
DCR4Py: A PM4Py Library Extension for Declarative
Process Mining in Python
Simon V.H. Hermansen1, Ragnar Jónsson1, Jonas L. Kjeldsen1, Tijs Slaats2,
Vlad Paul Cosma2 and Hugo A. López1

1Technical University of Denmark, Richard Petersens Plads, 321, 2800 Kgs. Lyngby, Denmark
2University of Copenhagen, Copenhagen, Denmark

Abstract
DCR4Py is the first open-source library to offer a broad range of features and up-to-date algorithms
for Dynamic Condition Response Graphs. It extends the popular PM4Py library with a new declarative
language and matches PM4Py’s GPL3 license, design, installation steps, maturity, and performance. Our
key contribution consists of an open-source implementation in Python of all existing discovery and
conformance-checking algorithms for DCR graphs, as well as import and export capabilities, visualization,
and conversion, all in a single, well-documented, open-access, easy-to-use library that closely follows
the research literature definitions and nomenclature.

Keywords
DCR Graphs, Declarative process mining, PM4Py, Open-source software

Metadata description Value

Tool name DCR4Py
Current version 1.0 (forked from PM4Py 2.7.11)
Legal code license GPLv3
Languages, tools and services used Python 3.1X, GraphViz 0.20
Supported operating environment Microsoft Windows, GNU/Linux
Source code repository https://github.com/paul-cvp/pm4py-dcr/tree/feature/dcr_in_pm4py_revised
Download/Demo URL (Source code repository)/notebooks/dcr_tutorial.ipynb
Documentation URL https://paul-cvp.github.io/dcr4pydocs/
Screencast video https://youtu.be/fGZw2X-Wfc0

1. Introduction

Process mining [1] aims to optimize business processes by using event data to discover and
analyze process models. As processes become more digitized, they include not only structured
production applications but also flexible knowledge-intensive fields [2], diversifying their event
data. Therefore it is not enough to analyze only the imperative, procedural, perspective of your
business process, one needs to also consider the declarative, rule-based, perspective. Declarative

ICPM 2024 Tool Demonstration Track, October 14-18, 2024, Kongens Lyngby, Denmark
Envelope-Open slaats@di.ku.dk (T. Slaats); vco@di.ku.dk (V. P. Cosma); hulo@dtu.dk (H. A. López)
GLOBE http://lopezacosta.net (H. A. López)
Orcid 0000-0001-6244-6970 (T. Slaats); 0000-0001-8022-6402 (V. P. Cosma); 0000-0001-5162-7936 (H. A. López)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/paul-cvp/pm4py-dcr/tree/feature/dcr_in_pm4py_revised
https://github.com/paul-cvp/pm4py-dcr/blob/feature/dcr_in_pm4py_revised/notebooks/dcr_tutorial.ipynb
https://paul-cvp.github.io/dcr4pydocs/
https://youtu.be/fGZw2X-Wfc0
mailto:slaats@di.ku.dk
mailto:vco@di.ku.dk
mailto:hulo@dtu.dk
http://lopezacosta.net
https://orcid.org/0000-0001-6244-6970
https://orcid.org/0000-0001-8022-6402
https://orcid.org/0000-0001-5162-7936
https://creativecommons.org/licenses/by/4.0


process models can capture unstructured processes more concisely than imperative models
and have been proven to capture better process insights for knowledge-intensive processes [2],
achieving greater levels of optimization via process mining. Process mining tools1 aim to easily
onboard practitioners and researchers, increase the dissemination of new ideas, and speed up the
adoption of emerging techniques. Furthermore, as process mining positions itself as the bridge
between data science and process science it also increases demand for tool interoperability
concerning process modeling, verification, machine learning, and statistical analysis.

