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Abstract

The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer
volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark
performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding
models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings
on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between
these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across
five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models
corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity
reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting

the highest similarity to OpenAI models.
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1. Motivation

Retrieval-Augmented Generation (RAG) is an emerging
paradigm that helps mitigate the problems of factual hallu-
cination [1] and outdated training data [2] of large language
models (LLMs) by providing these models with access to
an external, non-parametric knowledge source (e.g. a doc-
ument corpus). Central to the functioning of RAG frame-
works is the retrieval step, wherein a small subset of can-
didate documents is retrieved from the document corpus,
specific to the input query or prompt. This retrieval pro-
cess, known as dense-retrieval, hinges on text embeddings.
Typically, the generation of these embeddings is assigned
to an LLM, for which there are several options due to the
rapid evolution of the field. Consequently, selecting the
most suitable embedding model from an array of available
choices emerges as a critical aspect in the development of
RAG systems. The information to guide this choice is cur-
rently primarily limited to architectural details (which are
also on occasion scarce due to the prevalence of closed mod-
els) and performance benchmarks such as the Massive Text
Embedding Benchmark (MTEB) [3].

We posit that an analysis of the similarity of the embed-
dings generated by these models would significantly aid
this model selection process. Given the large number of
candidates and ever increasing scale of the models, a from-
scratch empirical evaluation of the embedding quality of
these LLMs on a particular task can incur significant costs.
This challenge becomes especially pronounced when deal-
ing with large-scale corpora comprising potentially millions
of documents. While the relative performance scores of
these models on benchmark datasets offer the simplified
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perspective of comparing a single scalar value on an ar-
ray of downstream tasks, such a view of model similarity
might overlook the nuances of the relative behaviour of
the models [4]. As an example, the absolute difference in
precision@k between two retrieval systems only provides a
weak indication of the overlap of retrieved results. We argue
that identifying clusters of models with similar behaviour
would allow practitioners to construct smaller, yet diverse
candidate pools of models to evaluate. Beyond model selec-
tion, as highlighted by Klabunde et al., [5], such an analysis
also facilitates the identification of common factors con-
tributing to strong performance, easier model ensembling,
and detection of potential instances of unauthorized model
reuse.

In this paper, we analyze different LLMs in terms of the
similarities of the embeddings they generate. Our similarity
analysis serves as an unsupervised evaluation framework
for these embedding models, in contrast to performance
benchmarks that require labelled data. We do this from a
dual perspective - we directly compare the embeddings us-
ing representational similarity measures. Additionally, we
evaluate model similarity specifically in terms of their func-
tional impact on RAG systems i.e. we look at how similar
the retrieved results are. Our evaluation focuses on sev-
eral prominent model families, to analyze similarities both
within and across them. We also compare proprietary mod-
els (such as those by OpenAl or Cohere) to open-sourced
ones in order to identify the most similar alternatives. Our
experiments are carried out on five popular benchmark
datasets to determine if similarities between models are
influenced by the choice of data. Our code is available at
https://github.com/casparil/embedding-model-similarity.

2. Related Work

Studies evaluating similarities of neural networks fall into
two main categories: the first involves comparing activa-
tions of different models generated at any pair of layers for a
specific input (representational similarity), while the second
compares the model outputs (functional similarity). Raghu
et al. [6] and Morcos et al. [7] propose measures building
on Canonical Correlation Analysis (CCA) [8], a statistical
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Table 1
The datasets used for generating embeddings with their number
of queries and corpus size.

Dataset Name  Queries  Corpus
TREC-COVID 50 171k
NFCorpus 323 3.6k
FiQA-2018 6438 57k
ArguAna 1406 8.67k
SciFact 300 5k

technique used to find the linear relationship between two
sets of variables by maximizing their correlation. Such com-
parisons using CCA or variants thereof can be found in
several works [9], [10], [11]. Beyond CCA-based measures,
other works have also explored computing correlations [12]
and the mutual information [13] between neurons across
networks. Kornblith et al. [14] propose Centered Kernel
Alignment (CKA), which they show improves over several
similarity measures in identifying corresponding layers of
identical networks with different initializations. A diverse
range of functional similarity evaluations have also been
explored in the literature. A few examples include model-
stitching [15], [16], [17], disagreement measures between
output classes [18], [19], and quantifying the similarity be-
tween the class-wise output probabilities [20]. We would
point the reader to the survey by Klabunde et al. [4] for a de-
tailed overview of representational and functional similarity
measures.

