
Handling outliers in swarm algorithms: a review  

Dmytro Uzlov1, Yehor Havryliuk1, Ivan Hushchyn1, Volodymyr Strukov1, and Sergiy 
Yakovlev1 

1 V.N. Karazin Kharkiv National University. 4 Svobody, Sq., Kharkiv, 61022, Ukraine 

Abstract 
Swarm optimization algorithms, inspired by the collective behavior of biological swarms, are a promising 
tool for solving the problem of optimizing complex systems where traditional methods are often ineffective. 
However, the problem of outliers can significantly affect the process of finding an optimal solution. 
Therefore, the study of methods for detecting and processing outliers in swarm algorithms, such as the 
particle swarm optimization (PSO), is an urgent task that has significant potential to improve the efficiency 
and reliability of these algorithms in various practical applications, such as drone control systems, financial 
systems, environmental control and modeling systems. The article deals with the problem of outliers in 
swarm optimization algorithms such as PSO. An overview of existing approaches to managing outliers, 
including adaptive methods, methods using swarm topologies, hybrid algorithms, and others, is provided. 
The advantages and disadvantages of each approach are analyzed. Particular attention is paid to new 
promising areas, such as the combination of neural networks and reinforcement learning, to develop more 
efficient and adaptive swarm algorithms. The article is aimed at researchers and practitioners in the field 
of optimization who are interested in improving the efficiency and reliability of swarm algorithms. 
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1. Introduction 

Swarm optimization algorithms, inspired by biological swarms, are crucial for solving complex 
problems in fields like engineering, economics, and medicine. Despite their power, these algorithms 
often suffer from early convergence, where particles get stuck in local optima due to outliers. This 
article reviews methods for detecting and managing outliers in swarm systems on the example of 
PSO, analyzing adaptive methods, swarm topologies, and hybrid algorithms. It also explores 
emerging solutions like neural networks and reinforcement learning hybridization, which could 
enhance swarm algorithms' ability to avoid local optima and find global solutions. 

2. Problem statement and state of the arts 

In [1], the authors emphasize that an "outlier is strange data values that stand out from datasets". 
From this definition, outliers in swarm systems can be represented as particles in the swarm that do 
not follow the expected swarm behavior, such as particles that move much faster or slower than 
other particles in the swarm. Such particles have all the characteristics inherent in the standard 
definition of an outlier: they can deviate significantly from the swarm trajectory, interfere with other 
particles, and prevent them from moving toward the optimal solution. This leads to slower swarm 
convergence or suboptimal results. 

The issue of outliers in swarm algorithms is underexplored but crucial, as optimizing them could 
greatly enhance swarm convergence, benefiting many modern applications. Swarm systems, such as 
drone control systems, are widely used in a variety of areas, including transportation systems [2], 
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search and rescue operations [3], and other industries. In such systems, rogue drones can not only 
slow down the convergence of the swarm, but also lead to a loss of control over individual drones, 
which can cause safety hazards and involve damage to property or people. 

In financial systems where swarm systems such as PSO are used to optimize investment 
portfolios, outliers can cause unpredictable fluctuations in portfolio value [4]. These fluctuations can 
negatively affect the stability and predictability of investments, creating additional risks for financial 
markets. 

Outliers can have severe consequences in control systems [5], leading to unpredictable behavior 
and potential damage. In environmental models, they can cause inaccurate predictions. There is no 
universal solution for handling outliers in swarm systems, as hyperparameters in swarm algorithms 
greatly impact their efficiency and stability. Tailoring strategies to specific problems and exploring 
alternative outlier control methods are key research priorities. Developing effective detection and 
management techniques for outliers in swarm systems is crucial and requires innovative approaches. 

3. State of the arts 

The outlier problem, though well-known in statistics, is especially crucial in swarm algorithms. 
Viewing swarm particles as data points frames the outlier issue as a statistical anomaly detection 
problem, where outliers signal an imbalance in exploration and exploitation. Traditional methods, 
like removing outliers [6], aren't always viable, especially in applications like drone systems where 
losing a unit isn't acceptable. Thus, exploring alternative outlier management strategies is essential. 

