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Abstract
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language tasks, leveraging extensive
knowledge from massive datasets. However, their reliance solely on parametric knowledge often leads to the generation of inaccurate or
outdated content, particularly in domain-specific tasks. Retrieval Augmented Generation (RAG) has emerged as a promising approach
to address this limitation by incorporating external knowledge without necessitating re-training. While RAG enhances the accuracy
of LLM-generated content, effectively retrieving external knowledge remains a challenge due to potential noise and computational
costs. To address this, traditional information retrieval systems adopt two-stage approaches, utilizing efficient retrievers followed by
reranking mechanisms. Recently, transformer-based architectures, including BERT and T5 models, have shown promise as effective
rerankers. However, such models have limited context size and only perform single-granularity ranking at a time, hindering their
effectiveness and efficiency. In this paper, we first explore the existing rerankers such as RankT5 and RFiD, highlighting challenges in
multi-granularity ranking. Subsequently, we introduce PFiD (Passage Fusion-in-Decoder), a simple yet efficient approach aimed at
effectively ranking both document and passage simultaneously. Through empirical evaluation, we demonstrate the efficacy of PFiD in
improving effectiveness and efficiency, offering a promising direction for further research in this domain.
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1. Introduction
Despite their remarkable capabilities and growth, Large Lan-
guage Models (LLMs) [1, 2, 3, 4] still tend to generate factu-
ally incorrect or outdated content as their knowledge solely
relies on their parametric knowledge, especially in domain-
specific or knowledge-intensive tasks [5, 6, 7]. Retrieval
Augmented Generation (RAG) approaches [8, 9, 10, 11] have
gained significant attention, which improve the quality of
LLM-generated output by grounding on external knowledge
to supplement the LLMs’ parametric knowledge, without
having to re-train the LLMs. RAG leverages a powerful
information retrieval model, which is designed to search
large datasets or knowledge bases. The retrieved informa-
tion is then incorporated into LLMs, enabling it to generate
more accurate and contextually relevant content. By incor-
porating external knowledge, RAG can effectively reduce
the problem of generating factually incorrect or outdated
content in LLMs [12, 13].

However, current RAG frameworks have major chal-
lenges when it comes to the effectiveness and efficiency of
information retrieval systems: First, LLMs tend to generate
inaccurate responses on distracting (or noisy) contexts, thus
the performance of retrieval models has a significant im-
pact on the quality of RAG’s responses [14, 15, 11]. Second,
the retrieval component of RAG requires searching through
large-scale knowledge bases or the web, which can be com-
putationally expensive and slow [11]. Due to the above
challenges, existing retrieval systems adopt two-stage ap-
proaches, an efficient first-stage retriever such as BM25 [16]
and DPR [17] retrieves a set of documents from a larger
dataset, and then a second-stage reranker is used to rerank
retrieved documents for precise ranking. Recently, with the
advent of transformer-based models such as BERT [18] and
T5 [19], more architectures including bi-encoder [17], cross-
encoder [20], encoder-decoder [21, 22], and decoder-only
models [23], have gradually shown their effectiveness as
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a reranker. However, these models have limited context
size and only perform single-granularity ranking during
inference, which hinders their effectiveness and efficiency
in real-world RAG scenarios.

To this end, in this paper, we focus on the multi-
granularity ranking task, which ranks both document and
passage simultaneously. Specifically, we first investigate the
single-passage cross-encoder models such as MonoT5 [22]
and RankT5 [21]. It achieves superior performance across
various ranking tasks, but due to the constraint of input
tokens, its efficiency is limited in real-world RAG scenarios.
Next, we present the use of multi-passage cross-encoder,
such as FiD [9] and RFiD [24]. These models alleviate the
input tokens limit by leveraging multi-passage, but they
directly use the cross-attention score of the decoder as a pas-
sage relevance, which is implicitly learned, and encounter
difficulty with distinguishing relative differences between
passages. Thereafter, we propose a simple and effective PFiD
(Passage Fusion-in-Decoder) for multi-granularity ranking.
PFiD extends the FiD model by generating a document-level
relevance token, enabling both document retrieval and pas-
sage ranking. Furthermore, PFiD adopts the inter-passage
attention mechanism to learn relative passage relevance
explicitly, using the special tokens at the beginning of the
input text to represent the entire context.

Experiments on MIRACL passage ranking dataset [25]
demonstrate that PFiD improves effectiveness and efficiency
compared to existing approaches, especially in RAG scenar-
ios.

2. Preliminaries

2.1. Task definition
Given a user query 𝑞 and a document (or passage) corpus
𝐶 = {𝐷1, 𝐷2, ..., 𝐷𝑛}, the goal of document retrieval is to
find the 𝑘 documents that are most relevant to the query 𝑞.
In our multi-granularity ranking setting, which consists of
document retrieval and passage ranking tasks, the document
retrieval task is to perform reranking on BM25 retrieved
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top-𝑘 documents. While traditional passage ranking tasks
typically involve ranking entire passages, in this paper, the
passage ranking task focuses solely on ranking passages
within the retrieved document itself, which aligns more
closely with real-world RAG scenarios and is thus more
feasible.

