
Low-Code Development and End-User Development:
(How) Are They Different?
Bernhard Schenkenfelder1, Ulrich Brandstätter1, Harald Kirchtag2 and Manuel Wimmer3

1Software Competence Center Hagenberg GmbH, Softwarepark 32a, 4232 Hagenberg, Austria
2KEBA Group AG, Reindlstraße 51, 4040 Linz, Austria
3Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria

Abstract
In our daily work, we are often faced with the challenge of designing tools for non-programmers (citizen developers
or domain experts) to build their own software, which requires us to investigate appropriate methodologies. At
first glance, Low-Code Development (LCD) and End-User Development (EUD) seem like natural candidates. This
raises the question of the similarities and differences between LCD and EUD, which this paper explores based
on relevant literature. The results show that while both approaches share high-level goals, there are notable
differences.

Keywords
Low-Code Development (LCD), End-User Development (EUD), Self-Service Terminal

1. Introduction

In an industry-academia collaboration, we were tasked with developing the front-end and back-end of
a self-service terminal (see Figure 1, left) for the public sector. Benefits for the front-end users include
(i) the ability to use the terminal outside of office hours, (ii) multimodal interaction such as touch and
natural language in the form of speech-to-text and text-to-speech, (iii) interactively guided processes,
(iv) safe and secure data through local AI models, and (v) transactions such as printing, receiving and
issuing official documents, making payments, and establishing their identity. Overall, the front-end
aims to provide a straightforward user experience for its users–the citizens of Austria.

Regardless of whether these processes are handled by a self-service terminal or a counter clerk, they
are complex and require frequent updates due to their scope in terms of time, location, and content.
For example, heating and electricity subsidies may be introduced and then withdrawn as the economy
improves. Similarly, a child care subsidy application may vary from state to state. Finally, a person may
be eligible for a driver’s license at age 17 instead of 18.

Therefore, not only the front-end, but also the back-end provides self-service capabilities, allowing the
public sector domain experts to customize the processes of the terminal. Using a Visual Programming
Environment (VPE), which can be learned in a few hours in contrast to months required for a textual
programming language, the processes and sequences are represented visually in a flow-based notation,
see Figure 1 (center). A dedicated library provides ready-made building blocks that bundle frequently
used functionality (Figure 1, right).

In summary, public sector domain experts without software development training (back-end end
users) use visual programming (a low-code programming model) to tailor the processes of a self-service
terminal for Austrian citizens (front-end end users). The natural question that follows is whether the
above case describes Low-Code Development (LCD), End-User Development (EUD), or both, or neither.

Proceedings of the First International Workshop on Participatory Design & End-User Development - Building Bridges (PDEUD2024),
October 2024, Uppsala, Sweden
$ Bernhard.Schenkenfelder@scch.at (B. Schenkenfelder); Ulrich.Brandstaetter@scch.at (U. Brandstätter); ki@keba.com
(H. Kirchtag); manuel.wimmer@jku.at (M. Wimmer)
� https://www.scch.at/team/bernhard.schenkenfelder (B. Schenkenfelder); https://www.scch.at/team/ulrich.brandstaetter
(U. Brandstätter); https://www.keba.com/ (H. Kirchtag); https://se.jku.at/manuel-wimmer/ (M. Wimmer)
� 0000-0001-5129-6268 (B. Schenkenfelder); 0009-0009-8472-3524 (U. Brandstätter)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Bernhard.Schenkenfelder@scch.at
mailto:Ulrich.Brandstaetter@scch.at
mailto:ki@keba.com
mailto:manuel.wimmer@jku.at
https://www.scch.at/team/bernhard.schenkenfelder
https://www.scch.at/team/ulrich.brandstaetter
https://www.keba.com/
https://se.jku.at/manuel-wimmer/
https://orcid.org/0000-0001-5129-6268
https://orcid.org/0009-0009-8472-3524
https://creativecommons.org/licenses/by/4.0/deed.en


Figure 1: Interactive self-service terminal for citizen services (left). Visual Programming (VP) back-end example:
Guide a user to collect a passport or driver’s license (center). Details of the PassportFlow element of the parent
flow (right).