Recent studies have proposed a wide range of variations of the PSO algorithm aimed at solving 
various problems and improving the basic algorithm. These variations include adaptive approaches, 
where hyperparameters dynamically change during the optimization process, considering the 
current state of the swarm and the characteristics of the problem. Researchers also consider methods 
that utilize swarm topologies (in a standard PSO, one of the topologies shown in Figure 1 is often 
used) [7], which affect the information exchange between particles, allowing for more efficient 
exploration of the solution space and avoiding early convergence. In addition, hybrid algorithms 
combining PSO with other optimization methods, such as genetic algorithms or bee swarm methods, 
are actively being investigated to combine the advantages of different approaches [7, 8]. 

 
Figure 1: Standard swarm topologies: (a) Global-Best, (b) Ring, (c) Wheel, (d) Pyramid, (e) Von 
Neumann 
 

The research papers [7, 8] provide an overview of such modern variations of PSO, their processing 
principles and purpose. Further analysis of these variations, presented in this paper, will allow to 
deeper understand their advantages and disadvantages, as well as to determine the optimal vector 
for future research on the outlier problem not only in PSO, but also in the domain of swarm 



algorithms in general, and finding a solution that will increase the efficiency and reliability of swarm 
algorithms in various practical problems.  

4. Managing outliers in swarm algorithms 

4.1. Outliers causes 

Outliers in swarm systems, as in any other systems where they occur, are stochastic in nature. It is 
proposed to study outliers in swarm systems on the example of one of the most common and simplest 
implementations of swarm intelligence algorithms for function optimization – PSO [9]. Determining 
PSO hyperparameters involves dealing with outlier particles that deviate from the swarm's general 
trend, making PSO ideal for studying outliers in swarm algorithms. 

Among the main reasons for the occurrence of outliers in PSO algorithms are the following: 

1. Initialization: some particles may start moving with initial values of position and velocity 
that are far from optimal 

2. Particle divergence: particles explore the search space and may deviate from the swarm 
3. Stochasticity: the algorithm is inherently random, potentially leading to some particles 

having significantly different positions or velocities than the rest of the swarm 
4. Inappropriate hyperparameters: the behavior of PSO is strongly influenced by the choice of 

its hyperparameters 

The initial position and velocity of particles in the simplest implementation are determined 
according to a uniform distribution in the search area. They also affect the speed of finding the 
optimal solution by a swarm. There are effective methods for solving this problem [10, 11]. 

Such causes of outliers as particle divergence, stochasticity, and inappropriate hyperparameters 
are related to the choice of parameters such as inertia weights and acceleration coefficients [9] - they 
affect the degree of exploration and exploitation of particles, thereby changing the behavior of 
agents. The choice of such parameters is usually a separate task when implementing PSO to optimize 
the objective function. For a static end state, it is possible to select such parameters. When the 
objective function changes dynamically, this approach becomes suboptimal, because each change in 
the objective function can potentially lead to unexpected results due to the static choice of initial 
parameters. To solve the problem of optimizing swarm outliers, as well as to overcome the need to 
find a compromise between the exploratory and exploitative behavior of a particle, many variations 
of PSO, were developed. For example, one of them is adaptive PSO.  

Adaptive PSO (APSO) [12] has better search efficiency than the standard PSO, can perform a 
global search over the entire search space with a higher convergence rate, and can automatically 
control inertia weights, acceleration factors, and other algorithmic parameters at runtime, thereby 
improving search efficiency and performance simultaneously. In addition, this algorithm can 
influence a single swarm particle with the global best found value to "force" it out of the likely local 
optimum. 

But as any other variation mentioned in this article, APSO has its own set of limitations and 
potential problems. Some of the most common problems include [12]: 

• Over-adaptation 
• Complexity 
• Convergence 
• Performance 
Although APSO is widely utilized among PSO variants, it may not represent the most optimal 

approach for all application scenarios. 

4.2. An overview of existing PSO variations 



APSO is by far the most common modification of the standard algorithm, being more flexible and 
more versatile, but it does not solve all problems and creates new disadvantages. We will consider 
other modifications of PSO further.  

