
attention scores between various positions within the input image.  It consists of three main 
components: Query (Q), Key (K), and Value (V ).  The attention scores  A are calculated by  taking 
the scaled dot-product of Q and K, and then applying a Soft-Max function to obtain the attention 
weights, as shown in equation 1. 
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where dk is the dimensionality of the key vectors. These weights are then applied to V for the 

final output, as shown in Equation 2. 
 

Attention(Q, K, V ) = A · V                                                          (2) 
 
This process is performed multiple times in parallel to create MHSA, enabling the model to 

simultaneously focus on different regions of the image as illustrated in Figure 3. The step-wise 
working of MHSA is shown in Figure 5. From left to right. In the first step, we simply pass the input 
sequence, In the second step, we embed each word, In all encoders except encoder 0, we don’t need 
embedding. In the third step, we split into eight heads and multiplied X or R with weight matrices. 
In the fourth step, calculate the attention scores by making use of Q, K, and V matrices. In the final 
step, concatenate the results of Z matrices and then multiply with the weight matrix W0 and finally 
produce the output. 

 
Figure 3: Multi-head self-attention (MHSA) 



 
Figure 4: Detailed Architecture of Transformer 

 

 
Figure 5: Detailed Working process of MHSA Module 
 



Table 1 
Hyperparameters 

Hyperparameter Value 
Image Size 256 x 256 
Batch Size 64 
Epochs 50 
Training Images 4900 
Validation Images 500 
Test Images 266 
Total Parameters 48,195,073 (183.85 MB) 
Trainable Parameters 48,183,297 (183.80 MB) 
Non-trainable Parameters 11,776 (46.00 KB) 

2.3. Training Procedure 

The training procedure for the TU-Net architecture uses the MICCAI 2009 [8] Left Ventricle 
Segmentation Challenge dataset. The details of the data set are mentioned in TABLE 1. Before 
training, the MRI images were subjected to several preprocessing steps to ensure uniformity and 
enhance model performance. Each image was resized to 256 x 256 pixels, and also the pixel intensity 
values were normalized. To prevent overfitting, data augmentation techniques such as random 
rotations, shifts, flips, and zooms were applied to the training dataset. Adam optimizer were used to 
train the TU-Net model, which is known for its efficiency and capability to handle sparse gradients. 
A hybrid loss function, which combines binary cross-entropy and Dice was employed to balance 
pixel-wise accuracy with the overlap between ground truth and predicted masks. During training, 
the TU-Net model’s parameters were iteratively adjusted to minimize the loss function through 
forward and backward propagation steps. In the forward pass, the input images were fed through 
the model to obtain predictions, which were then compared to the ground truth masks to compute 
the loss. In the backward pass, the computed loss was used to update the model parameters through 
the Adam optimizer.  

The model’s performance was validated on the 500-image validation set after each epoch, 
providing insights into its generalization capability on unseen data. This validation process also 
guided the tuning of hyperparameters. After training concluded, the final model underwent 
evaluation using a test set comprising 266 images to gauge its performance in real-world scenarios. 
The final TU-Net model, incorporating MHSA in the bottleneck layer, comprised a total of 48,195,073 
parameters, with 48,183,297 being trainable and 11,776 non-trainable, resulting in a model size of 
183.85 MB. The training procedure ensured that the model was well-optimized for accurate and 
reliable segmentation of the left ventricle in MRI images as mentioned in Table 1. 

2.4. Evaluation Metrics 

The performance evaluation encompasses key metrics including precision, recall, specificity, 
intersection over union (IoU), and a custom evaluation metric derived from the evaluate generator 
function, offering a comprehensive assessment of overall accuracy. 

3. Results 

The performance of the TU-Net model with Multi-Head Self-Attention (MHSA) was evaluated 
against the standard U-Net model using several key metrics: Precision, Recall, Specificity, IoU, and 
Accuracy. The evaluation was conducted on the MICCAI 2009 Left Ventricle Segmentation Challenge 
dataset, focusing on the segmentation of the left ventricle in MRI images. Table 2 below summarizes 
the comparative results of the two models. 
 



Table 2 
Performance Comparison 

Model Precision Recall Specificity IoU Accuracy 
U-Net 0.773880 0.653408 0.996921 0.548658 0.710639 
U-Net MHSA 0.799531 0.576392 0.997670 0.503610 0.797943 

 
Precision was higher for the U-Net MHSA model (0.799531) compared to the standard U-Net 

model (0.773880). This indicates that the incorporation of MHSA helped in reducing false positives. 
Recall was higher for the U-Net model (0.653408) compared to the U-Net MHSA model (0.576392). 
This suggests that while the U-Net MHSA model had fewer false positives, it also had a slightly 
higher number of false negatives. Specificity was slightly better for the U-Net. 

