
Entropia: Measuring Log Representativeness and
Generalization of Discovered Process Models
Anandi Karunaratne1, Artem Polyvyanyy1 and Alistair Moffat1

1The University of Melbourne, Victoria 3010, Australia

Abstract
This paper extends Entropia, a command-line tool for performing conformance checking between
process models and corresponding event logs. The extension introduces functionalities for estimating the
generalization of a process model presented as a directly-follows graph using the bootstrap generalization
method and evaluating the representativeness of an event log.

Keywords
process mining, conformance checking, generalization, representativeness

Metadata description Value

Tool name Entropia
Current version 1.7
Legal code license LGPL-3.0
Languages, tools and services used JDK 1.8, Apache Maven
Supported operating environment Any platform supporting JDK 1.8 and Apache Maven
Download/Demo URL https://github.com/jbpt/codebase
Documentation URL https://github.com/jbpt/codebase/blob/master/jbpt-pm/entropia/guide.pdf
Source code repository https://github.com/jbpt/codebase
Screencast video https://youtu.be/g6n0w5UrT8A

1. Introduction

Process mining is a field focused on analyzing and improving business processes based on event
logs recorded during the executions of these processes. It involves three major areas: discovery,
conformance checking, and enhancement [1]. Conformance checking studies ways to compare
the behavior recorded in an event log with that described by a normative process model [2].
While precision and recall are widely used quality measures in process mining, generalization
represents another important aspect of conformance assessment [3], quantifying the likelihood
that the model describes future process executions. Given the need to account for unseen
behavior not present in the event log and the fact that real-world systems that generate event
logs are often unknown, few generalization measures have been proposed, and tool support is
limited.

ICPM 2024 Tool Demonstration Track, October 14-18, 2024, Kongens Lyngby, Denmark
$ anandik@student.unimelb.edu.au (A. Karunaratne); artem.polyvyanyy@unimelb.edu.au (A. Polyvyanyy);
ammoffat@unimelb.edu.au (A. Moffat)
� 0009-0008-5250-3888 (A. Karunaratne); 0000-0002-7672-1643 (A. Polyvyanyy); 0000-0002-6638-0232 (A. Moffat)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/jbpt/codebase
https://github.com/jbpt/codebase/blob/master/jbpt-pm/entropia/guide.pdf
https://github.com/jbpt/codebase
https://youtu.be/g6n0w5UrT8A
mailto:anandik@student.unimelb.edu.au
mailto:artem.polyvyanyy@unimelb.edu.au
mailto:ammoffat@unimelb.edu.au
https://orcid.org/0009-0008-5250-3888
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-6638-0232
https://creativecommons.org/licenses/by/4.0


Entropia [4] is a family of command-line conformance checking tools. These tools are publicly
available and can compute precision and recall between an event log and a model, two logs,
or two models. In this paper, we extend the capabilities of Entropia. The extension is twofold.
First, we add a tool for computing bootstrap generalization of a process model discovered from
an event log [5]. Second, we introduce functionalities for calculating the representativeness of
a given event log [6, 7].

2. Entropia

This section provides an overview of the Entropia tool [4], focusing on its usage and maturity.

2.1. Overview

Entropia implements functionality for quantifying precision and recall between models and
event logs. The approach is based on comparing relevant behavior (rel), e.g., behavior recorded
in an event log, and retrieved behavior (ret), e.g., behavior described in a process model
discovered from the event log. Precision compares the magnitude of common behavior to that
of ret, while recall compares it to rel. These magnitudes are quantified using techniques
utilizing different notions of entropy.

2.2. Usage

Entropia tool version 1.7 (as of August 2024) can be invoked using the following command:
java -jar jbpt-pm-entropia-1.7.jar <options>

Table 1
Key CLI options of Entropia.