2.2. Ranking models
Pre-trained Language Models (PLMs) are currently the most
effective ranking models, which can be categorized into: bi-
encoders and cross-encoders. Bi-encoders encode a query
and a passage separately to obtain semantic representa-
tions [17], emerging as powerful first-stage retrievers by
pre-computing the passage representations offline. Instead,
cross-encoders take the concatenation of the query and
a passage, and perform query-passage interactions [20],
which have been conceived as second-stage rerankers, de-
signed to explicitly refine the results provided by the first-
stage retrieval. In this paper, for brevity, we also refer other
PLMs, such as encoder-only [17, 20], decoder-only [23],
and encoder-decoder [21, 22] models that perform query-
passage interactions simultaneously, as cross-encoders.

There are several PLM-based cross-encoders, includ-
ing sequence-to-sequence language models such as
MonoT5 [22] and RankT5 [21] for ranking task, as well
as multi-passage reader models like FiD [9] and RFiD [24]
for RAG tasks, which have been demonstrated superior ef-
fectiveness.

MonoT5. MonoT5 [22] is the first work to define a ranking
task as a text generation task by leveraging T5 [19] encoder-
decoder model. A query-document pair is concatenated into
an input sequence Query : 𝑞 Document : 𝐷𝑛 Relevant:,
and utilizes true and false as target tokens to represent
their relevance. Then, the model is fine-tuned for text gen-
eration task. After training, the ranking scores are derived
from the logits of true token, based on the softmax applied
only on the logits of the true and false tokens.

RankT5. Following MonoT5 [22], the input sequence is
similar except that RankT5 do not include the Relevant:
postfix. Then, the model use the <extra_id_10> as target
token to learn unnormalized ranking score. The model is
trained with list-wise ranking loss directly, instead of using
text generation loss as in MonoT5 [22]. However, these
models cannot be directly used for long document retrieval
due to the maximum input length constraint as in most
PLMs, which hinders their effectiveness in the document
retrieval task.

FiD.The FiD model further extends T5 [19] encoder-decoder
model, taking multiple 𝑘 passages as input, encoding sepa-
rately, and then feeds the concatenated 𝑘 encoder hidden
states into a T5 decoder to generate the answer. Relevance
scores for passages are computed using cross-attention
scores, which entail averaging the attention score across all
tokens within the passage and all layers and heads within
the decoder [26].

RFiD. While FiD [9] treats all passages equally within its en-
coders, solely depending on the cross-attention mechanism
to establish correlations between the decoder and encoders,
which may identify the incorrect answer by referring to
spurious passages. Instead, RFiD [24] improves FiD by iden-
tifying potential answer-containing passages (or rationale)
among the candidates and guiding the decoder with the
identified rationales. Afterward, cross-attention scores are

directly regarded as passage relevance scores the same as
in [9]. However, even with the rationale, the cross-attention
mechanism still lacks for distinguishing relative differences
between passages, as it is implicitly guided by a rationale
classifier solely trained on point-wise binary classification
loss.

3. Method
In this section, we briefly discuss a simple but effective Pas-
sage Fusion-in-Decoder (PFiD) for multi-granularity rank-
ing. PFiD adopts the FiD [9] architecture as a base model,
further extends FiD by utilizing true and false token
as a target token to model document-level relevance, en-
abling multi-granularity ranking simultaneously. Addition-
ally, PFiD integrates inter-passage attention to learn relative
passage relevances explicitly, which is similar to the list-
wise training objective of RankT5 [21].

Fusion-in-Decoder for Document Retrieval. Formally,
Given a question 𝑞 and a set of 𝑘 passages within the doc-
ument 𝐷𝑛 = {𝑃𝑛

1 , 𝑃𝑛
2 , ..., 𝑃𝑛

𝑘 }, the FiD encoder outputs
the 𝑘-th passage embeddings Hk ∈ R𝐿×𝑑, where 𝐿 denotes
the maximum token length, and 𝑑 denotes the dimension of
hidden states, which are then concatenated as the input of
the fusion decoder [H1,H2, ...,Hk].

Hk = FiD-Encoder(𝑞 + 𝑃𝑛
𝑘 ) (1)

The FiD decoder utilizes [H1,H2, ...,Hk] to generate the
target token 𝑇 = true 𝑜𝑟 false. Therefore, the loss func-
tion can be defined as follows:

ℒ𝐹𝑖𝐷 = −
𝑇∑︁

𝑖=1

log 𝑝(𝑦𝑖|𝑦1, 𝑦2, ...., 𝑦𝑖−1, [H1,H2, ...,Hk])

(2)
Inter-passage Attention. Previous work [24] tackled the
issue of spurious passages by employing a binary classifier
on the first token’s encoder hidden states Hk,1, to determine
whether the passage is a rationale passage to the query.
Then, guide the decoder by appending the additional em-
beddings toward the end of the encoder’s hidden states
[H1,H2, ...,Hk,Hk+1], where Hk+1 ∈ R2×𝑑 is trainable ra-
tionale embedding. However, as Table 2 shows, it drastically
underperforms in passage ranking tasks by a large margin,
as it does not explicitly model relative passage relevance.

