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Abstract 
This article is devoted to studying methods of designing intelligent systems using combinatorial 
optimization. The main concepts and approaches to the creation of intelligent systems are considered, in 
particular the stages of their life cycle, which include requirements definition, architecture design, 
development, training, testing and implementation. Special attention is paid to the use of combinatorial 
optimization methods, which allow solving complex problems related to optimization and decision-making 
in various contexts. 
A mathematical model of module selection in the development of an intelligent system using the properties 
of combinatorial configurations is constructed. 
 The article also discusses the prospects for the use of intelligent systems in various fields, including 
industry, health care, and resource management. The main goal of this work is to emphasize the importance 
of integrating combinatorial optimization methods into the design process of intelligent systems to increase 
their efficiency and adaptability. 
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1. Introduction 

As is known, an intelligent system can be a software system capable of solving tasks traditionally 
considered creative, belonging to a specific subject area, with knowledge about this area stored in 
the system's memory. According to [1], the structure of an intelligent system includes three main 
components: a knowledge base, a decision-making mechanism, and an intelligent interface. In 
decision-making technologies, an intelligent system is an information-computing system with 
intelligent support, solving tasks without human participation, that is, without the decision-maker 
(DM), unlike an intelligentized system, where the operator is present. Different types of intelligent 
systems are distinguished, such as an intelligent information system, an expert system, a 
computational-logical system, which can also be a hybrid system, and a reflexive intelligent system. 

Computational-logical systems include systems capable of solving management and design tasks 
based on declarative descriptions of conditions. In this case, the user has the ability to control all 
stages of the computational process in interactive mode. These systems can automatically construct 
a mathematical model of the problem and automatically synthesize computational algorithms based 
on the problem's formulation [2-6]. These capabilities are implemented due to the presence of a 
knowledge base in the form of a functional semantic network and components for deductive 
reasoning and planning. The use of intelligent systems in text recognition on images.  

An Intelligent Information System (IIS) is a set of software, linguistic, and logical-mathematical 
tools designed to perform the primary task of supporting human activities and searching for 
information in an advanced natural language dialogue mode [1]. 

Intelligent information systems and combinatorics are closely related, as many tasks solved 
within the framework of intelligent systems are combinatorial in nature.  

Let’s consider the main aspects of this connection. 
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1.1. Second level sectioning 

• Combinatorics deals with studying various ways of combining objects into sets according to 
given rules. This includes problems of selection, arrangement, permutations, and other operations 
on finite sets. 
• Intelligent systems often encounter combinatorial problems when solving issues such as 
optimization, planning, routing, pathfinding, the knapsack problem, the traveling salesman 
problem, and others. These problems require efficient algorithms to find the optimal or feasible 
solution among a multitude of possible combinations. 

1.2. The Role of Combinatorics in Algorithms of Intelligent Systems 

• Search and Optimization: Intelligent systems often use combinatorial methods to find the 
best solution among many possible options. For example, graph search methods (depth-first 
search, breadth-first search), heuristic methods (such as A* search algorithms, genetic algorithms) 
use combinatorial approaches to select paths or combinations. 
• Planning and Decision Making: Planners and decision support systems are often built on 
combinatorial methods, which allow for generating and evaluating possible scenarios and actions, 
selecting the best option from many. 
• Cryptography and Data Protection: In cryptographic systems, combinatorial methods are 
used to create and analyze complex encryption keys and to test their security. 

1.3. Combinatorial Algorithms in Intelligent Systems 

• Genetic Algorithms: These algorithms use principles of biological evolution and work 
with populations of solutions that are combined, mutated, and selected to find the optimal 
solution. Combinatorics plays a key role in the process of selecting and combining solutions. 
• Branch and Bound Methods: These are combinatorial optimization methods used to solve 

problems where many possible solutions need to be explored, while pruning those that are clearly 
not optimal. 
• Machine Learning Methods: Combinatorial methods are applied in hyperparameter 

selection, building model ensembles, feature selection, and other learning tasks. 

