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Abstract
Knowledge Organization Systems (KOS), such as ontologies, taxonomies, and thesauri, play a crucial
role in organising scientific knowledge. They help scientists navigate the vast landscape of research
literature and are essential for building intelligent systems such as smart search engines, recommendation
systems, conversational agents, and advanced analytics tools. However, the manual creation of these
KOSs is costly, time-consuming, and often leads to outdated and overly broad representations. As a
result, researchers have been exploring automated or semi-automated methods for generating ontologies
of research topics. This paper analyses the use of large language models (LLMs) to identify semantic
relationships between research topics. We specifically focus on six open and lightweight LLMs (up to
10.7 billion parameters) and use two zero-shot reasoning strategies to identify four types of relationships:
broader, narrower, same-as, and other. Our preliminary analysis indicates that Dolphin2.1-OpenOrca-7B
performs strongly in this task, achieving a 0.853 F1-score against a gold standard of 1,000 relationships
derived from the IEEE Thesaurus. These promising results bring us one step closer to the next generation
of tools for automatically curating KOSs, ultimately making the scientific literature easier to explore.
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1. Introduction

Knowledge Organization Systems (KOS), like ontologies, taxonomies, and thesauri, designed for
research topics, are instrumental for structuring, managing, and retrieving information from
digital libraries, enabling efficient knowledge discovery [1]. Major publishers like ACM, IEEE,
PubMed, and SpringerNature employ KOS like the ACM Computing Classification System1,
the IEEE Theasurus, Medical Subject Headings, and the SpringerNature Taxonomy to organise
their published content [2, 3, 4]. KOSs play also a crucial role in enabling intelligent systems
to navigate and interpret academic literature effectively [5, 6], serving as the foundation for
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tools like search engines [6], conversational agents [7], analytics dashboards [8], and academic
recommender systems [5]. Additionally, KOS provide a robust representation of research topics,
crucial for various AI-driven analyses of scientific literature [9, 10].

However, maintaining these KOSs is a growing challenge. The rapid expansion of scientific
literature, with an estimated 2.5 million new papers published annually [11], necessitate contin-
uous curation to reflect the latest advancements. Besides, manually curating them has become
increasingly costly and time-consuming, highlighting the need for innovative solutions to keep
pace with the evolving scientific landscape.

In contrast, the emergence of Large Language Models (LLMs) has revolutionised the field of
Artificial Intelligence (AI), enabling deeper language comprehension, including grasping the
semantic of word and sentences, inferring relationships between concepts, resolving ambiguities,
and understanding overall text meaning [12].

Given the challenges in maintaining up-to-date ontologies of research areas, and the recent
advancements in AI, this paper presents an analysis showcasing the capabilities of LLMs in
identifying semantic relationships between pairs of research topics. Specifically, we focus on
six open and lightweight models (up to 10.7 billion parameters), and we employ two zero-shot
reasoning strategies to identify four relationships types (e.g., broader, narrower, same-as, and
other ), on a gold standard of 1,000 relationship (250 per relationship).

Ourmain objective is to develop an innovative pipeline to automatically generate andmaintain
ontologies of research topics. This pipeline will allow us to curate existing ontologies, create
more granular representations of research concepts, and expand the development of ontologies
into other scientific fields. In this context, our research focuses on determining whether LLMs
can effectively aid in this process.

In brief, this paper contributes to the literature with a preliminary analysis of whether zero-
shot reasoning can effectively identify semantic relationships between research topics using
open, smaller models, with a focus on sustainability. The gold standard and the code we used to
run our experiments are available on a GitHub repository2.

The remainder of this paper is structured as follows. Section 2 provides an overview of the
literature. Section 3 describes the dataset and the approach we have devised to conduct our
experiments. Section 4 presents and discusses our results. Finally, in Section 5 we conclude the
paper and provide future directions.

2. Literature Review

In this section, we review the literature focusing on two key aspects relevant to our work:
ontologies of research areas and automatic ontology generation.

