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Abstract

When addressing real-world processes, it is crucial to account for their intrinsic uncertainty to better reflect the
nature of such processes. In this work, we introduce the concept of Probabilistic Declarative Process Specification
(PDS), which is based on the Distribution Semantics from Probabilistic Logic Programming, in order to describe
declarative process models with both crisp and probabilistic constraints. The probability associated to a constraint
represents its strength or importance in a specific process domain. From this, we propose a novel notion of
probabilistic compliance of a process trace w.r.t. a PDS, and how to compute it with an existing algorithm.
Preliminary experimental results on a healthcare protocol are presented to evaluate the feasibility of our proposed
semantics on process conformance checking.
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1. Introduction

In the Business Process Mining community, many different languages have been proposed to model/de-
scribe a process, capturing the many aspects of a work process, ranging from the resource perspective, to
the artifact-based and data perspective, up to the control-flow aspects. The latter viewpoint in particular
has been subject to intense research activity. Two families of process modeling languages emerged:
procedural approaches, such as BPMN1, and declarative ones, such as Declare [1, 2] and DCR Graphs
[3]. Declarative approaches have been introduced to overcome some forms of rigidness derived by
procedural ones, with the aim of finding a balance between flexibility and control. Declare in particular,
was defined with this aim: allowing the specification of which properties a process instance should
exhibit, without specifying the exact steps to achieve them. Since the initial proposal, Declare has
been equipped with a formal semantics based on a strict subset of LTL𝑓 . This enables a straightforward
specification of process properties through the use of established formulas.

However, the adoption of a logic-based semantics has also raised a practical issue when dealing
with the problem of evaluating if a log is compliant with a process specification. On one side, a log
is composed of many traces; on the other side a Declare process specification is composed of many
constraints. Typically, in real-world applications, different subsets of traces are compliant with different
subsets of constraints. The direct consequence is that a logic-crisp notion of compliance might be
difficult or unsatisfactory to identify. In turn, such difficulty could undermine the capacity of a process
specification to properly describe the process. In a seminal work [4], the authors tackled the problem
by introducing the notion of probabilities into the Declare formalism: each constraint is assigned a
probability (and a relational operator). A probabilistic constraint is satisfied over the log if the number
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of traces satisfying the constraint over the log cardinality achieves the mathematical relation established
by the relational operator and the probability assigned. As a practical example, a constraint c1 with
assigned probability (0.9,≥) is satisfied if the number of traces complaint with c1 is at least (≥) the 90%
of the total traces. In summary, probabilities express the relative frequency of traces, and are employed
with such a meaning for the tasks of discovering, monitoring and conformance checking. Nonetheless,
when the available log does not represent the whole process domain, the application of the approach
[4] by domain expert might be challenging.

In this work, we also tackle the problem of probabilistic conformance checking with Declare
constraints, but we propose a different semantics underlying the probabilistic constraints. We introduce
the concept of Probabilistic Declarative Process Specification (PDS) starting from Probabilistic Logic
Programming (PLP) and the Distribution Semantics [5]. A PLP program under that semantics defines a
probability distribution over normal logic programs called worlds. In a PLP program, logic formulas
are equipped with a probability, which is interpreted as the probability of them appearing or not in a
normal logic program. Similarly, the probability of a Declare constraint is treated as the probability
that such constraint will appear (or not) in a possible process specification. The presence or not of a
constraint in a process specification tells us how “important” or strong that constraint is. The stronger
or more important the constraint, the greater its probability. According to the our semantics, all worlds
including one such constraint "inherit" its probability, while those not including the constraint take into
account the complement to 1 of its probability. Differently from [4], this probability does not represent
a fraction of traces satisfying the constraint, but allows one to model uncertainty in the domain by
means of the probability attached to the constraint.

To better clarify our proposal, let us consider the following university course scenario, described
with two constraints: (𝑎) it is mildly advised that a student only take the final examination if she
has attended all the classes; (𝑏) it is strongly advised that a student attend a practical session only
if she attended the corresponding preparatory class. Declare provides the way for expressing such
constraints; however, there is no way to specify that rule (𝑎) is “mildly advised”, while rule (𝑏) is “strongly
advised”. Our proposal consists of attaching probabilities to constraints (𝑎) and (𝑏): such values would
indicate the probability that each rule would end up in a possible model (process specification), and
the probability attached to (𝑏) would be higher than the one attached to (𝑎). By making (𝑎) and (𝑏)
probabilistic, we would find four possible process models, and we can formally define the compliance
of the students’ careers (process traces) towards these four models (i.e., worlds in the Distribution
Semantics terminology).

The contribution of this work is the following: we introduce a semantics for probabilistic declarative
process specifications, provide a novel notion of compliance, and ground its application on a health
protocol. Then, we exploit previous results, and in particular (𝑖) the mapping provided to Declare
in terms of the SCIFF modeling language [6] and (𝑖𝑖) the extension of the Distribution Semantics to
Abductive Logic Programming (ALP) in the SCIFF Framework [7]. Thanks to the existing work, we
can implement our proposed semantics and compute a compliance probability. In order to evaluate the
feasibility of our approach, we report some preliminary experimentation over the clinical guideline.