Scientists Meetu Jain, Vibha Saihjpal Narinder Singh, Satya Bir Singh noted the following 
variations of the PSO algorithm in their work, each aimed at solving the specific standard PSO 
limitation [8]: 

1. Fuzzy adaptive PSO algorithm – improves PSO optimization capabilities 
2. Homogeneous particle swarm optimizer (HPSO) – modified version for solving multi-

objective optimization problems 
3. Hybrid PSO with ranking, selection and mean square error criterion (STPSO) – combines 

PSO with statistical methods to solve stochastic optimization problems 
4. Evolutionary modified PSO –improves search efficiency 
5. Improved PSO algorithm (IPSO) – improves the search efficiency 
6. Fully informed particles in PSO –improves performance 
The authors of another paper [7], in addition to a general review of the PSO algorithm and its 

principles, provide a brief overview of the most recent PSO review documents, as well as a list of 
recent publications with PSO variations and their limitations. The main PSO variants the article 
focuses include the following: 

1. Cooperative PSO – solving the outliers’ problem through particle cooperation 
2. Multi-swarm PSO – improves exploration avoiding local optima convergence 
3. Hybrid PSO – improves performance in dynamic object layout problems 
4. Binary PSO – can optimize both continuous and discrete functions 
The article also provides an additional list of other PSO variations that are less popular or less 

efficient. These variations of PSO are usually aimed at eliminating a specific drawback of the 
standard algorithm, for example, the possibility of hitting a local optimum. But each of them also has 
its own drawbacks. For example, adding new parameters to the algorithm increases the complexity 
of the initial model setup and generally complicates the system with more hyperparameters, and, in 
addition, requires additional computational costs [7]. 

The PSO variations in [7, 8] show ongoing evolution and improvement for solving diverse 
optimization problems, but their multitude suggests that each may offer a less universal solution for 
specific problem types. 

4.3. Comparative analysis of the PSO modifications 

The analysis of recent publications on the topic [7, 8] shows that many researchers' efforts are 
focused on the development and improvement of the PSO algorithm. As a result of intensive 
scientific activity, a wide range of modifications and hybridizations of the basic PSO algorithm have 
been proposed, each of which has its own strengths and weaknesses. Based on the analysis of [7, 8], 
the authors of this article present a qualitative comparison of PSO variations (Table 1). 

While these PSO variations offer improvements over the standard PSO, there is limited evidence 
of their effectiveness in real-world applications. Current literature indicates that no PSO variant is 
universally optimal or improves PSO without introducing new constraints. Thus, selecting a specific 
algorithm requires careful consideration of the problem's specifics, convergence speed, and solution 
accuracy, necessitating further research and experimentation. 
 
 
 
 
 
 
 
 



Table 1 
Qualitative comparison of different PSO modifications 

Name Description Limitations 
Standard PSO Simple and resource efficient. Particles can get stuck in local 

optima. 
Adaptive PSO Balances exploration and 

exploitation by dynamically 
adjusting the inertial weight, 
improving convergence speed 
and solution quality. 

Increased complexity due to 
dynamic inertial weight, which 
requires additional tuning 
compared to fixed-parameter 
PSO options. 

Cooperative PSO (CPSO) Aimed at solving the problem 
of outliers through the 
cooperation of the particles. 

Particles can get stuck in local 
optima. 

Gaussian PSO (GPSO) It only requires specifying the 
number of particles before use. 

Not suitable for tasks where 
setting specific parameters is 
critical for optimal 
performance. 

Concurrent PSO (CONPSO) 
Improves convergence 
performance compared to the 
original PSO. 

Increased computational 
complexity due to parallel 
operations. 

Binary PSO (BPSO) 
It can optimize both 
continuous and discrete 
functions. 

Not always as effective as 
specialized algorithms for 
specific types of tasks (e.g., 
continuous vs. discrete). 

Bare-Bones PSO Eliminates the speed formula, 
making it simpler. 

It is not always as effective in 
complex, multidimensional 
search spaces where speed 
control is important. 