Recently, a few works have also focused on specifically
evaluating the similarity of LLMs. While Wu et al. [21]
evaluate language models along several perspectives, such
as their representational and neuron-level similarities, their
evaluation pre-dates the introduction of the recent wave
of large scale models. Freestone and Santu [22] consider
similarities of word embeddings, and evaluate if LLMs dif-
fer significantly to classical encoding models in terms of
their representations. The works by Klabunde et al. [5]
and Brown et al. [23] are more recent, and evaluate the
representational similarity of LLMs, with the latter also con-
sidering the similarities between models of different sizes
in the same model family.

Much of the literature on evaluation of LLM embeddings
focuses on their performance on downstream tasks, with
benchmarks such as BEIR [24] (for retrieval specifically) and
MTEB [3] providing a unified view of embedding quality
across metrics and datasets. The metrics used here mostly
include typical information retrieval metrics such as pre-
cision, recall, and mean reciprocal rank at certain cutoffs.
Some works specifically evaluate the retrieval components
in a RAG context, where they either use a dataset outside
of those included in the benchmarks [25] or where the eval-
uation encompasses other aspects of the retriever beyond
the embedding model being used [26]. Another approach,
that does not rely on ground-truth labels, is given by the Re-
trieval Augmented Generation Assessment (RAGAS) frame-
work, which uses an LLM to determine the ratio of sentences
in the retrieved context that are relevant to the answer be-
ing generated [27]. To the best of our knowledge, there are
no works that evaluate the similarity of embedding models
from a retrieval perspective.

3. Methods

We evaluate embedding model similarity using two ap-
proaches. The first directly compares the embeddings of text
chunks generated by the models. The second approach is
specific to the RAG context, where we evaluate the similar-
ity of retrieved results for a given query. These approaches
are discussed in detail in the following sections.

3.1. Pair-wise Embedding Similarity

There are several metrics defined in the literature that mea-
sure representational similarity [4]. Many of these metrics
require the representation spaces of the embeddings to be
compared to be aligned and/or the dimensionality of the em-
beddings across the models to be identical. To avoid these
constraints, we pick Centered Kernel Alignment (CKA) [14]
with a linear kernel as our similarity measure.

The measure computes similarity between two sets of
embeddings in two steps. First, for a set of embeddings,
the pair-wise similarity scores between all entries within
this set are computed using the kernel function. Thus, row
k of the resulting similarity matrix contains entries repre-
senting the similarity between embedding k and all other
embeddings, including itself. Computing two such embed-
ding similarity matrices for different models with the same
number of embeddings then leads to two matrices E and
E’ of matching dimensions. These are compared directly
in the second step with the Hilbert-Schmidt Independence
Criterion (HSIC) [28] using the following formula:

CKA(E E’) _ HSIC(E,E')
’ HSIC(E,E)HSIC(E',E')
The resulting similarity scores are bounded in the interval
[0, 1] with a score of 1 indicating equivalent representations.
CKA assumes that representations are mean-centered.

3.2. Retrieval Similarity

While a pair-wise comparison of embeddings offers insights
into the similarities of the representations learned by these
models, it does not suffice to quantify the similarities in
outcomes when these embedding models are deployed for
specific tasks. Therefore, in context of RAG systems, we
consider the similarity of retrieved text chunks for a given
query, when different embedding models are used. As a
first step, for a given dataset, we generate embeddings of
queries and document chunks with each of the embedding
models. We then retrieve the k£ most similar embeddings
in terms of the cosine similarity for a particular query. As
these embeddings correspond to specific chunks of text, we
derive the sets of retrieved chunks C and C’ for a pair of
models. To measure the similarity of these sets, we use the
Jaccard similarity coefficient as follows:

Jaccard(C,C") = }gﬂgi}

Here, |C' N C’| corresponds to the overlap in text chunks
by counting how often the two models retrieved the same
chunks. Similarly, we can compute the union |C U C’|,
which corresponds to all retrieved text chunks, counting
chunks present in both sets only once. The resulting score
is bounded in the interval [0, 1] with 1 indicating that both
models retrieved the same set of text chunks.