2.1. Ontologies of research areas

In the literature there are several ontologies, or more in general KOSs, within the scientific
ecosystem, which can support the exploration process in digital libraries, the production of
scholarly analytics, and modelling research dynamics [2, 13]. These include Medical Subject

2Gold Standard and Code for experiments - https://github.com/ImTanay/LLM-Semantic-Relationship-Analysis
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Headings (MeSH) [3], ACM Computing Classification System (CCS), the Computer Science
Ontology (CSO) [13], AGROVOC, Mathematical Subject Classification (MSC) [2], and Physics
Subject Headings (PhySH) [14]. MeSH is a comprehensive controlled vocabulary, with more
than 30K concepts, developed and maintained by the National Library of Medicine [3]. It is
widely used in the medical and health sciences, and it receives yearly updates. The ACM
Computing Classification System3 is a taxonomy of research topics in the field of Computer
Science, covering about 2K research topics. It is curated by ACM, the world’s largest educational
and scientific computing society, and the last update dates back to 2012. CSO is the largest
ontology of research topic in Computer Science, covering 14K research areas [13]. It has been
automatically generated using the Klink-2 algorithm [15] on a dataset of 16 million scientific
articles, and receives yearly updates. The IEEE Thesaurus mainly covers the field of Engineering
but also contains different concepts relevant to Computer Science. It is curated by the Institute of
Electrical and Electronics Engineers4. It contains around 5.6K topics and 24K relationships, and
receives yearly updates. MSC is a comprehensive taxonomy with over 6.5K concepts, covering
a wide range of mathematical disciplines, from pure mathematics to applied mathematics and
statistics. It is curated by the American Mathematical Society and zbMATH, and receives
updates every 10 years [2].

Most of the existing KOSs are curated manually, usually by a committee of domain experts
who periodically meet to discuss the updates for the next version. This process, however, makes
ontologies evolve slowly and hence prone to becoming outdated. Additionally, such a manual
curation is costly and increasingly unsustainable given the rapid rate at which new research is
published [11, 13]. Automating the creation of research area ontologies can overcome existing
limitations by ensuring these ontologies remain current. This, in turn, can enhance cataloguing,
retrievability, and the various downstream applications mentioned earlier.

2.2. Automatic Ontology Generation

The automatic generation of ontologies is a field of research whose objective is to overcome
the challenges of traditional ontology creation, hence making it more scalable and efficient.
Techniques that are usually employed include natural language processing, clustering techniques,
or statistical methods [16, 17, 15]. For instance, Text2Onto [16] is a tool that can create ontologies
from a corpus of documents. This method identifies synonyms, sub-/superclass hierarchies, and
through the application of NLP techniques it can learn hierarchical structures between terms,
leveraging phrases such as “such as...” and “and other...”.

Shan et al. [18] used a similar method to develop Fields of Study for Microsoft Academic,
combining manually created concepts with topics derived from Wikidata. However, this ap-
proach relied heavily on Wikidata and did not utilize metadata associated with research papers.
The OpenAlex team [19] also employed a similar strategy, expanding upon the “All Science
Journal Classification” structure in Scopus and incorporating topics extracted from papers using
citation analysis.

Some studies have explored a hybrid approach, combining ontology learning with crowd-
sourcing to integrate statistical measures and user feedback [20, 21]. Specifically, human support

3The ACM Computing Classification System – http://www.acm.org/publications/class-2012
4IEEE Taxonomy - https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-taxonomy.pdf
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has been integrated to evaluate an automatically generated ontology [20].
More recently, researchers have begun to leverage LLMs for the creation of taxonomies,

ontologies, and knowledge graphs [22]. For instance, Chen et al. [23] proposed a two-module
approach for taxonomy generation. The first module predicts parent-child relationships, and
the second module reconciles these predictions into tree structures. The model is trained on
subtrees from Wordnet and evaluated on separate Wordnet subtrees.

Given the new opportunities unlocked by LLMs, we hypothesise that significant progress
can be made to tackle the ongoing challenges of curating ontologies of research areas.

3. Material and Methods

This section describes the task, the gold standard, and the employed LLMs.