Dynamic Condition Response (DCR) Graphs [3] are a relatively new modeling notation that
belongs to the declarative paradigm. From its core definition, DCR Graphs have evolved to
include six relation types as well as hierarchy, through nestings [4], and to capture other process
dimensions, such as time [5] and roles [3]. In addition, recent work on process discovery [6, 4],
conformance checking [7], and transformation to Petri Nets [8] has made the DCR notation
practically interesting. However, tool support for DCR either covers broad functionality with
closed source software [9] or provides open source code showcasing narrow functionality coded
in a variety of programming languages and lacking continuous maintenance and support.
This paper proposes DCR4Py as the first broad functionality open source Python library

developed as a seamless extension to the popular PM4Py (ProcessMining for Python) project [10]
using the same code structure and licenses. DCR4Py is an up-to-date implementation of DCR
Graphs complete with process discovery, rule and alignment-based conformance checking,
and a transformation to Petri Nets. Additional functionality includes execution semantics,
visualization, and import/export capabilities via XML files compatible with both the DCR
Solutions Portal [9] and the DCR-js modeling tool [11]. By extending a mature well-established
library we enable users already familiar with PM4Py to get started with process mining with
DCR graphs. As the library is open source it encourages the community to develop new
extensions and algorithms for DCR Graphs. Being an extension of PM4Py, it allows for the
reuse of the same installation requirements, automatic documentation generation, and testing.

RelatedworkTool support for declarative notations already exists in PM4Py for DECLARE [2,
12] and Log-Skeletons [13]. In addition DECLARE benefits from dedicated software which
exposes a wide range of features, such as RUM [12] and Declare4Py [14]. PromTools [15] offers
a no-code alternative to PM4Py where plug-ins for DECLARE [16] and Log-Skeletons [13]
exist. Unlike DECLARE, DCR Graphs have been adopted commercially through the DCR
Portal [9]. However, while freely available for academic use, the portal is closed source. Some
open-source implementations for process mining techniques in DCR Graphs exists [6, 7, 4, 8],
but each repository is narrow in scope, and not all are actively maintained. For example, the
original DisCoveR repository written in Java lacks the newer extensions for nestings and roles.
DCR-js [11] allows users to model DCR Graphs.

The remainder of the paper is structured as follows: Section 2 briefly defines DCR Graphs. In
Section 3 we present the new features DCR4Py. Next in Section 4 we discuss the tool’s maturity.
We conclude in Section 5.

1processmining.org/software.html

processmining.org/software.html


Figure 1: DCR graph visualization in DCR4Py

2. What is a DCR graph?

The DCR Graphs [3] modeling notation represents events as nodes and relations as edges
in a directed graph. Events can be atomic, or part of a hierarchy (nestings or subprocesses),
and can be associated with roles. Events have a notion of state through a three-tuple binary
marking (included, executed, pending). Directed relations either constrain or affect events in
the direction of the edge. The condition (→•) and milestone (→♦) relations between two events
𝐴 and 𝐵 limit the execution of 𝐵 based on the marking of 𝐴. The include (→+), exclude (→%),
response (•→) and no-response (•→×) effect relations change the marking of 𝐵 after the execution
of 𝐴. An event is enabled if it is included, all conditions have been executed and all milestones
are not pending. The effect of executing an enabled event is that its marking becomes executed
and all effect relations from that event apply their changes to the marking of the target event.
Finally, we say that a DCR Graph is accepting when none of its events are both included and

pending. The condition and response relations can also be timed with delays on conditions (
𝑘
→•)

and deadlines on responses (
𝑑
•→). Figure 1 shows a prototypical DCR graph.

Event logs are defined as a set of traces and a trace is a finite sequence of events. A trace is a
run of a DCR Graph if only enabled events are executed, and at the end of the trace, the DCR
Graph is accepting. If all log traces are accepting then the DCR Graph perfectly fits the log.

3. Overview of DCR4Py Features

A brief overview of the library can be seen in Figure 2. DCR4Py supports the main process
mining tasks of conformance checking and process discovery for DCR Graphs. They include im-
plementations of alignment [7], a new rule-checking algorithm, and the DisCoveR algorithm [6].
The DisCoveR algorithm is extended with the mining of nestings [4], roles, time [5], and initially
pending events. The latter 3 are new contributions. The objects component exposes the
existing conversion of DCR Graphs to Petri Nets [8] and new Python object definitions of DCR
Graphs, execution semantics, and import/export capabilities. Finally visualizations for DCR
Graphs are implemented through reuse of the existing PM4Py functionality.
DCR Graph class variants. The core DCR Graph class, based on the original definition

from [3], consists of events, markings, and the include, exclude, condition, and response relations.