Fully Informed PSO (FIPS) 
Particles are influenced by all 
neighbors, not just the best 
one. 

Increased computational costs 
due to the consideration of 
information from all neighbors. 

Binary PSO for Classification 
Designed for classification 
tasks, showing promising 
results compared to machine 
learning methods. 

Not suitable for other types of 
optimization problems. 

Fuzzy Adaptive PSO (FAPSO) 
Uses a fuzzy system to adapt 
the inertia weight, improving 
convergence. 

Increased complexity due to 
the fuzziness of the system, 
requiring additional 
customization and expertise. 

Guided PSO (GPSO) 
Specially designed to recognize 
facial emotions, it 
demonstrates promising 
accuracy. 

Limited applicability to other 
problem areas other than facial 
emotion detection. 

Self-Regulating PSO (SRPSO) 
Includes human learning 
strategies to improve 
exploration and exploitation 
processes. 

Requires careful adjustment of 
self-regulation mechanisms for 
optimal performance. 

Improved PSO (IPSO) 

Solves the problems of slow 
convergence and limitations of 
the basic PSO when planning 
the trajectory of a mobile 
robot. 

Tends to generalize poorly to 
other problem areas or 
demonstrate stable 
performance in different 
scenarios. 

Genotype Phenotype Modified 
Binary PSO (GPMBPSO) 

Designed to solve the Knapsack 
problem, offering improved 
performance compared to 
BPSO. 

Increased complexity due to 
genotype-phenotype mapping, 
which may require additional 
computing resources. 

Modified Binary PSO (MBPSO) Outperforms the original BPSO 
algorithm. 

It is not always suitable for 
other types of optimization 
problems and requires 
adaptation to a specific task. 

Hybrid PSO (HPSO) 

Combines PSO with other 
algorithms (e.g., simulated 
annealing) to improve 
performance in dynamic object 
layout problems. 

Increased complexity due to its 
hybrid nature, requiring 
multiple algorithms to be 
configured. 

STPSO (Stochastic PSO) 
Hybridizes PSO with statistical 
methods to solve stochastic 
optimization problems. 

Increased complexity due to its 
hybrid nature, requiring 
multiple algorithms to be 
configured. 

 
While these PSO variations offer improvements over the standard PSO, there is limited evidence 

of their effectiveness in real-world applications. Current literature indicates that no PSO variant is 
universally optimal or improves PSO without introducing new constraints. Thus, selecting a specific 



algorithm requires careful consideration of the problem's specifics, convergence speed, and solution 
accuracy, necessitating further research and experimentation. 

Having examined this, the authors believe that it is advisable to consider other ways to improve 
the PSO algorithm, other than the above approaches. One of these alternatives is to integrate PSO 
with neural networks (NN), which will allow to use the advantages of both approaches. PSO can be 
used to optimize the NN architecture, find optimal values of weights and thresholds, or find optimal 
hyperparameters. In turn, NNs can be used to model complex nonlinear dependencies and improve 
PSO's ability to find solutions. 

In addition, combining PSO with NNs can be especially useful in problems where many 
parameters need to be considered or where the objective function is complex and multimodal. In 
such cases, NNs can help PSO avoid local optima and find more accurate solutions (resolving outliers’ 
problem as well). 

The use of hybrid approaches that combine PSO with NN may grant new opportunities for solving 
complex optimization problems and improving the efficiency of existing solutions. To confirm this 
hypothesis, additional research and experiments are needed to assess the potential of this approach 
and determine its advantages and disadvantages. 