1.4. Application Examples 

• Traveling Salesman Problem (TSP): The Traveling Salesman Problem, where the goal is 
to find the shortest route between a set of cities, is a classic example of a combinatorial problem 
often solved in intelligent systems. 
• Pattern Recognition: In pattern recognition tasks, combinatorial methods are used to 

compare and select the most suitable patterns or features that match the given images. 
• Resource Allocation: In resource allocation tasks (e.g., scheduling problems), 

combinatorial approaches are used to efficiently assign limited resources to multiple tasks. 
Thus, intelligent systems utilize combinatorics and combinatorial properties of sets of 

arrangements, permutations, and polypermutations to solve problems that require considering a 
large number of options and finding the optimal solution. Examples of such problems are discussed 
in works [5-12].  Combinatorial methods provide effective ways of generating, evaluating, and 
optimizing a multitude of solutions, which is key to the successful operation of intelligent systems 
[5-8, 17-19]. Combinatorics is a fundamental part of intelligent systems, offering methods and 
algorithms for solving a wide range of problems related to search, optimization, and planning in the 
presence of a large number of possible combinations [18-24]. 

The article will consider the combinatorial model of the problem of choosing modules when 
developing a program for an intelligent system, analyze it, and propose an approach to its solution. 



It should be noted that the life cycle of an intelligent system (IS) encompasses many stages of 
development, implementation, operation, and maintenance of the system. It includes a sequence of 
steps aimed at creating an effective and reliable intelligent system capable of solving complex 
problems and making decisions based on data analysis. The main stages of the life cycle of an 
intelligent system can be divided into the following phases: 

1. Requirements Definition: This involves gathering and analyzing requirements. At this stage, 
the system's objectives, user requirements, and both functional and non-functional requirements 
are determined. It is crucial to understand what problems the system should solve, what data will 
be used, and what results are expected. This step includes formulating the problem. 
2. System Design: This involves developing the system architecture, selecting appropriate 
methods and algorithms for data processing and decision-making. It includes detailing individual 
system components, such as data collection modules, analysis, machine learning, decision-
making, user interfaces, and so on. 
3. System Development: At this stage, code is written and software modules are developed to 
perform specific functions of the system. Integration of components involves combining all 
modules into a unified system, ensuring their interaction and coordinated operation. 
4. Training and Adaptation. 
5. Testing and Validation: This involves checking each module against the requirements, as well 
as testing the system as a whole. Validation includes assessing the accuracy, performance, and 
reliability of the system, and verifying its operation with real data. 
6. Deployment. 
7. Operation. 
8. Maintenance and Updates. 
9. Decommissioning. 
This life cycle can be repeated several times during the process of system enhancement to adapt 

to new challenges and requirements. 
Next, we will consider one of the stages of the intelligent system life cycle—coding and software 

module development. 

2. Problem statement. Module Selection Problem in the Development 
of the Software Component of an Intelligent System 

One of the fundamental principles of modern intelligent system design is the principle of modularity, 
which allows for more effective management of various stages of the intelligent system life cycle, 
such as creation, deployment, maintenance, and enhancement of software and computational 
resources. The principle of modularity involves developing and implementing a program as a 
collection of components – modules. 

Let’s describe the model of the module selection problem in software development. We will 
consider the problem of optimal program composition, which consists of several modules, with the 
condition that some of these modules may be implemented on a computer in multiple ways. 

At the algorithm development stage, a program can be represented as consisting of  individual 

interconnected blocks (modules, procedures, programs, segments). For each block  ( ) there 

are  possible implementation options .  According to the description, the set can be 

represented as a configuration of polypermutations. Each option is characterized by its execution 
time , the amount of memory it occupies, constants and arrays  and the required total 

memory . The goal is to select an option for each block of the program such that the program 

executes in minimal time T and does not exceed the allocated resources. 
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3. Mathematical Modeling 

Mathematical formulation of the Problem: find the value of   such that  

, 

 

subject to the constraint ,  

where  –is the amount of memory allocated for the optimizing program, and the solution 
belongs to the configuration of polypermutations. 

The described mathematical model corresponds to a vector optimization problem on a 
combinatorial configuration of polypermutations, which can be solved using the algorithms 
described in [14, 20]. 

Information arrays in computer memory can be placed at different levels of the hierarchy, each 
of which may contain one or more memory devices (MDs) of the same or different types with 
approximately the same speed. The most important parameters of MDs are capacity and speed. 
Generally, higher-level MDs have higher speed but lower capacity compared to lower-level MDs. 
We will describe the model of the optimal distribution of arrays across the levels of computer 
memory. 

