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Abstract
Prescriptive Process Monitoring (PresPM) leverages machine learning to optimize business process outcomes by
recommending real-time interventions. Two common approaches for recommending interventions in PresPM are
Causal Inference (CI) and Reinforcement Learning (RL). Despite progress in these fields, significant gaps remain,
including the lack of comprehensive comparisons of PresPM methods, the assumption of predefined intervention
points and dimensions, limited handling of complex interventions (e.g., sequential interventions), and insufficient
exploration of process interdependencies. This research proposes addressing these challenges by designing
a simulator that generates synthetic data mimicking complex business processes, enabling the evaluation of
approaches across diverse intervention types. Additionally, a novel causal decision point discovery algorithm
will be developed, tailored for PresPM in business settings. The study also aims to enhance CI and RL techniques
for safe and efficient handling of sequential interventions, decision timing, and process interdependencies. These
contributions will be validated using both synthetic and real-world datasets, advancing the field of PresPM by
providing novel methodologies for complex optimization problems.
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1. Introduction and background

AI-powered systems in Prescriptive Process Monitoring (PresPM) offer transformative opportunities for
businesses by enhancing decision-making. PresPM uses machine learning to analyze event log data
from business processes, uncovering relationships between process variables and targets like delivery
times, loan acceptance, patient recovery, product availability, or default rates. These systems try to
optimize outcomes by prescribing real-time interventions, such as machine maintenance, customer
calls, or loan application cancellations. Benefits include improved product and service quality, cost
savings, and increased staff satisfaction.

After a thorough review of the literature, it is evident that two approaches for recommending inter-
ventions are generally adopted: Causal Inference (CI) and Reinforcement Learning (RL). CI comprises
two primary subfields. The first, known as Causal Discovery (CD), focuses on identifying causal re-
lationships between variables. Its goal is to uncover the true causal structure of the data, typically
represented as a graph. An algorithm is said to solve the CD problem if it converges to the true structure
as the sample size increases. In Process Mining (PM), CD techniques are often used to pinpoint decision
points within a business process. The second subfield is concerned with estimating the effect of a
treatment, often denoted by the Individual Treatment Effect (ITE) in a particular data instance. Current
CI approaches in PresPM primarily concentrate on this second subfield, which can be divided into
two categories: direct and indirect CI. Direct CI entails training a machine learning model to directly
estimate the ITE of an intervention [1, 2, 3]. Indirect CI involves training models to predict the next
executed activities for each possible action in the intervention. The ITE is then inferred based on the
obtained outcomes of the activity predictions [4]. In general, CI approaches are originally designed
for non-sequential intervention optimization problems. Reinforcement Learning (RL) is the other
widely adopted approach in PresPM, where an RL agent learns an optimal policy by interacting with an
environment and receiving rewards. While RL has shown promising results in controlled settings [2, 5],
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real-world online training and implementation poses risks due to its exploratory nature. For example, a
bank would avoid using an RL agent for real-time loan approvals because the agent might make risky
or random decisions during its exploration phase.

Despite the establishment of these initial approaches, many limitations in PresPM remain. Firstly,
there is a lack of extensive comparisons of PresPM methodologies. To the best of my knowledge,
no study has thoroughly and comprehensively compared multiple approaches. Additionally, existing
methods are typically focused on a narrow range of intervention types and limited complexity, often
neglecting more complex optimization problems. As described in [2], interventions can be classified by
action width (scope of intervention actions) and action depth (timing and sequence of the intervention).
Most research handles interventions with binary action width and fixed action depth [1, 3, 6], though
some consider multi-class action width [4] or non-fixed action depth [2]. Sequential interventions
remain unexplored, and no approach has been tested or compared across multiple intervention types. A
second major issue concerns the inaccuracy in method evaluation. Current research predominantly
relies on real-life offline data [1, 3, 4, 6, 7], which can be incomplete due to data-gathering policies, such
as a bank’s loan application policy, thereby omitting parts of the optimization state space. Evaluating
a model’s policy on a case-by-case basis requires knowledge of the outcomes under the prescribed
actions, which is infeasible with only historical data as it lacks the counterfactual outcomes, i.e., the
outcome under an alternative action than the one recorded. Thirdly, most PresPM methodologies
assume predefined intervention points. The CD aspect of CI, essential for identifying these points, is
overlooked in PresPM, despite extensive research in the PM and CI fields [8, 9, 10, 11]. Understanding
data relations in a PresPM system is crucial for identifying interventions and their dimensions, and
selecting appropriate prescriptive techniques. The last research gap concerns process interdependencies.
Real-world process executions frequently exhibit interdependencies, where one execution influences
another. For instance, in a manufacturing facility, if one production process requires a large portion of
the available machinery, it can limit the efficiency of other processes occurring simultaneously. Despite
the prevalence of these relationships, a limited number of PresPM papers address them [3, 5].