5. Deep learning models used over PSO 

Modifying and hybridizing PSO isn't the only way to improve it. Paper [8] reviews how integrating 
collective intelligence, like self-organization and swarm intelligence, can enhance deep learning. The 
authors explore using these principles to address deep learning challenges, such as combining 
cellular automata with neural networks for image processing and rethinking reinforcement learning 
with self-organizing agents. The authors identify four main areas of deep learning that have begun 
to incorporate the ideas of collective intelligence: 

1. Image processing 
2. Deep Reinforcement Learning (DRL) 
3. Multi-agent learning 
4. Meta learning 

Based on these studies, it can be assumed that the introduction of a reinforcement learning model 
for outlier’s optimization in PSO has prerequisites for future research to overcome the limitations of 
other algorithm modifications. For instance, it can be predicted that one of the potential advantages 
of integrating reinforcement learning with PSO is that the introduction of neural network models 
into swarm operation will solve the problem of overfitting. Reinforcement learning algorithms are 
designed to learn optimal policies that generalize well to new environments [13], so it is reasonable 
to consider such integration as conducive to an effective process of adaptation to various 
optimization problems. 

Let us consider an example of a possible potential application of the hybrid PSO-DRL approach. 
The GPT models, such as ChatGPT by OpenAI, which have become a modern breakthrough in the 
field of artificial intelligence, use deep neural networks with many parameters, which makes their 
training and tuning a complex and resource-intensive process [14]. Using PSO to optimize the GPT 
model architecture can help find the optimal number of layers, neurons in each layer, and types of 
connections between them. This will reduce the number of model parameters, speed up its training, 
and improve its ability to generate text. 

In addition, PSO can be used to optimize hyperparameters like learning rate, data set size, and 
regularization, balancing training speed and model accuracy. DRL can help model complex 
relationships between parameters and performance, enhancing PSO's efficiency in finding optimal 
solutions. Some studies, like [15], have explored combining these methods, showing that the 
introduced parameter adaptation method based on reinforcement learning (RLAM) improves PSO's 
convergence rate and outperforms other variants. However, RLAM increases computational 
complexity, complicates implementation, and risks overfitting. Despite these challenges, combining 
PSO and DRL could effectively optimize GPT models, improving performance, reducing resource 
use, and speeding up development. It is also promising to combine the modified PSO algorithm with 
reinforcement learning models. Such integration has the prerequisites for further improving the 
convergence property of the modified algorithm. Optimal policies in reinforcement learning 



algorithms are obtained by maximizing the reward signal, which can be used to control the search 
process in an adaptive algorithm [16]. 

However, in the context of such integration, it is also worth noting potential limitations:  

1. Additional complexity of initialization 
2. Setting additional hyperparameters 
3. Over-fitting of the RL model 

In addition, determining the best strategy for integrating the reinforcement learning algorithm 
with PSO for a particular optimization problem, as well as finding another possible method for 
combining the two algorithms that could reduce the number of algorithm limitations while 
improving the performance of the standard PSO, requires additional research. The implementation 
of this approach, as well as experimental confirmation or refutation of its advantages and 
disadvantages, is the subject of the author's future research. 

6. Conclusions 

Outliers in particle swarm optimization are a major challenge, influenced by factors like velocity, 
position, and acceleration coefficients. Addressing their causes can improve convergence speed, 
accuracy, stability, and reliability in complex search spaces. This article examines the causes, 
concepts, and solutions to outlier issues in swarm optimization on the example of PSO, focusing on 
methods that enhance convergence and reduce outliers, including adaptive methods, swarm 
topologies, and hybrid algorithms. 

For example, the adaptive particle swarm method balances exploration and fast convergence but 
is more complex than standard PSO. Cooperative PSO aids particle cooperation but can get stuck in 
local optima, while binary PSO handles both continuous and discrete parameters but may be less 
efficient than specialized algorithms. It has been determined that none of the existing variations of 
PSO is a universal solution; each comes with its own limitations. 

It has been proposed to use of hybrid approaches combining PSO with neural networks and 
reinforcement learning, which will grant new opportunities for solving complex optimization 
problems and improving the efficiency of existing solutions. In contrast to algorithmic solutions, the 
use of neural networks in combination with the particle swarm method (or its variations) would be 
appropriate to obtain a positive practical result when applied to drone control systems or financial 
systems for which other variations of algorithms are not optimal for one reason or another.  

Further research will be aimed at studying and experimentally confirming or refuting the 
advantages and disadvantages of the proposed approach, as well as developing a new method for 
effective detection and management of outliers in swarm systems on the example of PSO. 
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