3.1. Task definition and experiments

The task is to classify the semantic relationship holding between pairs of research topics (𝑡𝐴, 𝑡𝐵)
according to four categories which are essential for ontology generation. More formally, this is
single-label multi-class classification problem, and the categories are:

• broader : 𝑡𝐴 is a parent topic of 𝑡𝐵. E.g., ontological languages is a broader area than owl
• narrower : 𝑡𝐴 is a child topic of 𝑡𝐵. E.g., nosql is a specific area within databases
• same-as: 𝑡𝐴 and 𝑡𝐵 can be used interchangeably to refer to same concept. E.g., haptic
interface and haptic device

• other : 𝑡𝐴 and 𝑡𝐵 do not relate according to the above categories. E.g., blockchain and user
interfaces

Our experiments consist of two zero-shot reasoning strategies, as depicted in Fig. 1.
One-way Strategy: This experiment, highlighted by the red dashed box in Fig. 1, involves

taking each pair of research topics, generating a prompt using a specially designed template
(see Appendix A), submitting it to the LLM, and then analysing the response to determine the
appropriate classification.

The prompt template is identical for both strategies and all models. It was carefully refined
through an iterative process to ensure optimal performance and consistency across all models.

Two-way Strategy: This experiment, highlighted by the green dashed box in Fig. 1, involves
running the one-way strategy twice. First, we identify the relationship between topics 𝑡𝐴 and
𝑡𝐵. Then, in a fresh context, it identifies the relationship when the topics are swapped. This is
possible because the relationships broader and narrower are inverses of each other, same-as is
symmetric, and by definition also other is symmetric.

Finally, we set empirical rules (cyan box in Fig. 1) to mitigate the agreement/disagreement
between the two branches of the two-way strategy. These rules are designed with the aim of
prioritising the development of the hierarchical structure. Let f(X) and s(X) represent the rela-
tionship types returned by the first and second branches of our two-way strategy, respectively.
Additionally, let len(𝑡𝐴) denote the length of the topic’s surface form. We defined the rules as
follow:



1. broader :- f(broader) ∧ s(narrower)
2. narrower :- f(narrower) ∧ s(broader)
3. broader :- ((f(narrower) ∧ s(narrower)) ∨ (f(broader) ∧ s(broader))) ∧ len(𝑡𝐴) ≤ len(𝑡𝐵)
4. narrower :- ((f(narrower) ∧ s(narrower)) ∨ (f(broader) ∧ s(broader))) ∧ len(𝑡𝐴) > len(𝑡𝐵)
5. same-as :- f(same-as) ∧ s(same-as)
6. broader :- (f(broader) ∧ s(other)) ∨ (f(other) ∧ s(narrower))
7. narrower :- (f(narrower) ∧ s(other)) ∨ (f(other) ∧ s(broader))
8. :- f(X)

Figure 1: Architecture of our two strategies. The first strategy (red dashed box) determines the
relationship between 𝑡𝑎 and 𝑡𝑏 in one way, whereas the second strategy (green dashed box) determines
the relationship between pairs of topics in both ways.

3.2. Gold standard

As gold standard, we selected a balanced sample of 1,000 semantic relationships from the IEEE
Thesaurus, with 250 relationships per category. The IEEE Thesaurus includes 11,570 descriptive
terms in the field of Engineering, and serves as a standardised vocabulary of technical terms
for indexing and retrieving content within the IEEE digital library. Specifically, we utilised the
IEEE Thesaurus v1.025, which is dated to July 2023, and is available as a PDF file following the
ANSI/NISO Z39.4-2021 standard [24].

To generate our gold standard, we first extracted the hierarchical structure and relationships
between terms from the original IEEE Thesaurus PDF document and transformed it into RDF

5A copy of version 1.02 of the IEEE Thesaurus is available at https://github.com/angelosalatino/
ieee-taxonomy-thesaurus-rdf/blob/main/source/ieee-thesaurus_2023.pdf.
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format6. We represented the various relationships according to the Simple Knowledge Orga-
nization System (SKOS) notation: i) skos:broader, ii) skos:narrower, iii) skos:altLabel,
iv) skos:prefLabel, v) skos:related.