2. Research Objectives and Methodology

To address the identified gaps in the research section, I propose the following research objectives:

2.1. Design and implement a simulator for PresPM

Current PresPM research lacks comprehensive comparisons because it omits complex interventions
and a wide range of evaluation perspectives. To address this, I propose a synthetic data generator in
Python. Building on [2], the generator will produce data mimicking a loan application process in a
bank. It will be able to calculate target variables for every possible action of an intervention, addressing
the limitations of historical offline data that lack counterfactual outcomes. The generator will support
comparisons across different intervention types and complexities, expanding PresPM research to more
complex optimization problems (i.e., intervention sequences). It will also facilitate experimentation
within each intervention type by varying generating parameters. To validate the generator, I will
implement and compare both CI and RL approaches, along with benchmarking existing methods. This
will allow me to determine whether the simulator can effectively and accurately highlight the differences
between methods for varying levels of complexity. It will mark the first time a sequential intervention is
addressed and the first comprehensive comparison of existing PresPM implementations. A key challenge
will be balancing the need to maintain variability and complexity similar to real-life event logs, while
also keeping the simulated loan application process simple enough for easy interpretation and method
comparison. This balance may involve trade-offs. Although applying methods to simulated data will
likely only approximate their performance on real-life logs, the simulator’s ability to accurately evaluate
method performance for different intervention decision problems makes it a valuable tool for PresPM
research.



Although simulators in process mining have seen significant advancements in research [12, 13, 14],
our simulator will be uniquely designed for testing and developing PresPM approaches. It will focus on
key aspects such as (multiple) intervention types, precise evaluation, and the flexibility to customize
parameters for experimentation. Additionally, it will support the implementation of both online methods
(e.g., RL) and offline methods (e.g., CI), enabling the generation of both real-time environments and
offline datasets.

2.2. Develop a causal decision point discovery algorithm for Prescriptive Process
Monitoring in business settings

Current prescriptive approaches often assume predetermined intervention points and dimensions,
lacking a systematic methodology for identification. To address this, I will explore and tailor CD methods
for PresPM in business settings. One research avenue is the exploration of various PM techniques, such
as methods that incorporate structural equation models as described in [8], upper-bound causal graphs
as discussed in [9], uplift trees as researched in [15], and the P-MInD framework [11]. To adapt these
techniques for use with PresPM, it is essential to enhance them by incorporating the identification of
intervention point dimensions (action width and action depth). These dimensions reflect the complexity
of the problem, and understanding them is essential for selecting the most appropriate optimization
method. I will additionally investigate methods to incorporate expert knowledge to improve CD. The
evaluation will include two components: synthetic data, where the true causal structure is known, and
real-world datasets to assess practical applicability.

2.3. Develop novel PresPM algorithms, enhancing CI and RL

Current PresPM methodologies overlook complex intervention problems, such as sequential optimiza-
tion and process interdependencies. I aim to adapt PresPM approaches to address these advanced
Machine Learning tasks.

First, I aim to extend CI to handle intricate sequential tasks, considering challenges like decision
timing. This includes exploring optimal threshold optimization algorithms [2] and sequence prediction
techniques for prescribing a series of decisions. Current research in CI beyond PresPM includes methods
for sequential decision-making, such as those proposed by [16]. However, these approaches are still
in their early stages and need to be adapted to handle more complex business processes, which often
feature multiple execution paths, loops, and parallel activities. To address process interdependencies, I
will explore the integration of CI with enhanced heuristics [3] and Object-Centric PM to analyze the
behavior of individual objects [17]. I will investigate whether an object-centric perspective can improve
the performance of PresPM methods.

Additionally, I will adapt RL to these complex optimization challenges, e.g., intervention sequences
and process interdependencies, by improving its training efficiency. I will limit the RL action space to
decision points identified by my CD techniques and explore efficient sampling methods [18]. The aim is to
evaluate the suitability and effectiveness of these techniques for optimizing complex business processes.
Incorporating heuristics in RL will also be investigated to manage the increased search space. To ensure
real-world applicability of these adaptations, I will mitigate risks in online RL training by exploring
offline RL techniques. These include using process discovery to construct training environments [7],
constraining RL to known state spaces using nearest neighbor approaches, and leveraging predictive
models for anticipating next states [19]. The objective is to determine which techniques for building
offline environments are best suited to different types of business process data and optimization
challenges. I will also identify low-risk application domains and implement predefined rules to prevent
excessively risky actions by the RL agent.

The novel methods will first be evaluated using the previously developed simulator that can generate
all potential outcomes of a case, allowing for a thorough and accurate assessment. Afterward, the
practical applicability of these methods will be validated using real-world datasets, ideally across various
diverse business settings.
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