Arrays are characterized by size and activity. Activity Y refers to the frequency of use or the 
expected number of accesses to the array over a certain period of time during the operation of the 
software system. The total time spent accessing the array when solving a set of problems in the 
computing system depends on how arrays are distributed across memory levels. Therefore, the 
problem of optimally distributing arrays across hierarchical memory levels arises. 

Let  be the total access time to the array;  
М the amount of memory; 

 be the total number of memory devices (MDs) at all levels of the hierarchy; 
  be the capacity and speed of the  -th MD; ( );  
  be the number of arrays;  
Y is array usage activity 

 be the size and activity of the -th array, respectively ( ); 

, where be the vector representing the distribution of arrays across 
MDs. The vector can be represented as an element of a permutation configuration [14, 17]. 

 
Mathematical model of the problem: find the value  such that   
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, 

 where ,  

This problem is a vector optimization problem on permutations [ 3, 14]. 
To solve such problems, vector optimization methods can be used at the first stage, and 

combinatorial optimization methods are used at the second stage. Some methods of combinatorial 
optimization are presented in the next part. 

4. Solving of the Problem 

In the design of intelligent systems, especially those addressing complex optimization problems, 
various combinatorial optimization methods can be used. The main methods that may be useful are: 

Branch and Bound: This method is used to find the optimal solution in problems where a subset 
of elements needs to be selected or a series of discrete decisions must be made. It involves 
systematically exploring all possible solutions (combinations) by dividing the problem into 
subproblems (branches) and pruning (bounds) those branches that cannot lead to an optimal solution. 

Dynamic Programming: This method is suitable for problems that can be broken down into 
interdependent, repetitive subproblems. The idea is to store the results of subproblem solutions and 
reuse them, significantly reducing computational complexity. Examples include the knapsack 
problem or the traveling salesman problem for a limited number of cities. 

Genetic Algorithms: This heuristic method, inspired by principles of natural selection and 
genetics, is used to find a "good enough" solution in large search spaces where exact enumeration is 
too computationally intensive. It is especially useful for problems that require optimizing multiple 
criteria simultaneously or where the search space is very large. 

Simulated Annealing: This heuristic method seeks the global minimum of a function by 
gradually lowering the "temperature" of the search, which reduces the probability of accepting worse 
solutions in later stages. It is used for problems where the search space is large but helps avoid local 
minima. 

Ant Colony Optimization (ACO): This method builds paths from the starting state to the goal 
using artificial "pheromones." It is used in problems where the shortest path or optimal route needs 
to be found, such as the traveling salesman problem. 

Tabu Search: This method uses the idea of iterative improvement, where each new state is 
checked to ensure it is not in the forbidden (tabu) list. This helps avoid cycles and local minima. It is 
often used for solving placement, cutting, and scheduling problems. 

Particle Swarm Optimization (PSO): This method is based on modeling the behavior of a group 
of particles moving in the search space, coordinating their actions. Particles move toward better 
solutions, considering their own experience and that of other particles. It is effective for multi-criteria 
optimization problems and finding global extrema. 

Greedy Algorithm: This method makes locally optimal choices at each step, hoping these 
choices will lead to a globally optimal solution. It is effective for problems where greedy solutions 
approximate the optimal global solution, such as in set covering or maximum flow problems. 

These combinatorial optimization methods can be integrated into intelligent systems to solve a 
wide range of problems, such as resource optimization, scheduling, logistics, and many others, where 
finding the best solution among many possible options is required. 
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5. Implementation of the Results 

The described mathematical model provides a robust framework for optimizing the distribution of 
arrays across hierarchical memory levels. Its implementation can lead to significant performance 
improvements, efficient resource utilization, and adaptability to varying workload conditions. The 
model is particularly useful in high-performance computing, cloud computing, and systems with 
complex memory hierarchies. By leveraging vector optimization on permutations, it can handle 
complex configurations and constraints effectively, paving the way for advanced memory 
management solutions. 

6. Conclusions 

The concept of an intelligent system is considered, the connection of the system with the problems 
of combinatorial optimization is analyzed on the basis of the selected literature. Examples of the 
application of combinatorial algorithms in intelligent systems are given. An applied problem of 
choosing modules in the development of the software part of an intelligent system is presented and 
a mathematical model is built. The application of such a model is described and an approach to its 
solution is proposed. Further research is aimed at the study of numerical experiments for the problem 
of choosing modules in the development of the software part of the intellectual. 
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