We randomly sampled 250 relationships each for the categories broader, narrower, and same-as.
For the latter, we used a combination of skos:altLabel and skos:prefLabel. Finally, we
randomly coupled topics to generate 250 other relationships, ensuring that these new pairs did
not share any of the previously established semantic relationships within the IEEE Thesaurus.

3.3. Large Language Models

For our experiments we selected six quantised LLMs, that had been quantised to 8-bit precision.
These included four fine-tuned versions of Mistral-7B, in addition to SOLAR and LLaMa 3.

Dolphin-2.1-Mistral-7B: (shortened as dolphin-mistral7) is a decoder-only model with 7
billion parameters and a token context capacity of 4096. It is based on Mistral-7B and fine-tuned
with the Dolphin8 dataset, which is an open-source implementation of Microsoft’s Orca [25],
with an addition of Airoboros9 dataset.

Dolphin-2.6-Mistral-7B-dpo-laser: (shortened as dolphin-mistral-dpo10) is based on Mistal-
7B and fine-tuned on top of Dolphin DPO using Layer Selective Rank Reduction (LASER) [26].
It is a decoder-only model with 7 billion parameters, offering a context window of 4096 tokens.

Dolphin2.1-OpenOrca-7B: (shortened as dolphin-openorca11) is a model that blends Dolphin-
2.1-Mistral-7B and Mistral-7B-OpenOrca12 models. These models were merged using the “ties
merge” [27] technique, keeping the same number of training parameters and token context
window size, respectively 7 billion and 4096.

OpenChat-3.5-0106-Gemma: (shortened as openchat-gemma13) is a model trained on
openchat-3.5-010614 data using Conditioned Reinforcement Learning Fine-Tuning (C-RLFT)
framework [28, 29]. This model shares the same properties as openchat-3.5-0106, which is a
decoder-only model fine-tuned15 on top of Mistral-7B. It consists of 7 billion parameters with a
context window size of 8192 tokens.

SOLAR-10.7B-Instruct-v1.0: (shortened as solar16) is a 10.7 billion parameters model with a
Depth Up-Scaling (DUS) architecture, which includes architectural modifications and continued
pretraining [30].

Llama-3-8B-Instruct : (shortened as llama-317) is an auto-regressive model based on trans-
former architecture. The updated versions of this model utilises supervised fine-tuning (SFT)

6The code we employed for converting the IEEE Thesaurus in RDF is available here https://github.com/angelosalatino/
ieee-taxonomy-thesaurus-rdf.

7Dolphin-2.1-Mistral-7B - https://huggingface.co/TheBloke/dolphin-2.1-mistral-7B-GGUF
8Dolphin Dataset - https://huggingface.co/datasets/cognitivecomputations/dolphin
9Airoboros - https://huggingface.co/datasets/jondurbin/airoboros-2.1
10Dolphin-2.6-Mistral-7B-dpo-laser - https://huggingface.co/TheBloke/dolphin-2.6-mistral-7B-dpo-laser-GGUF
11Dolphin2.1-OpenOrca-7B - https://huggingface.co/TheBloke/Dolphin2.1-OpenOrca-7B-GGUF
12Mistral-7B-OpenOrca - https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
13OpenChat-3.5-0106-Gemma - https://huggingface.co/gguf/openchat-3.5-0106-gemma-GGUF
14openchat-3.5-0106 - https://huggingface.co/openchat/openchat-3.5-0106
15Huggingface - https://huggingface.co/openchat/openchat-3.5-1210/discussions/4#658288f1168803bdee13d6b3
16SOLAR-10.7B-Instruct-v1.0 - https://huggingface.co/TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF
17Llama-3-8B-Instruct - https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF
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and reinforcement learning with human feedback (RLHF). This model has 8 billion parameters
and a context length of 8k tokens [31].

All these models are openly available on Huggingface. To run them, we used Google Colabo-
ratory, equipped with Nvidia’s V100 and L4 GPU(s), and used KoboldCpp18, which is a software
tool to operate with LLMs. KoboldCpp is a standalone program built on llama.cpp that makes
models accessible via an API endpoint.