To help clarify this, this paper examines the similarities and differences between the two, based on
relevant literature from both fields, without attempting to provide a complete overview. The selected
literature largely represents two scientific communities: The authors of [1, 2, 3, 4] are active in the
MODELS conference1 or the co-located LowCode workshop2, [5] is a very recent and frequently cited
low-code paper, and [6, 7, 8, 9, 10] can be associated with the International Symposium on End-User
Development (IS-EUD)3.

In a reference work on EUD, Lieberman et al. [11] use the following definition, which is reused or
extended in all of the EUD papers reviewed:

“End-user development can be defined as a set of methods, techniques, and tools that allow
users of software systems, who are acting as non-professional software developers, at some
point to create, modify or extend a software artifact.”

On the other hand, although all LCD papers use the term low-code, only Pinho et al. [1] propose an
explicit and standalone definition:

“Low-code development is a set of approaches, technologies, and tools that enable rapid
application development through techniques that reduce the amount of code written.
These approaches can make it possible for end-user developers to program software and
use techniques and tools often including but not limited to model-driven engineering,
domain-specific languages, and drag-and-drop mechanisms.”

These two definitions also suggest a certain similarity or overlap between the two approaches, seman-
tically and in that both can be applied to the above case description. Therefore, we conduct a more
in-depth investigation.

2. Low-Code Development (LCD)

Low-Code Development Platforms (LCDPs) are cloud-based platforms for “developers of different
domain knowledge and technical expertise” to build and deploy applications using model-driven
principles. To compare relevant LCDPs, Sahay et al. [2] first develop a taxonomy of features, including
graphical user interface, interoperability support, collaborative development support, and deployment
support. They observe that the main components can be grouped into the application modeler, the
server side, and external services.

Bock and Frank [3] contribute to this research by uncovering the distinguishing technical features of
LCDPs through an analysis of seven LCDPs. They identify common features, namely definitions of
data structures, access to external data sources, a GUI designer, the ability to provide basic functional

1https://modelsconference.org/
2https://lowcode-workshop.github.io/
3https://iseud.net/

https://modelsconference.org/
https://lowcode-workshop.github.io/
https://iseud.net/


specifications, a library of standard operations, definitions of roles and user rights, deployment support,
and that they are based on model-driven development, as well as occasional and rare features. They point
out that LCDPs are sold with the claims that they contribute to the efficiency of software development,
and that they are useful for both professional developers and citizen developers.

In a comparison of low-code and model-driven approaches, Di Ruscio et al. [4] reveal the differences
that lie behind the (high-level) similarities. LCDPs are often cloud-based platforms, they can be used
from a browser, and cover the entire application lifecycle from design to deployment. According to their
analysis, citizen developers are the primary users of LCDPs, and most applications fall in the business
domain and some in the IoT/event-driven domain.

Pinho et al. [1] conduct a systematic literature review of 38 relevant articles and synthesize common
characteristics of LCD: non-programmers as users (13 articles), visual tools with drag-and-drop (12),
raised abstractions (9), writing little code (8), presence of underlying models (8), rapid application
development (5), lifecycle management (5), and cloud-based infrastructure (5). They also identify the
following types of applications being built: business processes (6), databases (6), user interfaces (6), web
(5) and mobile (5) applications, and industrial applications (1). Low requirements for technical skills is
the most prominent benefit (18) of LCD, followed by short development time (7) and low cost (4).

In a review of the low-code literature, Hirzel [5] notes that low-code users range from professional
developers to citizen developers or amateur programmers with little or no software development training.
While low-code empowers citizen developers to create computer programs, it makes professional
developers more productive. He explains the key building blocks, strengths, weaknesses, and mitigations
of three popular low-code techniques: Visual Programming Languages (VPL), Programming by Natural
Language (PBNL), and Programming by Demonstration (PBD).

3. End-User Development (EUD)

Paternò [6] points out the main motivation for EUD: Professional developers often lack domain knowl-
edge, while end users find it difficult to communicate their requirements. In addition, these requirements
change too frequently for regular development cycles. The success of Web 2.0 also shows that people
want to be involved, but they often do not have the means to change the behavior, functionality, and
accessibility of the content they create. Therefore, a major goal of EUD is to reduce the conflict between
application complexity and learning effort (low threshold vs. high ceiling). Other key concepts are
composing and customizing basic elements developed by programmers, collaboration, participatory
design, formal and informal representations, and natural language descriptions. To compare EUD
approaches, Paternò suggests the dimensions of the generality of the approach (domain-specific vs.
general-purpose), the coverage of the main interactive application aspects (interactive vs. functional
parts), and whether and how abstractions are used to hide the implementation details.