Figure 2: DCR4Py features and dependencies in PM4Py (classes in bold are PM4Py classes)

Four main variants inherit from the core object. The Distributed variant covers the distributed
definition [3], the Extended variant covers new relation extensions [17], the Hierarchical one
covers nestings [4], and the Timed variant covers the time perspective [5]. Execution semantics
are also extended for the Distributed, Extended, and Timed DCR Graphs classes. Hierarchical
DCR Graphs map to Extended DCR Graphs, therefore do not have execution semantics.

Process Discovery. Process discovery for core DCR Graphs in DCR4Py consists of the Dis-
CoveR algorithm [6]. The algorithm is called via the pm4py.discover_dcr method. Additional
post-processing can be called using the post_process parameter. Roles, pending, and time
enhance the richness of the discovered graphs, while nestings improve their simplicity. Roles
are mined by associating events with the org:resource attribute of event logs. Pending events
are mined to discover graphs with a non-accepting initial marking. Time is mined as delays and
deadlines, according to the execution semantics of conditions and responses respectively.
Rule and Alignment-based Conformance checking. DCR4Py implements both rule-

based and alignment-based conformance [7]. Rule-based conformance checking for DCR Graphs
performs a replay of traces in a given event log. The algorithm utilizes the execution semantics
to determine deviations. If any deviations occur, the algorithm notes the deviation and what
caused it. The implementation utilizes a handleChecker, that determines the kind of DCR
Graphs, to allow for correct notation of deviations, and currently supports core and distributed
DCR Graphs. The algorithm is called via the pm4py.conformance_dcr method. DCR4Py also
features the optimal alignment algorithm proposed in [7]. Alignment-based conformance
checking directly connects deviations between the expected process flow, as per the DCR Graph,
and the actual execution, as recorded in the logs. The TraceAlignment class aligns each trace
in the log with the paths in the DCR graph. The computation of the alignment is performed by
the Alignment class. The Performance class, calculates fitness as one minus the ratio of the
optimal alignment cost to the worst-case alignment cost. The alignment algorithm is called via
the pm4py.optimal_alignment_dcr method.

Conversion, visualization, import/export. The conversion to Petri Nets [8] is exposed via
the pmpy.convert_to_petri_net functionwhen passing a DCRGraph object. Visualizations of
DCRGraphs, as shown in fig. 1, are provided via the pm4py.view_dcr and pm4py.save_vis_dcr
functions. Finally, DCR4Py provides import/export capabilities for DCR Graphs to maintain
interoperability with the existing DCR-js [11] and DCR Portal [9] modeling tools. Detailed
instructions can be found in the notebook dcr_tutorial.



(a) Discovery (b) Rule conformance (c) Alignment conformance

Figure 3: Runtime performance (log scale) of DCR4Py compared to existing PM4Py algorithms.

4. Maturity of the tool

Benchmarks. We compare the runtime of DCR4Py against the existing DECLARE, Log
Skeletons, Petri Net, and DFG implementations in PM4Py. We selected logs in Knowledge
Intensive Processes, including Sepsis [18], Road Traffic [19], BPIC13i [20] and the Dreyers
Fond [21]. For process discovery, we see in fig. 3a that DCR4Py is the fastest overall, with
DECLARE being the slowest on Road traffic. For conformance checking we take 10% of the
log to discover a model and run the full log through the checker. For the rule checker, we see
in fig. 3b that DCR4Py is, on average the slowest, and slowest overall on the Road traffic log. A
similar pattern is seen in fig. 3c for the alignment checker.

Installation, testability, and reuse. DCR4Py uses the same installation steps and require-
ments as PM4Py and unit tests and regression tests guarantee the testability of the new features
and the integrity of the existing functionality. Automatic documentation generation is supported
through the reuse of existing PM4Py functionality. As an academic tool, subsets of DCR4Py
were successfully used to showcase new research, student projects, and in the classroom setting.

5. Conclusion

We introduced DCR4Py, an extension of the process mining library PM4Py supporting process
discovery, conformance-checking, visualization, conversion and I/O capabilities for DCR Graphs.
By extending PM4Py’s API we lower the entry barrier for declarative process mining for
researchers and practitioners. In future work, we will look at adding subprocesses, at multi-
threaded conformance checking to improve performance and object-centric mining of DCR
Graphs.