Option (full) Option Parameter Description
--help -h print help message
--silent -s run the tool in the silent mode
--version -v get the version of the tool
--relevant -rel <path> model that describes relevant traces
--retrieved -ret <path> model that describes retrieved traces

Entropia’s key command-line interface (CLI) options are listed in Table 1. Option -h displays a
help message, while -v shows the tool’s version. The -s option enables silent mode, suppressing
all but the final result output. Central to the tool’s purpose are the -rel and -ret options. They
are used to specify the file paths for the models that describe relevant and retrieved behaviors,
respectively, which are used to calculate conformance.

Beyond these basic options, the tool includes options for selecting specific conformance
measures to apply to the input data, as well as parameters for fine-tuning the configuration of
these measures. The measures, their capabilities, and example usage are presented in [4].

Entropia supports multiple input formats, including standard formats like eXtensible Event
Stream (XES) [8] and Petri Net Markup Language (PNML)[9], and specialized formats specific
to Entropia for capturing stochastic Petri Nets (sPNMLs), Directly-Follows Graphs (DFGs), and
Stochastic Deterministic Finite Automata (SDFAs).



2.3. Maturity

The development of Entropia began in August 2017 with an entropy-based method for assessing
precision and recall [10]. This tool is integrated into the jBPT library [11], a collection of
open-source business process technologies that was initiated in January 2009.

The approach for evaluating precision and recall presented in [10] treats compared models
and event logs as sets of traces, where shared behavior is identified only if the models describe
identical traces. The quantification of behavior captured by each model and their shared behavior
is determined using topological entropy [12] of the trace collections. Expanding on this work,
a partial match approach [13] has been proposed, considering all subtraces within the traces
for precision and recall calculations. Shared behavior is defined as all sequences of actions
that are subtraces in both collections, measuring all common subsequences of actions in the
models being compared. Kalenkova and Polyvyanyy [14] introduced a new approach, which
allows users to specify the maximum number of actions that can be skipped within a trace when
identifying shared subtraces, making it more flexible than the two previous approaches [10, 13]
which represent two extremes of excluding subtraces entirely and considering all possible
subtraces.

Extending the usage of entropy to stochastic process mining, which considers both control
flow and behavior frequency, Leemans and Polyvyanyy [15] offer measures of stochastic recall
and precision, by converting the log and model into stochastic deterministic finite automata
and construct their conjunction. Additionally, the entropic relevance measure [16] calculates a
stochastic conformance measure based on the average number of bits needed to compress a
trace from the log using the model’s encoded likelihood of traces.

3. Bootstrap Generalization

Bootstrap generalization [5] presents a framework for estimating the generalization of a process
model discovered from an event log generated by an unknown system. This approach uses
bootstrapping techniques from computational statistics. Building upon this theoretical foun-
dation, we introduce a tool designed to compute this generalization measure. The following
sections describe its usage and examples.

3.1. Usage

To calculate the bootstrap generalization, -bgen (long option --bootstrap-gen) should be
invoked with two primary inputs: the process model for which generalization is to be estimated
and an event log that serves as a sample of the system behavior. In this framework, the event
log represents the relevant behavior, while the model embodies the behavior “retrieved” from
this log.

The event log should be provided in the XES format [8] using the -rel option of the tool.
The model file should be specified using the -ret option. Due to the characteristics of the
log sampling with breeding method used to estimate system behavior [5], the current imple-
mentation restricts the model representation to DFGs, which must adhere to a specific JSON1

1https://www.json.org/json-en.html



file format [16], as detailed in Listing 1. This structured format comprises two main elements:
nodes and arcs. Each node in the DFG is characterized by a string label representing the activity
name, a numerical frequency indicating execution frequencies of the activities, and a unique
numerical identifier. Arcs, which represent the connections between nodes, are defined by their
source and target nodes (both specified as numbers) and the frequency of the arc’s occurrence.
To represent the process boundaries, the start and end nodes should be explicitly labeled as
“INPUT” and “OUTPUT” respectively.

3.2. Configuration

INPUT A B C OUTPUT

30 30

30 30

18

44

30 30

31 30

Figure 1: Example DFG.