The paper is organized as follows: Section 2 introduces background on Declare and the distribution
semantics, Section 3 describes the proposed semantics, Section 4 describes how we perform probabilistic
compliance. Section 5 presents first experimental results and Section 6 concludes the paper.

2. Background

2.1. Traces, logs, and the Declare modeling language

In the BPM setting [8] the starting point is the observation of a process execution in terms of the
execution of the activities that compose the process. Each execution of the process is usually referred
to as a process instance or trace, where the executions of the distinct activities are referred to as distinct
activity instances or activity executions. Each activity is characterized by at least a name, and each
activity instance is usually denoted with a temporal timestamp. The timestamp provides, within the



(a) The response template. (b) The init template. (c) The precedence template.

Figure 1: Examples of the Declare graphical notation: x and y are placeholders that should be substituted with
proper activity names.

same trace, a relation order between the different activity executions: it is often the case that traces are
represented directly as a sequence of activity names, ordered on the base of the timestamp. Depending
on the specific context, the timestamp can be omitted: this is also our choice.

Formally, we consider the existence of a finite alphabet of symbols Σ corresponding to the activity
names. A trace and a log then are defined as follows:

Definition 1 (Trace 𝑡 and Log ℒ). Given a finite set Σ of symbols (i.e., activity names), a trace 𝑡 is a

finite, ordered sequence of symbols over Σ, i.e. 𝑡 ∈ Σ*
, where the latter is the infinite set of all the possible

finite sentences over Σ. A log ℒ is a finite set of traces.

In a process log, each trace 𝑡 represents a different process instance. Different process instances may
have the same trace, although referring to different executions.

Example 1. Let us suppose that a process is made of activities a, b, c, and d. Σ = {a, b, c, d}. An example

of a log might be: ℒ = {𝑡1 = ⟨a, b, c⟩, 𝑡2 = ⟨a, b, a, d⟩, 𝑡3 = ⟨a, a, d⟩, 𝑡4 = ⟨a, b, c⟩, 𝑡5 = ⟨a, b, c⟩}.

The Declare modeling language was initially introduced by [2] and subsequently studied in [9].
Aimed to overcome the “rigidness” of procedural modeling languages, it focuses on modeling processes
by specifying what are the relevant properties that a process instance should exhibit, without specifying
how these properties should be achieved. To this end, Declare models a process in terms of constraints,
sort of rules about activities that can appear in a process execution (i.e., in a trace), with qualitative
temporal relations among these activities. A simple example of a Declare constraint is response(a,b),
meaning that every occurrence of (the execution of) activity a in a trace should be followed by the
occurrence of an activity b.
Declare provides a finite set of constraint patterns, whose arguments should be properly instantiated

with the activity names peculiar to the specific process to be modeled. For example, a common pattern
is response(x,y) with x and y placeholders to be substituted with proper activities. Another pattern is
init(x), that specifies that every process instance should always start with the execution of activity x.
Another common pattern is precedence(x,y), that states that every occurrence of the execution of y
should be preceded by the execution of x.

Declare provides a graphical representation for the patterns (see Figure 1 for a few examples), and
has been equipped with two different formal semantics, both based on logic formalisms. In the original
formulation in [2] the semantics was given using the LTL temporal logic; subsequent works have shown
the feasibility of adopting the LTL𝑓 logic [10]: for a recent recap see [11]. A second formal semantics
has been proposed in [6], where the SCIFF language and ALP [12] has been exploited.

Both the semantics exploit the idea that each Declare template can be mapped onto one (or more)
logic formula 𝜙, and that logical entailment can be used to define the notion of compliance/violation of a
trace 𝑡 w.r.t. to a constraint formula 𝜙. With the aim of being the most general, we provide an intuitive
definition of compliance/violation, where the meaning of the entailment symbol |= should be referred
to the chosen semantics (LTL𝑓 or ALP).

Definition 2 (Compliance/violation of a trace versus a constraint). A trace 𝑡 is compliant with a Declare

constraint if, named 𝜙 the corresponding logic formula modelling that constraint, it holds: 𝑡 |= 𝜙.

A trace 𝑡 violates a Declare constraint if it does not entail the corresponding formula 𝜙, i.e. if 𝑡 ̸|= 𝜙.

Definition 3 (Declarative Process Specification, from [11]). A declarative process specification is a

tuple DS=(Rep,Σ, 𝐶) where:



• Rep is a finite non-empty set of templates, where each template is a predicate c(𝑥1, . . . , 𝑥𝑚) ∈ Rep

on variables 𝑥1, . . . , 𝑥𝑚 (with 𝑚 ∈ N the arity of c);

• Σ is a finite non-empty set of activity names;

• 𝐶 is a finite set of constraints, obtained by instantiating templates from Rep to Σ; we will compactly

denote such constraints with c(𝑎1, . . . , 𝑎𝑚), 𝑎1, . . . , 𝑎𝑚 ∈ Σ.