In a report covering more than 20 years of their EUD research, Myers et al. [7] note that studying
the natural ways in which end users describe their tasks can greatly support system design. They also
observe that end users and professional developers very often have similar problems–on a different
scale. For example, debugging in EUD tools should be designed to help end users find the cause of
unwanted behavior.

A systematic mapping study of 165 papers carried out by Barricelli et al. [8] presents approaches
and techniques to support end users in tailoring, extending, and creating digital artifacts. Component-
based (visual programming) and rule-based (trigger-action rules) techniques are the most common,
followed by programming by demonstration/example, spreadsheets, wizards, and templates. As for
the application domains, business and data management, web applications and mashups, and smart
objects and environments are the most prominent. 65 papers are aimed at domain experts, while 100
papers address the needs of generic users, 6 of which allow advanced development for domain experts.
Interestingly, they conclude that more user-oriented methods are needed to further advance the topic.

Fischer [9] explores how AI can help or hinder all EUD stakeholders in addressing their problems.
It is important to note that some AI developments may undermine the goals of EUD, as trusting



algorithms can be seen as giving up control and concentrating power. Therefore, Explainable AI (XAI)
is an important step in overcoming the black-box nature of AI. Interestingly, and related to low-code,
protecting users from low-level code is seen as an area that can benefit from AI. Overall, some examples
show that AI and EUD components can be successfully integrated.

Looking at EUD again in the age of IoT and AI, Paternò [10] emphasizes that automation in smart
spaces has become part of everyday life, with some systems even making decisions without explicit
user request. To avoid unintended actions, it is crucial that users have tools to control these AI-powered
systems. Acceptance of an automation is directly related to its transparency to end users, which in turn
is determined by its perception, understanding, predictability, and modifiability. Therefore, Paternò
suggests that both AI and EUD approaches should coexist and be combined in such tools.

4. Results

First, EUD dates back to scientific work in the 1980s [10], while the more recent term LCD was coined
by consulting firms in 2014 [4]. MDE, as a precursor of LCD, has its own scientific community focused
on the technical realization of modeling languages, tools, and supporting infrastructures.

The definitions indicate a difference that can be found in most of the papers: EUD focuses on who
develops software rather than how they do it as in LCD. Thus, EUD is primarily aimed at citizen
developers or domain experts without software development training, while LCD also promises to make
professional developers more productive [5].

Interestingly, their (self-perceived) relevance to today’s pressing issues varies widely. Fischer [9]
advocates research in EUD to improve the quality of life for all people, addressing issues such as
democratization and collective creativity. LCD authors, on the other hand, often have a narrower focus
on technology and its users [3, 4, 5].

In terms of techniques, the direct manipulation of visual abstractions in an advanced Graphical User
Interface (GUI) is the most important in both areas and is found throughout the literature reviewed.
Otherwise, there is a strong overlap in additional techniques such as spreadsheets, natural language,
and programming by demonstration [5, 8]. While a model-based or model-driven implementation is
very often at the core of LCD, it remains unclear what the most dominant technical foundations of EUD
are, with model-based [8], meta-design [9], and rule-based [10] as possible candidates.

The scope of tools and infrastructure is also different. Typically for LCD, a cloud-based platform or
service covers the lifecycle of a digital artifact from design to deployment, through the abstraction and
automation of deployment and provisioning, possibly with the drawback of vendor lock-in [1, 2, 4].
EUD has also moved beyond desktop applications, but it still does not support instant delivery to the
same extent [6, 8, 10].

Finally, there are some more differences in the application domains. LCD targets business processes,
user interfaces, databases, web and mobile applications, and industrial applications as application types.
EUD, on the other hand, also includes smart objects and environments, games and entertainment,
education and teaching, and healthcare and wellness. Also, while web and mobile applications are
equally important for LCD, there are far more web than mobile applications reported for EUD [1, 8].