4. Results and Discussion

We assessed the performance of the LLMs using precision, recall, and F1-score. Table 1 reports
the results of the one-way strategy. All models excel in precision (>= 0.85) for the “same-as”
relationships, although most struggle with recall, except for the solar model (recall = 0.784).
The models also demonstrate high precision for “narrower” and high recall for “broader”. For
the “other” relationship, llama-3 and openchat-gemma exhibit high precision, dolphin-mistral
and dolphin-mistral-dpo exhibit high recall, whereas dolphin-openorca excels in both precision
and recall.

Notably, dolphin-openorca emerges as the top performer with an average precision of 0.780,
recall of 0.733, and F1-score of 0.724. Indeed, dolphin-openorca has high precision for “narrower”,
“same-as”, and “other”, and high recall for “broader” and “other”.

Table 1
Performance values of our experiments when employing the one-way strategy. BR are the performance
associated with broader relationships, NA to narrower, SA to same-as, OT to others, and AVG are average
performance considering the four types of relationships. In bold are the best performing models for a
given class.

MODEL PRECISION RECALL F1-SCORE
AVG BR NA SA OT AVG BR NA SA OT AVG BR NA SA OT

dolphin-mistral 0.676 0.613 0.736 0.901 0.455 0.599 0.652 0.412 0.508 0.824 0.599 0.632 0.528 0.650 0.586
dolphin-mistral-dpo 0.734 0.613 0.868 0.960 0.497 0.603 0.988 0.236 0.284 0.904 0.552 0.757 0.371 0.438 0.641
dolphin-openorca 0.780 0.612 0.811 0.960 0.737 0.733 0.952 0.496 0.576 0.908 0.724 0.745 0.615 0.720 0.814
openchat-gemma 0.679 0.396 0.471 1.000 0.849 0.523 0.968 0.296 0.268 0.560 0.506 0.562 0.364 0.423 0.675
solar 0.723 0.642 0.877 0.850 0.523 0.657 0.916 0.544 0.784 0.384 0.646 0.755 0.672 0.529 0.627
llama-3 0.715 0.560 0.446 1.000 0.853 0.582 0.732 0.808 0.256 0.532 0.568 0.634 0.575 0.408 0.655

The two-way strategy yielded dramatic improvements in average precision, recall, and F1-
score, as reported in Table 2. Specifically, the values of precision for “broader” and recall
for “narrower” are significantly higher, effectively addressing the weaknesses of the one-way
strategy. Once again, dolphin-openorca emerges as the top performer with an impressive
average F1-score of 0.853, due to consistently high scores across all relationship types: 0.841
(broader), 0.829 (narrower), 0.845 (same-as), and 0.897 (other).

Table 3 demonstrates that by exploiting the symmetric nature of the analysed semantic
relationships, the two-way strategy leads to a considerable improvement in F1-scores for most
models. This improvement is approximately 7% for solar and openchat-gemma, whereas for
the dolphin family models it exceeds 10%, with dolphin-mistral-dpo reaching a notable 24.3%

18KoboldCpp - https://github.com/LostRuins/koboldcpp
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Table 2
Performance values of our experiments when employing the one-way strategy. BR are the performance
associated with broader relationships, NA to narrower, SA to same-as, OT to others, and AVG are average
performance considering the four types of relationships. In bold are the best performing models for a
given class.

MODEL PRECISION RECALL F1-SCORE
AVG BR NA SA OT AVG BR NA SA OT AVG BR NA SA OT

dolphin-mistral 0.718 0.686 0.673 0.884 0.629 0.704 0.708 0.732 0.704 0.672 0.706 0.697 0.701 0.764 0.664
dolphin-mistral-dpo 0.834 0.759 0.764 0.968 0.844 0.808 0.956 0.932 0.476 0.868 0.795 0.846 0.840 0.638 0.856
dolphin-openorca 0.862 0.799 0.774 0.928 0.947 0.852 0.888 0.892 0.776 0.852 0.853 0.841 0.829 0.845 0.897
openchat-gemma 0.734 0.484 0.512 1.000 0.939 0.590 0.804 0.792 0.332 0.432 0.579 0.605 0.622 0.499 0.592
solar 0.723 0.731 0.753 0.784 0.623 0.715 0.836 0.816 0.508 0.700 0.710 0.780 0.783 0.617 0.659
llama-3 0.746 0.476 0.544 1.000 0.964 0.586 0.856 0.836 0.328 0.324 0.562 0.611 0.659 0.494 0.485

Table 3
Summary of the average F1-scores of the two strategies. In bold are the best performing models for a
given class.