Usually the constraints c(𝑎1, . . . , 𝑎𝑚) in a DS are considered as being in logical conjunction. The
notion of compliance can be then lifted from a trace vs. a constraint towards a trace vs. a DS as follows:

Definition 4 (Compliance of a trace versus a Declarative Process Specification). A trace is compliant

with a DS if it entails the conjunction of the formulas 𝜙𝑖 corresponding to the 𝑐𝑖 ∈ 𝐶 :

𝑡 |= 𝜙1 ∧ . . . ∧ 𝜙𝑚

where 𝑚 is the cardinality of 𝐶 .

Example 2. Let us consider the log introduced in Example 1, and the following DS (Rep and Σ are omitted

for the sake of simplicity):

𝐶 = { c1 = response(a,b)

c2 = init(a) }

Even without considering the corresponding formal semantics, we can notice that:

• 𝑡1, 𝑡4, and 𝑡5 are compliant with c1;

• 𝑡2 is not compliant with c1 because the second occurrence of activity a is not followed by an occurrence

of activity b;

• 𝑡3 is not compliant with c1 because two occurrences of a are not followed by an occurrence of b;

• 𝑡1, . . . , 𝑡5 are all compliant with c2.

2.2. Distribution Semantics and Probabilistic Logic Programming

Probabilistic Logic Programming has recently received an increasing attention for its ability to incor-
porate probability in logic programming. Among various proposals for PLP, the one based on the
distribution semantics [5] has gained popularity as being introduced for the PRISM language [5] but
is the basis for many other languages such as Probabilistic Logic Programs [13], Probabilistic Horn
Abduction (PHA) [14], Independent Choice Logic (ICL) [15], pD [16], Logic Programs with Annotated
Disjunctions (LPADs) [17], ProbLog [18] and CP-logic [19]. Such semantics is particularly appealing for
its intuitiveness and because efficient inference algorithms were proposed. By combining probability
with logic programming, PLP languages are a suitable framework to handle uncertain information.

A program in one of these languages defines a probability distribution over normal logic programs
called worlds. The distribution semantics has been defined both for programs that do not contain
function symbols, and thus have a finite set of worlds, and for programs that contain them, that have
an infinite set of worlds. We consider here the first case for the sake of simplicity, for the treatment of
function symbols see [20]. A survey of the distribution semantics in PLP can be found in [21]. In the
following, the distribution semantics will be described with reference to LPADs. Formally, an LPAD
consists of a finite set of "annotated disjunctive clauses", where the head is a disjunction in which each
atom is annotated with a probability. If the body holds true, only one of the atoms in the head will be
true with the associated probability. An annotated disjunctive clause 𝑅𝑖 is of the form

ℎ𝑖1 : 𝑝𝑖1; . . . ;ℎ𝑖𝑛𝑖 : 𝑝𝑖𝑛𝑖 :− 𝑏𝑖1, . . . , 𝑏𝑖𝑚𝑖 ,

where ℎ𝑖1, . . . , ℎ𝑖𝑛𝑖 are logical atoms and {𝑝𝑖1, . . . , 𝑝𝑖𝑛𝑖} are real numbers in the interval [0, 1] such
that

∑︀𝑛𝑖
𝑘=1 𝑝𝑖𝑘 ≤ 1; 𝑏𝑖1, . . . , 𝑏𝑖𝑚𝑖 is indicated with 𝑏𝑜𝑑𝑦(𝑅𝑖). If

∑︀𝑛𝑖
𝑘=1 𝑝𝑖𝑘 < 1, the head implicitly



contains an extra atom 𝑛𝑢𝑙𝑙 that does not appear in the body of any clause and whose annotation is
1−

∑︀𝑛𝑖
𝑘=1 𝑝𝑖𝑘. We denote by 𝑔𝑟𝑜𝑢𝑛𝑑(𝑇 ) the grounding of an LPAD 𝑇 .

An atomic choice [15] is a triple (𝑅𝑖, 𝜃𝑗 , 𝑘) where 𝑅𝑖 ∈ 𝑇 , 𝜃𝑗 is a substitution that grounds 𝑅𝑖 and
𝑘 ∈ {1, . . . , 𝑛𝑖} identifies one of the head atoms. (𝑅𝑖, 𝜃𝑗 , 𝑘) means that, for the ground clause 𝑅𝑖𝜃𝑗 ,
the head ℎ𝑖𝑘 was chosen. A set of atomic choices 𝜅 is consistent if only one head is selected from the
same ground clause; we assume independence between the different choices. A composite choice 𝜅 is a
consistent set of atomic choices [15]. The probability 𝑃 (𝜅) of a composite choice 𝜅 is the product of the
probabilities of the independent atomic choices, i.e. 𝑃 (𝜅) =

∏︀
(𝑅𝑖,𝜃𝑗 ,𝑘)∈𝜅 𝑝𝑖𝑘.