While Jaccard similarity computes the percentage to
which two sets overlap, it ignores the order in the sets. Rank




Table 2

We compare a diverse set of open source models from different families as well as proprietary models with varying performance

on MTEB.
Model Embedding dimension ~ Max. Tokens =~ MTEB Average  Open Source
SFR-Embedding-Mistral 4096 32768 67.56 v
mxbai-embed-large-v1 1024 512 64.68 v
UAE-Large-V1 1024 512 64.64 v
text-embedding-3-large 3072 8191 64.59 X
Cohere embed-english-v3.0 1024 512 64.47 X
bge-large-en-v1.5 1024 512 64.23 4
bge-base-en-v1.5 768 512 63.55 v
gte-large 1024 512 63.13 v
gte-base 768 512 62.39 v
text-embedding-3-small 1536 8191 62.26 X
e5-large-v2 1024 512 62.25 v
bge-small-en-v1.5 384 512 62.17 v
e5-base-v2 768 512 61.5 v
gte-small 384 512 61.36 v
e5-small-v2 384 512 59.93 v
gtr-t5-large 768 512 58.28 4
sentence-t5-large 768 512 57.06 v
gtr-t5-base 768 512 56.19 4
sentence-t5-base 768 512 55.27 v

similarity [29], on the other hand, considers the order of
common elements, with closer elements having a higher
impact on the score. The measure assigns ranks to common
text chunks according to their similarity to the query, i.e.
rc(j) = n if chunk j was the top-n retrieved result for the
query. Ranks are then compared using:

. Ny 2
Rank(rc(5), 7' (7)) = Grrati—ra GGG e G

With this, rank similarity for two sets of retrieved text
chunks C, C’ is calculated as:

RankSim(C,C") = m
Z Rank(rc(j),mcr (7))

Jje|cnc’|

_ ’

with H|C N C'|) = ?:_l\cmc ! + denoting the K-th
harmonic number, normalizing the score. Like the other
measures, rank similarity is bounded in the interval [0, 1]

with 1 indicating that all ranks are identical.

4. Experimental Setup

The following paragraphs describe our choice of datasets
and models, along with details of the implementation of our
experiments.

As we focus on the retrieval component of RAG sys-
tems, we select five publicly available datasets from the
BEIR benchmark [24]. As generating embeddings for large
datasets is a time-intensive process, especially for a larger
number of models, we opt for five of the smaller datasets
from the benchmark. This approach allows us to compare
embeddings generated by a variety of models while at the
same time allowing us to evaluate embedding similarity ac-
cross datasets. An overview of the datasets is shown in Table
1. For each dataset, we create embeddings by splitting docu-
ments into text chunks such that each chunk contains 256
tokens. The embedding vectors are stored with Chroma DB

[30], an open source embedding database. For each vector,
we additionally store information about the document and
text chunk ids it encodes to be able to match embeddings
generated by different models for evaluation.

For model selection, we primarily use publicly available
models from the MTEB leaderboard [3]. We do not simply
pick the best performing models on the leaderboard; instead,
our choices are influenced by several factors. Firstly, we
focus on analyzing similarities within and across model
families and pick models belonging to the e5 [31], t5 [32, 33],
bge [34], and gte [35] families. Secondly, we recognize
that it might be of interest to users to avoid pay-by-token
policies of proprietary models by identifying similar open-
source alternatives. Therefore, we pick high-performing
proprietary models, two from OpenAl (text-embedding-3-
large and -small) [36] and one from Cohere (Cohere embed-
english-v3.0) [37]. We also compare the mxbai-embed-large-
v1 (mxbai) [38] and UAE-Large-V1 (UAE) [39] models, that
not only report very similar performances on MTEB, but also
identical embedding dimensions, model size and memory
usage. Finally, we include SFR-Embedding-Mistral (Mistral)
[40] as the best-performing model on the leaderboard at the
time of our experiments. A detailed overview of all selected
models can be seen in Table 2.

To compare embedding similarity across models and
datasets, we employ different strategies depending on the
similarity measure. We apply CKA by retrieving all em-
beddings created by a model, matching embeddings using
their document and text chunk ids and then computing
their similarity for each of the five datasets. For Jaccard
and rank similarity, we use sklearn’s NearestNeighbor class
[41] to determine the the top-k retrieval results. We com-
pute Jaccard and rank scores per dataset, averaging over 25
queries. For the NFCorpus dataset, we calculate retrieval
similarity for all possible k, i.e. using all embeddings gen-
erated for the dataset. As calculating similarity for each
possible k is computationally expensive, we did not repeat
this for the remaining datasets and chose a smaller k& value
instead. Furthermore, as only a limited number of results
are to be provided as context to the generative model, ana-
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Figure 1: Mean CKA similarity across all five datasets. Models
tend to be most similar to models belonging to their own family,
though some interesting inter-family patterns are visible as well.

lyzing retrieval similarity at low k values for e.g. top-10 is
of most interest. As we are interested in identifying clusters
of similar models, we also perform a hierarchical clustering
on heatmap values using Seaborn [42]. The following sec-
tion describes the results of our evaluation for the different
measures.

