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Abstract 
The work considers the vanishing gradient problem inherent in deep neural networks and limiting their 
potential due to the unstable learning process. An adaptive piecewise linear squashing activation 
function (APWLSAF) is proposed. This function, on the one hand, will ensure high accuracy of the deep 
network, and on the other hand, will make the network learning process stable due to the fact that the 
gradient of proposed function does not vanish and, therefore, will not be able to stop the adjusting 
network parameters. 
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1. Introduction 

For shallow (SNN) and deep neural networks (DNN), a wide range of activation functions are 
used. Typically, such functions must guarantee the ability to discriminate between small and large 
input signals, as well as provide fast and reliably stable network training. In recent years, many 
activation functions have been proposed that best meet these requirements [1]. They can be 
divided into several main groups depending on the type of curve, properties of monotonicity, 
smoothness, continuity, etc. Adaptive and parametric activation functions are of greatest interest, 
since in various works [2 - 6] it was found that the choice of type and parameters of activation 
function seriously determine the accuracy of artificial neural networks, regardless of their 
architecture and application tasks. 

In this regard, parametric adaptive functions have undoubted advantages, since they provide 
the ability to customize their form in accordance with a specific architecture and task. The most 
famous among adaptive activation functions are the Parametric Rectification Linear Unit PReLU 
[7], and a whole family of similar functions: Adaptive Piecewise Linear function APL [8], Adaptive 
Activation Function AAF [9], S-shaped ReLU [10], Multi-bin Trainable Linear Unit MTLU [11], 
Swish [12]. 

The adaptability of the mentioned and other activation functions can be controlled thanks to 
their piecewise structure. Most often, such functions are a construction where fragments of both 
linear and nonlinear functions can be connected in series [13, 14, 1]: ABReLU, AdPReLU CELU, 
CReLU, ELU, LReLU, MeLU, PDELU, PELU, pTanh, PTELU, RePU, SELU, S.L.U. The goal of each such 
structure is creation of a certain curve shape to describe the dependence of neuron output 
parameters from input ones. Among the proposed activation functions there are sigmoidal, linear, 
and exponential dependencies. In shallow and deep neural networks, different activation 
functions are used for different types of network layers (input, output, intermediate) and they 
are selected manually or by default. 
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The sheer number of existing adaptive activation functions suggests that in each task, 
researchers choose the type of function based on subjective ideas about how well it will provide 
the desired level of result. If the function was not chosen very well, then adjusting its parameters 
during network training will only slightly improve the situation, but not radically change it. For 
many tasks, especially those related to big data, processing online data streams, etc. it is not 
always possible to select the most appropriate activation functions type for individual layers of a 
deep network during a sequence of experiments, which ultimately makes the result quality 
dependent on the developer experience and intuition. Thus, it is necessary to construct an 
activation function that will allow a complete change in its form during network training, and will 
ensure high accuracy and speed of learning. 

This work proposes a parametric adaptive piecewise linear activation function, which can 
change shape from sigmoidal to linear, and an algorithm for its training. 

2. Piece-wise linear squashing activation function 

Modern commercial applications designed, for example, for classification, object recognition in 
video, and performance prediction, are based on use of shallow and deep feedforward networks. 
Their architectures can be considered as multilayer perceptrons, which have been known for a 
long time [15]. The nature of transformation performed by a neural network as a model depends 
on activation function of neurons in its composition. 

Among the squashing activation functions used in traditional shallow and deep neural 
networks, and satisfy the conditions of Cybenko's approximation theorem [16], the hyperbolic 
tangent function has become the most widespread 
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where 𝑦𝑦�𝑗𝑗(𝑘𝑘) - j-th SNN neuron output signal at the moment of discrete time k = 1, 2,…, n, 𝜓𝜓𝑗𝑗(∙)-
nonlinear activation function of this neuron, 𝜃𝜃𝑗𝑗0 - bias term, n is the number of inputs to j-th 
neuron,  𝑤𝑤𝑖𝑖𝑗𝑗- tuned synaptic weight on i-th input of j-th neuron, 𝑥𝑥𝑖𝑖(𝑘𝑘) - input signal on i-th input 
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synaptic weights, 𝑢𝑢𝑗𝑗(𝑘𝑘) - a signal of internal activation of j-th neuron, 𝛾𝛾𝑗𝑗 - gain parameter, which 
determines the form of this activation function. 

Derivative of this feature used in gradient tuning process of neuron looks like 
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from where it follows that when output signal approach the values ±1 the derivative goes to 
zero, that is, learning process stops due to the so-called "vanishing gradient” effect. 

It is interesting to see that to Cybenko theorem conditions also corresponds the adaptive-
linear function Satlin 
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the derivatives of which take zero value when output of internal activation signal goes out of 
bounds of interval [-1, 1]. Therefore, Satlin is not used at all in gradient learning of neural 
networks. 

It is the vanishing gradient effect that has led to the fact that in DNN squashing activation 
functions are not used at all, and the most widespread are piece-wise linear functions of ReLU 
type: 
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The advantage of these functions is simplicity of their derivative, which facilitates the learning 
process. 