MODEL Two-way strategy One-way strategy Diff. from one-way to two-way

dolphin-mistral 0.706 0.598 0.108
dolphin-mistral-dpo 0.794 0.551 0.243
dolphin-openorca 0.853 0.723 0.130
openchat—gemma 0.579 0.505 0.074
solar 0.709 0.645 0.064
llama-3 0.562 0.568 -0.006

increase. In contrast, llama-3 appears to be the only model not significantly impacted by the
choice of strategy.

5. Conclusions and Future Work

In this paper, we evaluated the ability of six LLMs in identifying the semantic relationships
between research concepts, comparing their performance to a gold standard of 1,000 rela-
tionships from the IEEE Thesaurus. Our results demonstrate that state-of-the-art models like
dolphin-openorca achieve excellent zero-shot reasoning performance (0.853 of F1-score).

Our future work will focus on several directions. Currently, we are expanding our analysis
to include additional models, such as non-quantised models, models with larger numbers of
parameters (e.g., LLaMa 3 70B), and proprietary models like ChatGPT 4.0 and the Claude
family. Furthermore, we plan to investigate fine-tuning some models (e.g., Google’s Gemma),
incorporate a reasoner into our pipeline to identify and resolve inconsistencies, and extend our
analysis to other scientific fields like Material Science, Medicine, and Physics.
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A. Prompt

For consistency we applied the same prompt across all the models. We engineered this prompt
through various refinements, to ensure optimal comprehension of the task and accurate re-
sponses.

Below is the template of our prompt, customised for each topic pair by substituting [TOPIC-A]
for the first topic and [TOPIC-B] for the second.

Classify the relationship between '[TOPIC-A]' and '[TOPIC-B]' by applying
the following relationship definitions:↪

1. '[TOPIC-A]' is-broader-than '[TOPIC-B]' if '[TOPIC-A]' is a
super-category of '[TOPIC-B]', that is '[TOPIC-B]' is a type, a branch,
or a specialized aspect of '[TOPIC-A]' or that '[TOPIC-B]' is a tool or
a methodology mostly used in the context of '[TOPIC-A]' (e.g., car
is-broader-than wheel).

↪

↪

↪

↪

2. '[TOPIC-A]' is-narrower-than '[TOPIC-B]' if '[TOPIC-A]' is a sub-category
of '[TOPIC-B]', that is '[TOPIC-A]' is a type, a branch, or a
specialized aspect of '[TOPIC-B]' or that '[TOPIC-A]' is a tool or a
methodology mostly used in the context of '[TOPIC-B]' (e.g., wheel
is-narrower-than car).

↪

↪

↪

↪

3. '[TOPIC-A]' is-same-as-than '[TOPIC-B]' if '[TOPIC-A]' and '[TOPIC-B]'
are synonymous terms denoting an identical concept (e.g., beautiful
is-same-as-than attractive), including when one is the plural form of
the other (e.g., cat is-same-as-than cats).

↪

↪

↪

4. '[TOPIC-A]' is-other-than '[TOPIC-B]' if '[TOPIC-A]' and '[TOPIC-B]'
either have no direct relationship or share a different kind of
relationship that does not fit into the other defined relationships.

↪

↪

Given the previous definitions, determine which one of the following
statements is correct:↪

1. '[TOPIC-A]' is-broader-than '[TOPIC-B]'
2. '[TOPIC-B]' is-narrower-than '[TOPIC-A]'
3. '[TOPIC-A]' is-narrower-than '[TOPIC-B]'
4. '[TOPIC-B]' is-broader-than '[TOPIC-A]'
5. '[TOPIC-A]' is-same-as-than '[TOPIC-B]'
6. '[TOPIC-A]' is-other-than '[TOPIC-B]'

Answer by only stating the correct statement and its number.
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