5. Results

To evaluate how similar embeddings generated by different
models are, we will first consider model families, checking if
their pairwise and top-k similarity scores are highest within
their family. Subsequently, we will identify the open source
models which are most similar to our chosen proprietary
models.

5.1. Intra- and Inter-Family Clusters

Comparing embeddings directly with CKA shows high sim-
ilarity across most of the models, albeit with some variance.
These scores allow us to identify certain clusters of models.
Figure 1 shows the pair-wise CKA scores of all models aver-
aged across the five datasets. As expected, scores for most
models are highest within their own family. This holds true
for the gtr-t5, sentence-t5 and text-embedding-3 (OpenAl)
models. Although the sentence-t5 and gtr-t5 models are
closely related, they do not exhibit significantly higher sim-
ilarity with each other compared to the remaining models.

From an inter-family perspective, we observe high sim-
ilarity between the bge and gte models. For some models
in these two families, interestingly, the highest similarity
scores rather correspond to inter-family counterparts with
matching embedding dimensions than with models in the
same family. Specifically, gte-small reports the highest simi-
larity to bge-small and gte-base to bge-base. On the other
hand, gte-large shows slightly higher similarity to bge-base
than bge-large and thus to a model with a lower embedding
dimension. Another inter-family cluster is formed by the
three models with the highest CKA scores overall, namely

— gtelarge_vs_SFR-Embedding-Mistral
gte-large_vs_UAE-Large-V1

—— gte-large_vs_bge-base-en-v1.5
gte-large_vs_bge-large-en-v1.5 — gte-large_vs_gtr-t5-large
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-base-v2 —— gte-large_vs_sentence-t5-base
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Figure 2: Rank similarity over all kK on NFCorpus, comparing
gte-large to all other models. Scores are highest and vary most
for small k, but then drop quickly before stabilizing for larger k.

UAE, mxbai and bge-large, whose scores suggest almost
perfect embedding similarity. In fact, the similarity score of
bge-large to these two models is much higher than to other
bge models.

Shifting our attention to top-k retrieval similarity, clusters
vary depending on the k value. Figure 3 illustrates how
Jaccard similarity evolves over k£ on NFCorpus. The first
plot displays Jaccard scores between bge-large and all other
models, while the second plot illustrates the scores for gte-
large. For extremely low k, we observe some peaks for
nearly all models, followed by a noticeable drop in similarity.
Of course, for larger k, the scores converge to one. Re-
affirming our earlier observations with the CKA metric,
bge-large demonstrates high retrieval similarity with UAE
and mxbai. Similarity to the remaining models is much
lower, with the highest scores for bge-base and bge-small
for larger k. However, especially for small k, there is high
variance in similarity score, with models from other families,
e.g. Mistral or gte-large sometimes achieving higher scores
than the bge models. A similar pattern can also be observed
in the second plot, where Jaccard similarity for gte-large
is highest within its family for larger k, but models like
mxbai or bge-base sometimes reporting higher similarity
for small k. Therefore, the clusters we identified through
our CKA analysis are only truly reflected in these plots for
large values of k. This suggest that in real-world use cases,
where the top-k are crucial, such representational similarity
measures might not provide the full picture. The plots for
other model families provide nearly identical insights as
those in the second plot in Figure 3 and thus we do not
present them for sake of brevity.