A selection 𝜎 is a composite choice that, for each clause 𝑅𝑖𝜃𝑗 in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑇 ), contains an atomic
choice (𝑅𝑖, 𝜃𝑗 , 𝑘). Let us indicate with 𝑆𝑇 the set of all selections. A selection 𝜎 identifies a normal
logic program 𝑤𝜎 defined as 𝑤𝜎 = {(ℎ𝑖𝑘 ← 𝑏𝑜𝑑𝑦(𝑅𝑖))𝜃𝑗 |(𝑅𝑖, 𝜃𝑗 , 𝑘) ∈ 𝜎}. 𝑤𝜎 is called a (possible)
world of 𝑇 . Since selections are composite choices, we can assign a probability to worlds: 𝑃 (𝑤𝜎) =
𝑃 (𝜎) =

∏︀
(𝑅𝑖,𝜃𝑗 ,𝑘)∈𝜎 𝑝𝑖𝑘.

We denote the set of all worlds of 𝑇 by 𝑊𝑇 . 𝑃 (𝑊𝑇 ) is a probability distribution over worlds, i.e.,∑︀
𝑤∈𝑊𝑇

𝑃 (𝑤) = 1. A composite choice 𝜅 identifies a set of worlds 𝑤𝜅 = {𝑤𝜎|𝜎 ∈ 𝑆𝑇 , 𝜎 ⊇ 𝜅}.
Similarly we can define the set of possible worlds associated to a set of composite choices 𝐾: 𝑊𝐾 =⋃︀

𝜅∈𝐾 𝑤𝜅.
Example 3. Consider the following LPAD T encoding the effect of flu and hay fever on the sneezing

symptom.

(𝑅1) 𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑛𝑒𝑒𝑧𝑖𝑛𝑔(𝑋) : 0.3;𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑠𝑛𝑒𝑒𝑧𝑖𝑛𝑔(𝑋) : 0.5 : −𝑓𝑙𝑢(𝑋).
(𝑅2) 𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑛𝑒𝑒𝑧𝑖𝑛𝑔(𝑋) : 0.2;𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑠𝑛𝑒𝑒𝑧𝑖𝑛𝑔(𝑋) : 0.6 : −ℎ𝑎𝑦_𝑓𝑒𝑣𝑒𝑟(𝑋).
(𝑅3) 𝑓𝑙𝑢(𝑏𝑜𝑏).
(𝑅4) ℎ𝑎𝑦_𝑓𝑒𝑣𝑒𝑟(𝑏𝑜𝑏).

If somebody has the flu or hay fever, there is the possibility that he experiences sneezing symptoms with

different intensity: if she has the flu, then she might show strong sneezing with probability 0.3, or moderate

sneezing with probability 0.5; similarly for the second clause. She might not experience any symptom with

probability 0.2 in both cases. We know for sure that Bob has both the flu and hay fever. 𝑇 has 3 · 3 = 9
worlds, as each probabilistic clause has one grounding 𝜃1 = {𝑋/𝑏𝑜𝑏}. Worlds are shown in Table 1.

Table 1

Worlds for Example 3. The probabilities of the worlds sum up to 1.
World id World 𝑃 (𝑤)

𝑤1

strong_sneezing(bob):-flu(bob).
strong_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.3×0.2 = 0.06

𝑤2

strong_sneezing(bob):-flu(bob).
moderate_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.3×0.6=0.18

𝑤3
strong_sneezing(bob):-flu(bob).

flu(bob). hay_fever(bob).
0.3×0.2=0.06

𝑤4

moderate_sneezing(bob):-flu(bob).
strong_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.5×0.2=0.1

𝑤5

moderate_sneezing(bob):-flu(bob).
moderate_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.5×0.6=0.3

𝑤6
moderate_sneezing(bob):-flu(bob).

flu(bob). hay_fever(bob).
0.5×0.2=0.1

𝑤7
strong_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.2×0.2=0.04

𝑤8
moderate_sneezing(bob):-hay_fever(bob).

flu(bob). hay_fever(bob).
0.2×0.6=0.12

𝑤9 flu(bob). hay_fever(bob). 0.2×0.2=0.04

Given a goal G, its probability 𝑃 (𝐺) can be defined by marginalizing the joint probability of the goal
and the worlds:

𝑃 (𝐺) =
∑︁

𝑤∈𝑊𝑇

𝑃 (𝐺,𝑤) =
∑︁

𝑤∈𝑊𝑇

𝑃 (𝐺|𝑤)𝑃 (𝑤) =
∑︁

𝑤∈𝑊𝑇 :𝑤|=𝐺

𝑃 (𝑤) (1)



The probability of a goal 𝐺 given a world 𝑤 is 𝑃 (𝐺|𝑤) = 1 if 𝑤 |= 𝐺 and 0 otherwise. 𝑃 (𝑤) =
𝑃 (𝑤𝜎) = 𝑃 (𝜎), i.e. is the product of the annotations 𝑝𝑖𝑘 of the atoms selected in 𝜎. Therefore, the
probability of a goal G can be computed by summing the probability of the worlds where the goal is
true. In practice, given a goal to solve, it is unfeasible to enumerate all the worlds where 𝐺 is entailed.
Inference algorithms, instead, find explanations for a goal: a composite choice 𝜅 is an explanation for
𝐺 if 𝐺 is entailed by every world of 𝑤𝜅. In particular, algorithms find a covering set of explanations
w.r.t. 𝐺, where a set of composite choices 𝐾 is covering with respect to 𝐺 if every program 𝑤𝜎 ∈𝑊𝑇

in which 𝐺 is entailed is in 𝑤𝐾 .