{ "nodes": [
{ "id": 1, "label": "INPUT", "freq": 30 },
{ "id": 2, "label": "A", "freq": 30 },
{ "id": 3, "label": "B", "freq": 44 },
{ "id": 4, "label": "C", "freq": 31 },
{ "id": 5, "label": "OUTPUT", "freq": 30 }

],
"arcs": [
{ "from": 1, "to": 2, "freq": 30 },
{ "from": 2, "to": 3, "freq": 30 },
{ "from": 3, "to": 3, "freq": 18 },
{ "from": 3, "to": 4, "freq": 30 },
{ "from": 4, "to": 5, "freq": 30 }

]
}

Listing 1: Corresponding JSON
representation.

New options are introduced to support bootstrap generaliza-
tion estimation, including sample size (n); number of sam-
ples (m); number of log generations (g), crossover subtrace
length (k), and the breeding probability (p). These param-
eters, detailed in [5], are optional for tool usage, allowing to
compute bootstrap generalization without in-depth knowl-
edge of bootstrapping or its parameters. To allow this, we
have defined default values, derived from an experiment2

consumed 2.5 CPU years, specified in the table 2.
In addition to the parameters presented in [5], we intro-

duce a new threshold parameter for confidence interval of
bootstrap sample values (ep), which serves as a termina-
tion criterion for bootstrapping. The bootstrapping process
calculates the 95% confidence interval for precision and re-
call values of the bootstrap samples and the model. The computation terminates when this
confidence interval value falls below the specified threshold, with a default value set at 0.01.

Termination of the bootstrapping process depends on the parameters provided. With both
m and ep, the process terminates when either the sample count reaches m or the confidence
interval of the samples falls below ep. If only ep is provided, it runs until the confidence interval
is lower than the specified ep. If neither m nor ep is provided, the default ep of 0.01 is used.

3.3. Examples

This section provides example usages of the -bgen command.
To calculate the generalization of a DFG with default configurations, use:

-bgen -rel=/path/to/log.xes -ret=/path/to/model.json

If customization of the process is required, the configuration can be adjusted, for example:
-bgen -rel=/path/to/log.xes -ret=/path/to/model.json -m=1000 -ep=0.005

Here, bootstrapping continues until 1,000 samples are reached, unless the confidence interval for
both precision and recall of the bootstrap samples falls below 0.005, triggering early termination.

Another configuration might be as follows:
-bgen -rel=/path/to/log.xes -ret=/path/to/model.json -n=1000 -p=0.5 -m=100

This configuration generates 100 bootstrap samples, each containing 1,000 traces, with new
traces being generated 50% of the time, and existing traces used the remaining 50%.
2Refer to https://doi.org/10.26188/26410486 for the data.

https://doi.org/10.26188/26410486


Table 2
CLI options for bootstrap generalization.

Option (full) Option Parameter Default value
--bootstrap-gen -bgen
--sample-size -n <sample-size> 8 × log size
--num-of-samples -m <number-of-samples>
--num-of-generations -g <number-of-generations> 0.5 × log size
--subtrace-length -k <subtrace-length> 2
--breeding-probability -p <breeding-probability> 1.0
--epsilon -ep <threshold> 0.01

4. Event Log Representativeness

The other addition to Entropia is event log representativeness measures. These measures
allow users to compute representativeness in terms of completeness, coverage, [7] and Log
Representativeness Approximation (LRA) [6]. This new feature enables users to assess the
representativeness of a log with respect to activities, directly-follows relations, and traces
present in the log.

4.1. Usage

The log representativeness analysis is invoked via the -l option (or its long form –log) followed
by the path to the log file in XES format [8]. Users can specify particular representativeness
aspects such as completeness (-com), coverage (-cov), or LRA (-lra). Furthermore, the analysis
can be focused on specific event data aspects: activities (-act), directly-follows relations (-dfr),
or traces (-tr). A summary of these options is presented in table 3.

Table 3
CLI options for log representativeness.