Since these functions do not satisfy approximation theorem conditions, number of neurons 
and layers is significantly increased to ensure the required quality in DNN, which leads, first, to a 
significant reduction of learning rate, and secondly, it requires an increase training data number 
which are not always available when solving real practical problems. 

Therefore, it is advisable to introduce an activation piece-wise linear function, which will have 
simple derivative, is close enough to squashing functions with their approximation properties, 
and does not suffer from the effect of "vanishing gradient". 

As such a function is offered a formulation of Adaptive Piece-Wise Linear Squashing Activation 
Function (APWLSAF) 
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Its graph is shown in Figure 1. 

 
Figure 1: Adaptive Piece-Wise Linear Squashing Activation Function (APWLSAF) 

 
It is easy to see that when 𝑇𝑇0𝑗𝑗𝑅𝑅 = 𝑇𝑇0𝑗𝑗𝐿𝐿 = 0 APWLSAF is converted to Satlin, and when 𝑇𝑇𝑗𝑗𝑅𝑅 = 𝑇𝑇𝑗𝑗𝐿𝐿 =

0 we get an elementary linear function ALA (Adaptive Linear Associator). This activation function 
is characterized by the simplicity of its derivatives: 
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and, if you set additional limitations 𝑇𝑇𝑗𝑗𝑅𝑅 ≥ 𝜀𝜀,  𝑇𝑇𝑗𝑗𝐿𝐿 ≥ 𝜀𝜀, it is protected from the effect of the 
"vanishing gradient" inherent in Satlin. 

APWLSAF-based neural network approximation properties can be improved if we not only set 
up synaptic weights 𝑤𝑤𝑖𝑖𝑗𝑗  in the learning process, but also tune the parameters of activation 
functions 𝑇𝑇𝑗𝑗𝑅𝑅 and 𝑇𝑇𝑗𝑗𝐿𝐿 . 

3. Adaptive neuron parameters training with APWLSAF 

The process of adjusting each neuron in network is implemented by minimizing the accepted 
criterion of learning 𝐸𝐸𝑗𝑗(𝑘𝑘), most often quadratic, with the help of so-called δ-rule, which is 
essentially a procedure of gradient optimization 𝐸𝐸𝑗𝑗(𝑘𝑘) on tuned synaptic weights 𝑤𝑤𝑖𝑖𝑗𝑗 . 
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(8) 

(here 𝑦𝑦𝑗𝑗(𝑘𝑘)- external learning signal), then the procedure for optimizing learning will look like: 

𝑤𝑤𝑖𝑖𝑗𝑗(𝑘𝑘) = 𝑤𝑤𝑖𝑖𝑗𝑗(𝑘𝑘 − 1) − 𝜂𝜂(𝑘𝑘)
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or in a vector form: 
𝒘𝒘𝑗𝑗(𝑘𝑘) = 𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)𝜹𝜹𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘) (10) 

where  𝜹𝜹𝑗𝑗(𝑘𝑘) - the so-called δ-error; 𝜼𝜼(𝑘𝑘) is a search step parameter that is selected from one 
or another consideration. 

For our case, the learning algorithm can be recorded in a sufficiently simpler form: 
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where 𝒙𝒙𝑅𝑅(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝑅𝑅𝒙𝒙(𝑘𝑘),𝒙𝒙𝐿𝐿(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝐿𝐿𝒙𝒙(𝑘𝑘). 
The learning process can be optimized by performance by using a modified Kaczmarz-

Widrow-Hoff algorithm [17, 18] in the form of 

𝒘𝒘𝑗𝑗(𝑘𝑘) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +

е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙(𝑘𝑘)‖2 ,  − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙𝑅𝑅(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙𝑅𝑅(𝑘𝑘)‖2 ,       u𝑗𝑗(𝑘𝑘) > 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙𝐿𝐿(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙𝐿𝐿(𝑘𝑘)‖2 ,     u𝑗𝑗(𝑘𝑘) < −1

 (13) 

where 𝛾𝛾 ≥ 0 is regulatory parameter that protects learning process from zeroing gradient 
effect. 

It is possible to improve approximate properties of neuron with APWLSAF by adjusting not 
only synaptic weights 𝑤𝑤𝑖𝑖𝑗𝑗 , but also parameters of activation function 𝑇𝑇𝑗𝑗𝑅𝑅 and 𝑇𝑇𝑗𝑗𝐿𝐿 , while receiving 
the next vector 𝒙𝒙(𝑘𝑘) on neuron inputs, setup 𝑇𝑇𝑗𝑗𝑅𝑅(𝑘𝑘) and 𝑇𝑇𝑗𝑗𝐿𝐿(𝑘𝑘) is first implemented and then the 
vector of synaptic weights 𝒘𝒘𝑗𝑗(𝑘𝑘) is refined. That is, the procedure of error backpropagation at 
individual neurons level is actually implemented. Note, that 