3. Probabilistic Declarative Process Specifications under the

Distribution semantics

In this Section, we propose a semantics for Declarative Process Specifications that is highly inspired by
the Distribution Semantics introduced in Section 2.2. First of all, we introduce the notion of probabilistic

constraint. Please note that also in Definition 8 of [4] it is adopted the term probabilistic constraint, but
that definition includes also a relational operator that we do not need in our semantics.

Definition 5 (Probabilistic Constraint). Given a finite, non-empty set Rep of constraint templates and a

set Σ of activity names 𝑎1, . . . , 𝑎𝑚, a probabilistic constraint is a constraint template c ∈ Rep instantiated

over Σ that is annotated with a real number 𝑝 ∈ [0..1] (the probability of the constraint). We will indicate

a generic 𝑖-th probabilistic constraint with the syntax:

𝑝𝑖 :: c𝑖(𝑎1, . . . , 𝑎𝑚)

The probability is to be interpreted as the strength or importance of c𝑖. The stronger or more important
the constraint, the greater its probability. By applying the Distribution Semantics, a constraint c𝑖(. . .)
will have a probability 𝑝𝑖 of being part of a Probabilistic Declarative Process Specification, defined as
follows:

Definition 6 (Probabilistic Declarative Process Specification). A Probabilistic Declarative Process
Specification PDS is a Declarative Process Specification DS where each constraint c𝑖 ∈ 𝐷𝑆 is a probabilistic

constraint.

We will refer to constraints annotated with probability 𝑝𝑖 = 1 as crisp constraints. If all the constraints
have probability equal to 1, we simply end up having a Declarative Specification as in Def. 3. Probabilities
will be omitted when they are equal to 1. We now propose to interpret the probability 𝑝𝑖 of a constraint
borrowing a few concepts from Section 2.2.

Definition 7 (Atomic Choice, and its probability). An atomic choice over a probabilistic constraint

𝑝𝑖 :: c𝑖 is a couple (c𝑖, 𝑒) where 𝑒 ∈ {0, 1}. 𝑒 indicates whether c𝑖 is chosen to be included in a PDS with

probability 𝑝𝑖 (e = 1), or not with probability 1− 𝑝𝑖 (e = 0).

Note that here we do not need the substitution 𝜃 as in the definition of atomic choice in subsection
2.2, since, according to Def. 5, the constraint c𝑖 is ground.

Definition 8 (Composite Choice, and its probability). A set of atomic choices 𝜅 is consistent if there is

only one choice in 𝜅 for each probabilistic constraint c𝑖; we assume independence between the different

atomic choices. A composite choice 𝜅 is a consistent set of atomic choices.

The probability 𝑃 (𝜅) of a composite choice 𝜅 is 𝑃 (𝜅) =
∏︀

(c𝑖,1)∈𝜅 𝑝𝑖
∏︀

(c𝑖,0)∈𝜅(1− 𝑝𝑖), where 𝑝𝑖 is

the probability associated with c𝑖.

Definition 9 (Selection 𝜎 over a PDS, and its probability). A selection 𝜎 over a Probabilistic Declarative
Process Specification is a composite choice that contains an atomic choice (c𝑖, 𝑒) for every probabilistic

constraint of the PDS. A selection 𝜎 identifies a world in this way: 𝑤𝜎 = {c𝑖|(c𝑖, 1) ∈ 𝜎}. The probability

of a world 𝑤𝜎 is 𝑃 (𝑤𝜎) = 𝑃 (𝜎) =
∏︀

(c𝑖,1)∈𝜎 𝑝𝑖
∏︀

(c𝑖,0)∈𝜎(1− 𝑝𝑖).



Definition 10 (Probability of a DS). Given the set of all selections 𝑆𝑇 over a Probabilistic Declarative

Process Specification, every world 𝑤𝜎𝑖 identified by a selection 𝜎𝑖 ∈ 𝑆𝑇 is a different Declarative Process

Specification 𝐷𝑆𝑖, and its probability is 𝑃 (𝐷𝑆𝑖) = 𝑃 (𝑤𝜎𝑖) = 𝑃 (𝜎𝑖).

A PDS defines a probability distribution over regular (non-probabilistic) DSs that correspond to
worlds. Let us consider the following example to better illustrate this concept.