For rank similarity, scores peak for small k and then
quickly start to drop until they approach a low stable score
for larger k as shown in Figure 2 for gte-large. Once again,
the bge/UAE/mxbai inter-family cluster shows the highest
similarity. In contrast to Jaccard similarity, the clusters that
could be observed for CKA do not always show for rank
similarity. As can be seen in Figure 2, the model with the
highest rank similarity to gte-large is mxbai, rather than
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Figure 3: Jaccard similarity over all k on NFCorpus, comparing bge-large (a) and gte-large (b) to all other models. While bge-large shows
high similarity to UAE-Large-v1 and mxbai-embed-large-v1, scores for gte-large are clustered much closer. Jaccard similarity seems to be
most unstable for small values of k, which would commonly be chosen for retrieval tasks.
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Figure 4: Jaccard (a) and rank similarity (b) for the top-10 retrieved text chunks averaged over 25 queries on NFCorpus. The clusters

vary slightly depending on the measure, as do the scores. Models tend to be most similar to models from

some inter-family clusters are visible as well.

another gte model. Even so, the previously observed clus-
ters also tend to appear for rank similarity, though they
vary more depending on the models and dataset. Gener-
ally, scores for nearly all models are rather small for larger
k, indicating low rank similarity. For small k, results vary
more and differences between individual models are more
pronounced.

As retrieval similarity at small k is of most interest from a
practical perspective, we take a closer look at top-10 Jaccard
similarity. The heatmaps in Figures 4-6 show the top-10 Jac-

their own family. However,

card similarity between models across datasets. A striking
insight here is that even the most similar models only report
a Jaccard similarity of higher than 0.6, with the majority
less than 0.5. This is of great relevance to practitioners, as
it would imply that even using embeddings from models
that report high representational similarity scores may yield
little overlap in retrieved text chunks. As earlier, the cluster
of UAE/mxbai/bge-large is the most prominent one with
the highest scores. Intra-family scores tend to be the high-
est for most models, i.e. t5 and OpenAl Depending on the
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Figure 5: Jaccard similarity for the top-10 retrieved text chunks averaged over 25 queries on SciFact (a) and ArguAna (b). The UAE and
mxbai models show high levels of similarity along with bge-large. The remaining models tend to show the highest similarity within their
own family with the exception of the bge/gte inter-family cluster.

dataset, this also applies to gte and e5 models, although
Jaccard similarity to models from other families is some-
times higher. We also note that for the two larger datasets
FiQA-2018 and TREC-COVID, the similarity scores are gen-
erally substantially lower, as can be seen in Figure 6. For
the smaller datasets, Jaccard similarity is generally higher,
though results differ depending on the data (see Figures 4
and 5). Similar observations can be made for rank similarity,
although the appearance of family clusters is more depen-
dent on the dataset. Larger datasets also lead to lower scores.
These results illustrate that while family clusters can still
be perceived at small k, they are not as prominent as they
are for larger k. Furthermore, the top-10 retrieved results
differ substantially for most models and datasets and their
similarity might be dependent on the dataset itself.

5.2. Open Source Alternatives to
Proprietary Models

We explicitly included proprietary models in our analysis to
check which open source models are the best - which in our
case means the most similar - alternative. The CKA scores
in Figure 1 indicate that embeddings generated by OpenAI’s
models (text-embedding-3-large/-small) are highly similar to
those generated by Mistral, while the Cohere model (embed-
english-v3.0) demonstrates high similarity to e5-large-v2.
These observations do not entirely extend to retrieval sim-
ilarity, especially for Cohere. While Mistral is still the most
similar model to OpenAlI’s for larger k across all datasets,
there is no consistently most similar model for Cohere.
Rather, the model varies depending on the dataset and mea-
sure - Jaccard and rank similarity - sometimes showing high-
est similarity to e5-large-v2, but sometimes also to other
models like Mistral. Taking a closer look at top-10 similar-
ity, Mistral still largely exhibits the highest similarity to the
OpenAl models, especially to text-embedding-3-large. For
text-embedding-3-small, scores on all datasets are rather
close to those of other models. In absolute terms, however,

retrieval similarity between Mistral and OpenAl models
is only low to moderate. On smaller datasets, the highest
Jaccard similarity to text-embedding-3-large only reaches
about 0.6 (see Figure 5), while on TREC-COVID, the largest
dataset, Jaccard similarity goes down to merely 0.18 (see
Figure 6). For Cohere’s model, the most similar model for
top-10 Jaccard similarity is different for each dataset, with
the highest scores of 0.51 occurring on ArguAna shwon in
Figure 5. For all proprietary models, even the best retrieval
similarity at top-10 still suggests that the embeddings that
would be presented to an LLM can differ notably. Once
again, we could also observe dataset-dependent variance in
scores, with lower retrieval similarity on larger datasets.