MHSA model (0.997670) compared to the standard U-Net model (0.996921). This improvement, 
albeit small, indicates a better performance in correctly identifying negative samples. The IoU metric 
was slightly lower for the U-Net MHSA model (0.503610) compared to the standard U-Net model 
(0.548658). This suggests that the standard U-Net had a slightly better spatial overlap between the 
predicted and true segmentation masks. Accuracy, evaluated using the evaluate generator function, 
was significantly higher for the U-Net MHSA model (0.797943) compared to the standard U-Net 
model (0.710639). This indicates that the overall performance and correctness of the U-Net MHSA 
model in segmenting the left ventricle were superior. 

In addition to the tabular results, Figure 6 illustrates a comparative graph which visually 
represents the performance disparities between the convolutional U-Net model and the U-Net MHSA 
model. This graph highlights the enhanced accuracy and precision of the U-Net MHSA model, 
despite a trade-off in recall and IoU. Figure 7 illustrates a visual comparison between U-Net MHSA 
and U-Net. 

 

 
Figure 6: Detailed Working process of MHSA Module 
 

 
Figure 7: Visual Comparison of TU-NET and U-Net 
 
 



4. Discussion 

This study aimed to enhance the U-Net architecture for medical image segmentation by 
incorporating MHSA into its bottleneck layer. The results indicate that the enhanced model, U-Net 
MHSA, shows considerable improvements compared to the standard U-Net, especially regarding 
precision and overall accuracy. Integrating MHSA into the U-Net framework enables the model to 
more effectively capture long-range dependencies and contextual relationships within the image, 
which are crucial for precise segmentation. Our findings show that U-Net MHSA achieved a 
precision of 0.799531 and an accuracy of 0.797943, outperforming the standard U-Net, which had a 
precision of 0.773880 and an accuracy of 0.710639. These enhancements highlight the benefits of 
incorporating attention mechanisms to improve the TU-Net’s ability to focus on important features 
throughout the entire image. 

However, while U-Net MHSA showed notable gains in precision and accuracy, it did exhibit a 
slightly lower recall (0.576392) and IoU (0.503610) compared to the standard U-Net, which had a 
recall of 0.653408 and an IoU of 0.548658. This suggests that although U-Net MHSA is more precise 
in identifying the left ventricle, it may miss some true positives, leading to a lower recall. The 
decreased IoU indicates a reduced overlap between predicted and actual segmentations, pointing to 
a potential area for further optimization. The trade-off between precision and recall observed in our 
study is a common challenge in segmentation tasks. Precision measures how many of the identified 
segments are correct, while recall measures how many of the actual segments were identified. 
Achieving a balance between these metrics is crucial for practical applications, especially in medical 
imaging, where both false positives and false negatives can have significant consequences. One of 
the strengths of our approach is the ability of MHSA to capture global context, which is often 
overlooked by traditional convolution operations that primarily focus on local features. By attending 
to different parts of the image simultaneously, MHSA provides a more comprehensive understanding 
of spatial relationships, enhancing the model’s ability to delineate complex anatomical structures. 
The overall higher accuracy of U-Net MHSA highlights its robustness and effectiveness for the task 
of left ventricle segmentation. The additional computational cost introduced by the MHSA module 
is justified by the performance gains, demonstrating the potential of self-attention mechanisms in 
improving convolution neural network architectures. 

5. Conclusions 

We present U-Net MHSA for medical image segmentation, especially left ventricle in heart images. 
U-Net MHSA is an advanced architecture, incorporating MHSA into the bottleneck layer has shown 
significant improvements in precision and overall accuracy. U-Net MHSA has outperformed 
standard U-Net. While previously standard U-Net had a precision value of 0.733880 and accuracy 
value of 0.710639, now after integration of U-Net MHSA, the precision value has become 0.799531 
and accuracy value has become 0.797943 which is better than before. Along with all these benefits, 
there is some decrease in recall and Intersection over Union (IOU) values with U-Net MHSA. U-Net 
MHSA demonstrates the potential of convolution neural network architecture, self-attention 
mechanism to improve segmentation performance. Future research should focus on optimizing the 
attention mechanism and validating the model on different segmentation tasks and datasets to ensure 
its generalizability and robustness in various clinical scenarios. 
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