Example 4. Let us consider the following PDS, obtained as an extension of the DS in Example 2:

𝐶 = { 0.9 :: response(a,b) (c1)

0.8 :: init(a) (c2) }

The probability of c1 indicates that the constraint response(a,b) is considered very strong therefore, the

more traces satisfy it, the better. The probability of c2 indicates that the fact that a trace starts with the

execution of activity a is rather important, but less than the fact that a is followed by b. For each constraint

there are 2 different atomic choices, and this leads to 4 selections and 4 possible worlds; in turn, 4 different

regular DS are possible, each one corresponding to a world:

Selection DS 𝑃 (𝐷𝑆𝑖)

𝜎1 = {(𝑘1, 1), (𝑘2, 1)} 𝐷𝑆1 = {response(a,b), init(a)} 𝑃 (𝐷𝑆1) = 0.9× 0.8 = 0.72
𝜎2 = {(𝑘1, 1), (𝑘2, 0)} 𝐷𝑆2 = {response(a,b)} 𝑃 (𝐷𝑆2) = 0.9× 0.2 = 0.18
𝜎3 = {(𝑘1, 0), (𝑘2, 1)} 𝐷𝑆3 = {init(a)} 𝑃 (𝐷𝑆3) = 0.1× 0.8 = 0.08
𝜎4 = {(𝑘1, 0), (𝑘2, 0)} 𝐷𝑆4 = { } 𝑃 (𝐷𝑆4) = 0.1× 0.2 = 0.02

Example 4 allows us to highlight some characteristics of the semantics proposed in this paper. First
of all, we might notice that, thanks to the notion of world, we started from a probabilistic declarative
specification, and ended up with a set of non-probabilistic declarative specifications. Secondly, we
might notice that each different 𝐷𝑆𝑖 has its own probability (i.e., the one obtained by the corresponding
selection 𝜎𝑖), and that the set of all the possible selections achieves a probability distribution over DSs,
i.e.

∑︀
𝑖 𝑃 (𝐷𝑆𝑖) = 1.

4. Probabilistic Compliance

In this Section we will define the notion of compliance of a trace w.r.t. a Probabilistic Declarative
Process Specification PDS. In doing so, we will heavily rely on the simpler notion of compliance of
a trace vs. a DS as in Definition 4. Note that in turn Def. 4 builds upon Def. 2, that abstracts away
from the formal Declare semantics (𝐿𝑇𝐿𝑓 or ALP). As a consequence, our definition of compliance
towards a probabilistic specification is general, and is valid for both 𝐿𝑇𝐿𝑓 and ALP. Obviously, in order
to compute the compliance, one semantics should be chosen: we will discuss such a choice and the
implementation in the next Section.

Definition 11 (Compliance of a trace versus a PDS). Given a a Probabilistic Declarative Process Specifica-

tion PDS, let us consider all the possible selections 𝜎𝑖 over PDS, and all the possible Declarative Specification

𝐷𝑆𝑖 associated with 𝜎𝑖. A trace 𝑡 has a probability of compliance w.r.t. a PDS defined as follows:

𝑐𝑜𝑚𝑝(𝑡, 𝑃𝐷𝑆) =
∑︁

𝜎𝑖 : 𝑡 is compliant with 𝐷𝑆𝑖

𝑃 (𝐷𝑆𝑖) (2)

We might observe that, w.r.t. Def. 4, we move forward from a crisp boolean concept towards a degree

of compliance: this is an expected consequence of introducing probabilities in the specification. Then,
we might notice that the formula above indeed is simply an application of Equation 1 to the process
specification domain. Let us apply the notion of compliance of a trace vs. a PDS by considering the
following example:



Example 5 (continued from Ex. 4). Consider the PDS of Ex. 4 and the trace 𝑡1 = ⟨a, b, c⟩: 𝑡1 is compliant

with all 4 𝐷𝑆𝑖 and, as expected, its probability of compliance is:

𝑐𝑜𝑚𝑝(𝑡1, 𝑃𝐷𝑆) = 𝑃 (𝐷𝑆1) + 𝑃 (𝐷𝑆2) + 𝑃 (𝐷𝑆3) + 𝑃 (𝐷𝑆4) = 0.72 + 0.18 + 0.08 + 0.02 = 1

Let us consider then a trace 𝑡2 = ⟨c, a, b⟩ and suppose temporarily that c1 and c2 are crisp constraints: 𝑡2
is compliant with c1 since after a there is b; however it is not compliant with c2 since 𝑡2 does not start with

a. By considering again the constraint as probabilistic, out of the four declarative specifications 𝐷𝑆𝑖, 𝑡2 is

compliant with 𝐷𝑆2 and 𝐷𝑆4, i.e. those specifications that do not contain c2. 𝑡2 probability of compliance

is:

𝑐𝑜𝑚𝑝(𝑡2, 𝑃𝐷𝑆) = 𝑃 (𝐷𝑆2) + 𝑃 (𝐷𝑆4) = 0.18 + 0.02 = 0.2

By violating c2, which was a rather important constraint as indicated by a probability value of 0.8, the

trace has a low degree of compliance vs. the PDS.

Finally, let us consider the trace 𝑡3 = ⟨c, a⟩. 𝑡3 is not compliant with c1 nor with c2, considered

individually, however it is compliant with the empty specification 𝐷𝑆4, so its probability of compliance is

not zero but is equal to 𝑃 (𝐷𝑆4) = 0.02.