𝑇𝑇𝑗𝑗𝑅𝑅(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝑅𝑅(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘)е𝑗𝑗(𝑘𝑘)�𝑢𝑢𝑗𝑗(𝑘𝑘) − 1� = 

= 𝑇𝑇𝑗𝑗𝑅𝑅(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘) �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘)�� �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘) − 1�, 
(14) 

if  и𝑗𝑗(𝑘𝑘) > 1, and 
𝑇𝑇𝑗𝑗𝐿𝐿(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝐿𝐿(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘)е𝑗𝑗(𝑘𝑘)�𝑢𝑢𝑗𝑗(𝑘𝑘) + 1� = 

= 𝑇𝑇𝑗𝑗𝐿𝐿(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘) �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘)�� �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘) + 1�, 
(15) 

if  и𝑗𝑗(𝑘𝑘) < −1, then 



𝒘𝒘𝑗𝑗(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +

е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘)

𝛾𝛾+‖𝒙𝒙(𝑘𝑘)‖2 ,                              − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙�𝑅𝑅(𝑘𝑘)

𝛾𝛾+�𝒙𝒙�𝑅𝑅(𝑘𝑘)�2
,𝒙𝒙�𝑅𝑅(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝑅𝑅(𝑘𝑘)𝑥𝑥(𝑘𝑘),   u𝑗𝑗(𝑘𝑘) > 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙�𝐿𝐿(𝑘𝑘)

𝛾𝛾+�𝒙𝒙�𝐿𝐿(𝑘𝑘)�2
,𝒙𝒙�𝐿𝐿(𝑘𝑘) = 𝑇𝑇𝑗𝑗𝐿𝐿(𝑘𝑘)𝑥𝑥(𝑘𝑘), 𝑢𝑢𝑗𝑗(𝑘𝑘) < −1

. (16) 

4. The experiment results 

increasing classification accuracy is very important in problems of image recognition and 
processing [19 – 22]. An experimental study of the effectiveness of the APWLSAF was carried out 
to solve the problem of recognizing people's emotions from photographs. The task remains 
relevant for many applications, where result depends on quality of user interaction and taking 
into account his emotional status can influence the process [23]. 

In the experiment some photos from the Extended Cohn-Kanade (CK+) dataset [24] were used. 
Picked dataset consisting of 821 images of seven emotion classes: anger (126 photos), disgust (67 
photos), fear (111 photos), happy (154 photos), sadness (107 photos), surprise (98 photos) and 
neutral (158 photos). Images were scaled and transformed to grayscale. All experiments were 
carried out using the TensorFlow framework. Examples of images are shown in Figure 2.  

 
Figure 2: Examples of processed images from Extended Cohn-Kanade (CK+) dataset 
 

Configurable network parameters are changed using standard function ReLU, leakyReLU, 
PReLU and APWLSAF. Network architecture and training parameters: 

- convolution layer contents 20 filters; 
- filter size 5×5; 
- training cycle consists of 8 and 12 epochs;  
- number of iterations 104 and 156;  
- iterations per epochs 13;  
- minibatch size 32;  
- starting value of learning rate 0.0001;  
- validation frequency 30 iterations. 
The results of a deep network with different activation functions training are shown in Figures 

3-4. 
Accuracy of network training with considered activation functions when classifying the 

emotions in dataset images is shown in the Table 1.  
Table 1 
Accuracy of network training with ReLU, leakyReLU, PReLU and APWLS activation functions in 
emotion classification by images 

Activation function Accuracy (8 learning epochs) Accuracy (12 learning epochs) 
ReLU 62.59% 65.09% 
leakyReLU(0.6) 69.32% 65.59% 
PreLU 67.33% 77.56% 
APWLSAF 80.80% 83.29% 



 
a)                                          b) 

Figure 3: Results of network training with a) ReLU activation function; b) leakyReLU activation 
function 
 

 
a)                                         b) 

Figure 4: Results of network training with a) PReLU activation function; b) APWLSAF 
 
 



It can be seen that widespread and frequently used activation functions (ReLU, PreLU, 
leakyReLU) quickly achieve the highest possible accuracy for the task (in the range of 60-70%). 
Increasing the training duration leads to only a slight increase in accuracy. At the same time, the 
APWLSAF shows a trend towards increasing accuracy and higher performance (80-85%). Here it 
is also important to pay attention to the fact that the training dataset was small, and against this 
background, the gain in accuracy of approximately 15%, which is given by the APWLSAF with all 
other network parameters unchanged, is an important result. It confirms that the proposed 
function allows deep networks to learn complex tasks on small data samples faster and more 
accurately. 

5. Conclusion 

The new adaptive piece-wise linear squashing activation function (APWLSAF) is proposed, 
which combines the properties of squashing functions of shallow neural networks (especially 
three-layer perceptrons) and piece-wise linear functions in deep neural networks without 
suffering from effect a "vanishing" gradient. The neuron tuning algorithm with APWLSAF, 
characterized by high speed and ease of numerical implementation, has been introduced. The 
results of the computer experiment confirm the effectiveness of proposed approach. 
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