5. Conclusion and Future Work

Although LCD and EUD share the same goal of empowering non-programmers to create their own
software using tools with a low entrance barrier, there are differences as shown above. However, for our
practical work in industry-academia collaborations, both approaches, either alone or in combination,
can help achieve this goal, and we can draw from both areas. Returning to the self-service terminal
described at the beginning, we could add additional layers of abstraction to address different skill
backgrounds, from public sector novices to domain experts, and provide them with a more tailored
technological foundation for participatory design of terminal processes.



In future work, it has to be studied if the initial findings generalize and hold true in broader/other
contexts. To answer the question posed in the title of this paper, future work will include the application
of methods such as a systematic literature review, scientific community analyses, and tool comparisons.
Finally, since LCD is used by industry practitioners, exploring their goals and how they view EUD in
relation to LCD through individual case studies or more general surveys could further advance this
research.

Acknowledgments

The research reported in this paper has been funded by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry for Labour
and Economy (BMAW), and the State of Upper Austria in the frame of the SCCH competence center
INTEGRATE (FFG grant no. 892418) in the COMET - Competence Centers for Excellent Technologies
Programme managed by Austrian Research Promotion Agency FFG.

References

[1] D. Pinho, A. Aguiar, V. Amaral, What about the usability in low-code platforms? a systematic
literature review, Journal of Computer Languages 74 (2023) 101185.

[2] A. Sahay, A. Indamutsa, D. Di Ruscio, A. Pierantonio, Supporting the understanding and comparison
of low-code development platforms, in: 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2020, p. 171–178.

[3] A. C. Bock, U. Frank, In search of the essence of low-code: An exploratory study of seven devel-
opment platforms, in: 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), IEEE, Fukuoka, Japan, 2021, p. 57–66.

[4] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, M. Wimmer, Low-code development
and model-driven engineering: Two sides of the same coin?, Software and Systems Modeling 21
(2022) 437–446.

[5] M. Hirzel, Low-code programming models, Communications of the ACM 66 (2023) 76–85.
[6] F. Paternò, End user development: Survey of an emerging field for empowering people, ISRN

Software Engineering 2013 (2013) 1–11.
[7] B. A. Myers, A. J. Ko, C. Scaffidi, S. Oney, Y. Yoon, K. Chang, M. B. Kery, T. J.-J. Li, Making End

User Development More Natural, Springer International Publishing, Cham, 2017, p. 1–22.
[8] B. R. Barricelli, F. Cassano, D. Fogli, A. Piccinno, End-user development, end-user programming

and end-user software engineering: A systematic mapping study, Journal of Systems and Software
149 (2019) 101–137.

[9] G. Fischer, End-User Development: Empowering Stakeholders with Artificial Intelligence, Meta-
Design, and Cultures of Participation, volume 12724 of Lecture Notes in Computer Science, Springer
International Publishing, Cham, 2021, p. 3–16.

[10] F. Paternò, End-User Development, Springer International Publishing, Cham, 2023, p. 1–27.
[11] H. Lieberman, F. Paternò, M. Klann, V. Wulf, End-User Development: An Emerging Paradigm,

volume 9, 2006, pp. 1–8.

Bernhard Schenkenfelder is a researcher and senior software engineer at the Software Competence
Center Hagenberg. He holds an M.Sc. in Business Informatics and is pursuing his Ph.D. from Johannes
Kepler University (JKU) Linz, Austria. His primary research interests are low-code development, human-
computer interaction, and web-based technologies.

Ulrich Brandstätter is a senior researcher at the Software Competence Center Hagenberg for the
Human Centered System Design research focus. His research interests include visual programming



paradigms, experimental interfaces, and game studies.

Harald Kirchtag is the innovation manager at KEBA Group, where he has dedicated over 20 years to
advancing the company’s technological and business goals. His career at KEBA includes significant
leadership roles such as vice president of banking automation and business unit manager for banking
automation.

ManuelWimmer is full professor leading the Institute of Business Informatics–Software Engineering at
the Johannes Kepler University Linz. His research interests comprise foundations of model engineering
techniques as well as their application in domains such as tool interoperability, legacy modeling tool
modernization, model versioning and evolution, and industrial engineering.


	1 Introduction
	2 Low-Code Development (LCD)
	3 End-User Development (EUD)
	4 Results
	5 Conclusion and Future Work