Example 5 illustrates the intuition behind the idea, proposed in this work, of interpreting the probabil-
ity of a constraint as its strength or, in other words, how much important it is to satisfy such constraint.
In the aforementioned example, trace 𝑡1 is compliant with both the constraints, hence its degree of
compliance is the maximum possible. Trace 𝑡2 instead is compliant with only one of the two constraints,
hence its degree is lower in relation to the strength/importance we have associated to the violated
constraint. We might finally notice that trace 𝑡3, even if it does not comply with any constraints, still
achieves a score. This is a direct consequence of the interpretation of the probability of a constraint as
its strength: if the strength 𝑝𝑖 is lower than 1, then we are saying that we will admit non-compliant
traces with a degree (1− 𝑝𝑖).

In more formal terms, if all the constraints in a PDS have the attached probabilities 𝑝𝑖 < 1, then there
is always a selection 𝜎* corresponding to including no constraint in the 𝐷𝑆* (the empty specification),
and whose probability is 𝑃 (𝜎*) > 0. In Example 4, such a special selection is 𝜎4. Every possible trace
will be always compliant with 𝐷𝑆*, since it’s empty. Similarly, all the constraints annotated with
probability 𝑝𝑖 = 1 will appear in all the corresponding non-probabilistic DS, as shown in the following
example:

Example 6. Let us consider the following PDS:

𝐶 = { 0.8 :: response(a,b) (c1)

init(a) (c2) }

The corresponding selections and specifications would be:

Selection DS 𝑃 (𝐷𝑆𝑖)

𝜎1 = {(c1, 1)} 𝐷𝑆1 = {response(a,b), init(a)} 𝑃 (𝐷𝑆1) = 0.8
𝜎2 = {(c1, 0)} 𝐷𝑆2 = {init(a)} 𝑃 (𝐷𝑆2) = 0.2

Example 6 clearly illustrates how our proposed semantics for PDS accommodates for both probabilistic
and non-probabilistic constraints: the latter are treated as mandatory constraints as usual in Process
Mining, and the derived specifications 𝐷𝑆𝑖 will always contain them.

5. Implementation and Evaluation

For computing the probabilistic compliance of a trace vs a PDS we leveraged on the implementation
presented in [22]. This implementation supports reasoning on ALP programs featuring "integrity



constraints" similar to those offered by IFF [23], extended with the possibility of annotating them with
a probability value. The semantics of these programs, called IFFProbprograms, defines a probability
distribution over IFF programs inspired by the distribution semantics, so the IFFProb implementation
could be directly used for our goals. IFFProb is based on the implementation of the SCIFF proof-procedure.
SCIFF [12] is an extension of the IFF proof procedure that also features constraints (à la CLP) and
universally quantified abducibles. In [22], the IFF sub-language is extended to the probabilistic case with
a new CHR constraint that represents the current explanation (𝑒𝑥𝑝𝑙, 𝑃 ) meaning that, in the current
derivation branch, the explanation is 𝑒𝑥𝑝𝑙 and has probability 𝑃 . 𝐸𝑥𝑝𝑙 is a collection of couples (c𝑖, 𝑒),
holding the constraint c𝑖 and the Boolean value 𝑒 indicating whether c1 belongs to 𝑒𝑥𝑝𝑙 or not.

In [9] declare constraints were mapped into a rule-based language known as CLIMB (Computational
Logic for the verIfication and Modeling of Business constraints), a specialized subset of the SCIFF
language that is based on abductive semantics. This mapping allows declarative models to be converted
into sets of executable, logic-based rules. These rules are referred to as integrity constraints since they
constrain the courses of interaction to ensure their integrity and compliance with interaction protocols.
Each atomic Declare activity can be expressed in CLIMB as a term and is linked to a single time point,
allowing its execution to be represented as either happened (H), expected (E), or forbidden. For example,
the fact that an atomic activity 𝑎 has happened at time 𝑇 can be denoted by 𝐻(exec(𝑎), 𝑇 ), while
𝐸(exec(𝑎), 𝑇 ) states that 𝑎 is expected to occur at time 𝑇 . We do not consider here forbidden activities.
Integrity constraints are of the form 𝐵𝑜𝑑𝑦 → 𝐻𝑒𝑎𝑑, where 𝐵𝑜𝑑𝑦 contains (a conjunction of) happened
events, together with constraints on their variables, as well as Prolog predicates; 𝐻𝑒𝑎𝑑 contains (a
disjunction of conjunctions of) positive and negative expectations, together with constraints and Prolog
predicates, applied on their variables and/or on variables contained in the 𝐵𝑜𝑑𝑦.