6. Discussion

While a pair-wise comparison of embeddings using CKA
shows intra- and inter-family model clusters, retrieval simi-
larity over different k offers a more nuanced picture. Espe-
cially for small k, which are of most interest from a practical
perspective, retrieval similarity varies. When comparing
the top-10 retrieved text chunks, the low Jaccard similarity
scores indicate little overlap in retrieved chunks, even when
CKA scores are high. Especially for the two larger datasets
FiQA-2018 and TREC-COVID, these scores are extremely
low. As RAG systems usually operate on millions of em-
beddings, our datasets are comparatively small. Therefore,
should a general trend of larger datasets leading to lower
retrieval similarity exist, text chunks retrieved by differ-
ent models in a regular use case might be nearly distinct
for small k. Overall, our results suggest that even though
embeddings seem rather similar when compared directly,
retrieval performance can still vary substantially, is most
unstable for £ values that are commonly used in RAG sys-
tems and also dataset-dependent. Retrieved chunks at small
k show the least overlap, leading to high differences in data
that would be presented to an LLM as additional context.
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Figure 6: Jaccard similarity for the top-10 retrieved text chunks averaged over 25 queries on FiQA-2018 (a) and TREC-COVID (b). Most
models seem to retrieve almost completely distinct text chunks. Only the bge/UAE/mxbai cluster still shows a notable level of similarity,
while the scores of the remaining clusters indicate only moderate to low levels of similarity.

Our analysis demonstrates that although models tend
to be most similar to models from their own family, inter-
family clusters exist. The most prominent of these clusters
is formed by the models bge-large-en-v1.5, UAE-Large-V1
and mxbai-embed-large-v1, which demonstrate high sim-
ilarity even for retrieval at low k. Nevertheless, the high
variance of retrieval similarity of the remaining clusters
for small k£ means that while the identified clusters might
provide some measure of orientation when choosing an em-
bedding model, the choice still remains a non-trivial task.
Identifying suitable alternatives to proprietary models is
likewise not as simple. While we were able to determine
SFR-Embedding-Mistral as the model being most similar to
OpenAT’s embedding models, Jaccard similarity at top-10
for larger datasets shows a low overlap in retrieved text
chunks. Furthermore, for Cohere’s embedding model, we
were unable to find a single most similar model, as this
model varied across datasets for small k values.

7. Conclusion

In this paper we evaluated the similarity of embedding mod-
els on different datasets. Given the large number of available
models, identifying clusters or families of models with sim-
ilar embeddings can simplify the model selection process.
While previous work on LLM similarity exists, to the best
of the authors’ knowledge, it so far lacks a clear focus on
embedding models specifically in the context of RAG. We
therefore analyzed the similarity of embeddings generated
by 19 different models using CKA for pairwise comparison
as well as Jaccard and rank similarity to compare retrieval
behavior at top-k across five datasets. Comparing embed-
dings with CKA generally showed intra- and inter-family
clusters across datasets. These clusters also appeared when
evaluating top-k retrieval similarity with large k values.
However, scores for low k values, which would commonly
be chosen in RAG systems, show high variance and much

lower similarity, especially on larger datasets. Although we
were able to identify some model clusters, our results sug-
gest that choosing the optimal model remains a non-trivial
task that requires careful consideration.

Still, we argue that a better understanding of how sim-
ilarly different embedding models behave is an important
research topic that requires further attention. There are a
plethora of real-world scenarios where RAG systems can
potentially be deployed. One such scenario, for example,
is to retrieve relevant web content in response to a query.
As large corpora of such data are available in the form of
Web ARChive (WARC) files, evaluating embedding model
similarity on such large, uncleaned datasets would perhaps
lead to a better estimation of model similarity for a realistic
RAG use case. Additionally, as documents often need to
be chunked into smaller parts to fit into the models, the
effect of chunking strategies such as token-based or seman-
tic chunking on embedding similarity could be explored.
Furthermore, our evaluation focused on a small sample of
similarity measures, with their own definition about which
criteria make models similar. Introducing more measures
with different perspectives could improve our understand-
ing on which factors influence model similarity. Finally,
our focus was on identifying clusters or families of models,
which for our initial experiments led us to choosing families
of embedding models with varying performance on MTEB.
With the frequent appearance of new models on the leader-
board and the focus on good MTEB performance, it would
be of interest to compare the best performing models on
MTEB and check if their relative difference in performance
correlates with how similar these models are.
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