Option (full) Option Parameter Description
--log -l <path> invoke representativeness analysis of a log
--completeness -com calculate completeness of the log
--coverage -cov calculate coverage of the log
--log-rep-approx -lra calculate LRA of the log
--activity -act conduct activity-based analysis
--df-relation -dfr conduct DF-relation-based analysis
--trace -tr conduct trace-based analysis

4.2. Examples

To compute the completeness and coverage of activities in an event log:
-l=/path/to/log.xes -com -cov -act

To compute the LRA specifically for traces in an event log:
-l=/path/to/log.xes -lra -tr

With no options, completeness, coverage, and LRA for all event data aspects are calculated:
-l=/path/to/log.xes



5. Conclusion

The extension of Entropia introduces new functionalities for estimating process model gener-
alization and evaluating event log representativeness. These additions complement the tool’s
existing entropy-based conformance checking measures, enhancing its analytical capabilities.

References

[1] W. M. P. van der Aalst, et al., Process mining manifesto, in: BPM Workshops, Springer,
2012, pp. 169–194.

[2] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking: Relating
Processes and Models, Springer, 2018.

[3] W. M. P. van der Aalst, Relating process models and event logs—21 conformance proposi-
tions, in: ATAED, CEUR-WS.org, 2018, pp. 56–74.

[4] A. Polyvyanyy, et al., Entropia: A family of entropy-based conformance checking measures
for process mining, in: ICPM Doc. cons. & tool demo. trck., CEUR-WS.org, 2020, pp. 39–42.

[5] A. Polyvyanyy, A. Moffat, L. García-Bañuelos, Bootstrapping generalization of process
models discovered from event data, in: CAiSE, 2022, pp. 36–54.

[6] A. Karunaratne, A. Polyvyanyy, A. Moffat, The role of log representativeness in estimating
generalization in process mining, in: ICPM, IEEE, 2024. to appear.

[7] M. Kabierski, M. Richter, M. Weidlich, Addressing the log representativeness problem
using species discovery, in: ICPM, 2023, pp. 65–72.

[8] IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event
logs and event streams, IEEE Std. 1849-2016 (2016) 1–50.

[9] J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post,
C. Stehno, M. Weber, The petri net markup language: Concepts, technology, and tools, in:
ICATPN, Springer, 2003, pp. 483–505.

[10] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, J. Mendling, Monotone precision and
recall measures for comparing executions and specifications of dynamic systems, ACM
Trans. Soft. Eng. and Meth. 29 (2020) 17:1–17:41.

[11] A. Polyvyanyy, M. Weidlich, Towards a compendium of process technologies - the jbpt
library for process model analysis, in: CAiSE Forum, CEUR-WS.org, 2013, pp. 106–113.

[12] T. Ceccherini-Silberstein, A. Machi, F. Scarabotti, On the entropy of regular languages,
Theor. Comput. Sci. 307 (2003) 93–102.

[13] A. Polyvyanyy, A. A. Kalenkova, Monotone conformance checking for partially matching
designed and observed processes, in: ICPM, IEEE, 2019, pp. 81–88.

[14] A. A. Kalenkova, A. Polyvyanyy, A spectrum of entropy-based precision and recall
measurements between partially matching designed and observed processes, in: ICSOC,
Springer, 2020, pp. 337–354.

[15] S. J. J. Leemans, A. Polyvyanyy, Stochastic-aware conformance checking: An entropy-based
approach, in: CAiSE, Springer, 2020, pp. 217–233.

[16] A. Polyvyanyy, A. Moffat, L. García-Bañuelos, An entropic relevance measure for stochastic
conformance checking in process mining, in: ICPM, IEEE, 2020, pp. 97–104.


	1 Introduction
	2 Entropia
	2.1 Overview
	2.2 Usage
	2.3 Maturity

	3 Bootstrap Generalization
	3.1 Usage
	3.2 Configuration
	3.3 Examples

	4 Event Log Representativeness
	4.1 Usage
	4.2 Examples

	5 Conclusion