We created a Declare process model for elective colorectal surgery based on the ERAS® (Enhanced
Recovery After Surgery) Society guidelines for perioperative care [24], as shown in Figure 2. The
model is a PDS written in the CLIMB language, where the protocol activities are subject to both crisp
and probabilistic constraints: the former represent strongly recommended practices according to the
guidelines, reflecting critical, evidence-supported activities that must be adhered to rigorously, while the
latter represent weakly recommended practices, whose associated probability states the importance to
apply them in the healthcare flow. Weakly recommended practices may have some degree of flexibility
in their implementation due to individual patient needs, local variations in resources and demographics,
advancements in medical research, institutional policies, and cultural considerations. The model includes
21 constraints capturing essential perioperative events, from patient admission to post-surgery recovery.
Of these, 14 constraints were identified as crisp (𝑝𝑖 = 1) and 7 as probabilistic. An excerpt of the PDS is:

true→ 𝐸(exec(program_admission), 0). (𝑐1)

𝐻(exec(program_admission), 𝑇1)→ 𝐸(exec(counseling), 𝑇2) ∧ 𝑇2 > 𝑇1. (𝑐2)

𝐻(exec(start_surgery), 𝑇2)→ 𝐸(exec(counseling), 𝑇1) ∧ 𝑇1 < 𝑇2. (𝑐3)

0.3 :: 𝐻(exec(start_surgery), 𝑇2)→ 𝐸(exec(preanesthesia), 𝑇1) ∧ 𝑇1 < 𝑇2. (𝑐4)

0.4 :: 𝐻(exec(start_surgery), 𝑇2)→ 𝐸(exec(fasting), 𝑇1) ∧ 𝑇1 < 𝑇2. (𝑐5)

Here, the integrity constraint 𝑐1 represents the init constraint. It specifies that the process must
always start with the event program admission of the patient, occurring at time 0. Obviously, it is a
mandatory constraint. Constraint 𝑐2 represents the response constraint, indicating that whenever the
event program admission happens, the pre-operative patient counseling and education must eventually
follow at a time T2 later than T1. It’s strongly recommended to begin patient counseling after admission
into the program and prior to surgical procedures, thus constraints 𝑐2 and 𝑐3 are treated as crisp. Instead,
𝑐4 and 𝑐5 are modeled as probabilistic precedence constraints since, in the guidelines, preanesthesia

and fasting before surgery could sometimes be skipped. The relatively low probability assigned to
them derives from the consensus around those specific perioperative practices, suggesting they are
generally not enforced for optimal postoperative outcomes. Each event trace was then adapted to the
format required by the algorithm, transforming each trace into an interpretation. Every fact has two



Figure 2: declare model of the ERAS® protocol for colorectal surgery across the pre-operative (PRE-OP),
intra-operative (INTRA-OP), and post-operative (POST-OP) phases. Strong recommendations are shown in black,
while weak ones in gray.

arguments: the first one is a ground term that records the event name, and the second one is an integer
that indicates the timestamp. An example of an interpretation is the following:

ℎ𝑎𝑝(𝑒𝑥𝑒𝑐(𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛), 0).
ℎ𝑎𝑝(𝑒𝑥𝑒𝑐(𝑐𝑜𝑢𝑛𝑠𝑒𝑙𝑖𝑛𝑔), 5).
ℎ𝑎𝑝(𝑒𝑥𝑒𝑐(𝑓𝑎𝑠𝑡𝑖𝑛𝑔), 80).

To perform our experiments we wrote one synthetic trace composed of 21 events, one for each
activity of the protocol. The process trace satisfied all the model constraints.

We provide two preliminary scalability tests in order to show how both crisp and probabilistic
constraints influence the execution time in computing the probability of compliance of that trace.
Experiments were carried out on a Linux machine with Intel® Xeon® E5-2630v3 running at 2.40 GHz
with 20 GB of RAM and a time limit of 8 hours. In the first test, the number of crisp constraints was
kept fixed respectively to 3, 6, 9, and 14 and the number of probabilistic constraints was increased from
1 to 7 at steps of 1. In the second test, the number of probabilistic constraints was kept fixed at 2, 4, and
7 and the number of crisp constraints was increased from 1 to 14 at steps of 1.
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Figure 3: Scalability analysis of the computation of the probability of compliance of a trace vs. a PDS with
varying numbers of crisp and probabilistic constraints.

Figure 3 illustrates the results, showing an exponential trend in execution times as the number
of either crisp or probabilistic constraints increases. The impact on the time is higher when using



probabilistic constraints: we obtain an exponential trend with 7 probabilistic constraints compared to
14 crisp ones.

6. Conclusions and Future Work

In this paper, we presented a new semantics for Declare process model specifications which allows one
to specify probabilistic constraints representing their strength/importance in a specific process domain.
In this way, we can model domains where some constraints are stronger (or weaker) than others. Such
models are called Probabilistic Declarative Process Specifications. The underlying semantics is inspired
by the distribution semantics from Probabilistic Logic Programming, and abstracts away from the
formal Declare semantics (LTL𝑓 or ALP), aiming at computing the probability of compliance of a trace
versus the model. The computation of the compliance relies on an existing algorithm. Preliminary
tests show that the time taken for computing the probability has an exponential trend by increasing
the number of both crisp and probabilistic constraints. Future work includes: extending experimental
evaluation, defining the compliance of a set of traces (log) vs. a PDS; extending the new semantics
to manage uncertainty at the level of events, traces or the log itself; studying the profiles of energy
consumption when computing the probability of compliance.
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