Acknowledgments

We thank Axel Christfort and Thomas Hildebrandt for their contribution to the codebase and
the underlying theory. This work was supported by the research grant “Center for Digital
CompliancE (DICE)” (VIL57420) from VILLUM FONDEN.

References

[1] W. van der Aalst, Process Mining, 2016.



[2] W. M. van Der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Balancing between
flexibility and support, Computer Science-Research and Development 23 (2009) 99–113.

[3] T. Hildebrandt, R. Mukkamala, Declarative event-based workflow as distributed dynamic
condition response graphs, EPTCS, 2010, pp. 59–73.

[4] V. P. Cosma, A. K. F. Christfort, T. T. Hildebrandt, X. Lu, H. A. Reijers, T. Slaats, Improving
simplicity by discovering nested groups in declarative models, in: CAISE, 2024, pp. 440–455.

[5] T. Hildebrandt, R. R. Mukkamala, T. Slaats, F. Zanitti, Contracts for cross-organizational
workflows as timed dynamic condition response graphs, JLAMP 82 (2013) 164–185.

[6] C. O. Back, T. Slaats, T. T. Hildebrandt, M. Marquard, Discover: Accurate & efficient
discovery of declarative process models, 2020. arXiv:2005.10085.

[7] A. K. F. Christfort, T. Slaats, Efficient optimal alignment between dynamic condition
response graphs and traces, in: Business Process Management, 2023, pp. 3–19.

[8] V. P. Cosma, T. T. Hildebrandt, T. Slaats, Transforming dynamic condition response graphs
to safe petri nets, in: Application and Theory of Petri Nets and Concurrency, 2023.

[9] M. Marquard, M. Shahzad, T. Slaats, Web-based modelling and collaborative simulation of
declarative processes, in: BPM, 2015, pp. 209–225.

[10] A. Berti, S. van Zelst, D. Schuster, Pm4py: A process mining library for python, Software
Impacts 17 (2023) 100556.

[11] L. Tamo, A. Abbad-Andaloussi, D. Trinh, H. A. López, An open-source modeling editor for
declarative process models, in: CoopIS Demos, 2023.

[12] A. Alman, I. Donadello, F. M. Maggi, M. Montali, Declarative process mining for software
processes: The rum toolkit and the declare4py python library, in: PROFES, Springer, 2023,
pp. 13–19.

[13] H. Verbeek, The log skeleton visualizer in prom 6.9: the winning contribution to the
process discovery contest 2019, International Journal on STTT 24 (2022) 549–561.

[14] I. Donadello, F. Riva, F. M. Maggi, A. Shikhizada, Declare4py: A python library for
declarative process mining, in: CEUR Workshop Proceedings, 2022, pp. 117–121.

[15] B. F. Van Dongen, A. K. A. de Medeiros, H. M. Verbeek, A. Weijters, W. M. van Der Aalst,
The prom framework: A new era in process mining tool support, in: ICATPN, 2005, pp.
444–454.

[16] F. M. Maggi, Declarative process mining with the declare component of prom., BPM
(Demos) 1021 (2013).

[17] T. T. Hildebrandt, H. Normann, M. Marquard, S. Debois, T. Slaats, Decision modelling in
timed dynamic condition response graphs with data, in: BPM Workshops, Springer, 2021,
pp. 362–374.

[18] F. Mannhardt, et al., Sepsis cases-event log, Eindhoven university of technology 10 (2016).
[19] M. De Leoni, F. Mannhardt, Road traffic fine management process, Eindhoven University

of Technology, Dataset 284 (2015).
[20] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella, M. Mecella,

A. Soo, Automated discovery of process models from event logs: Review and benchmark,
IEEE transactions on knowledge and data engineering 31 (2018) 686–705.

[21] S. Debois, T. Slaats, The analysis of a real life declarative process, in: 2015 IEEE Symposium
Series on Computational Intelligence, IEEE, 2015, pp. 1374–1382.

http://arxiv.org/abs/2005.10085

	1 Introduction
	2 What is a DCR graph?
	3 Overview of DCR4Py Features
	4 Maturity of the tool
	5 Conclusion