Instead, to mitigate this, we utilize inter-passage atten-
tion to model interactions between passages explicitly. PFiD
builds a set of input sequences by appending the first to-
ken hidden states of each pair as B = [H1,1,H2,1, ...,Hk,1],
where H𝑖,𝑗 denotes the 𝑗-th token embeddings of 𝑖-th pas-
sage. In a standard cross-encoder, the first token of the
encoder aggregate query-passage information to compute
a relevance score. We further use this token to depict the
relative semantics via self-attention mechanism. Inspried
by [27], we consider single-layer transformer model to de-
pict relative passage relevance as follows:

̃︀B = softmax

(︂
QK⊺√
𝑑

)︂
V, where Q = BWQ,K = BWK,V = BWV

(3)
in which matrices WQ,WK,WV ∈ R𝑑×𝑑 are learnable pa-
rameters. The information from different passages is fused



and exchanged via the self-attention mechanism. The train-
ing loss used for inter-passage attention can be defined as
follows:

𝑝𝑘 = softmax(̃︀B𝑘W𝐵) ∈ R2,

ℒ𝑝𝑎𝑠𝑠𝑎𝑔𝑒 = −(𝑦 log(𝑝𝑘) + (1− 𝑦) log(1− 𝑝𝑘))

(4)

where 𝑦 is the passage relevance label, and the overall train-
ing objective of PFiD is:

ℒ𝑎𝑙𝑙 = ℒ𝐹𝑖𝐷 + 𝜆ℒ𝑝𝑎𝑠𝑠𝑎𝑔𝑒, (5)

where 𝜆 is a hyperparameter to balance two losses.

4. Experimental setup

4.1. Datasets
We use MIRACL [25] passage ranking dataset for our ex-
periments. The MIRACL [25] dataset is a large-scale, open-
domain, human-generated multi-document ranking dataset
which is similar to MS MARCO [28], but MIRACL owns
its advantage by providing segmented document collection,
enabling both document retrieval and passage ranking.1 For
the document retrieval task, we construct the document
retrieval dataset by regarding a document with at least one
positive passage, as a positive document. Table 1 shows the
statistics of the datasets.

Table 1
Statistics of Datasets.

Task # train # dev # avg judgement # corpus

Document Retrieval 22,548 6,404 2.22 5,758,285
Passage Ranking 29,416 8,350 2.75 32,893,221

4.2. Baselines
We compare PFiD against the following three types of rank-
ing baselines. The first is Single-Passage Cross-encoder
(SPC) baselines, including MonoT5 [22], and RankT5 [21].
Due to the constraint of input tokens, we only take the
first-𝑘 tokens in the document retrieval task. An alterna-
tive approach is to score each passage independently, and
then take the passage with the highest score as the rep-
resentative for ranking the document, or directly perform
retrieval over the segmented passages. However, we will
omit these approaches as the former lacks efficiency, and
the latter is not scalable for real-world RAG scenarios. Then,
the model is trained list-wisely with randomly sampled
negatives from the entire passage sets; The second is Multi-
Passage Cross-encoder (MPC) baselines, including FiD [9]
and RFiD [24]. For comparison in our experimental setting,
both FiD and RFiD models are trained with the target token
of true 𝑜𝑟 false, enabling both document retrieval and
passage ranking. All SPC and MPC baselines used in this
experiment are initialized with T5-base model; The third is
the most frequently employed lexical ranker BM25 [16]. We
use the Elasticsearch engine with default parameters 𝑘1 =
1.2, and 𝑏 = 0.75.

1MS MARCO also provide segmented document collection, but the
segmented corpus do not align with passages in passage ranking tasks.
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Figure 1: Passage ranking results on the real-world RAG sce-
narios. We first retrieve # of documents and rerank # passages
within the retrieved documents.

4.3. Experimental Details
We adopt T5-base [19] as our base model, using Adam [29]
with a learning rate of 10−4 and a dropout rate of 0.1. For
both training and inference, we use the top-100 passages
and truncate them to 200 of the maximum token length. The
hyperparameter 𝜆 is set to 0.5. For the document retrieval
task, we perform ranking on BM25 top-100 retrieved docu-
ments, whereas passage ranking ranks the passages within
the given positive document. We also conduct experiments
on real-world RAG scenarios, considering both document
retrieval and passage ranking simultaneously. We use the
evaluation metric of the nDCG [30], Recall, and MRR scores
to evaluate the effectiveness. All experiments are conducted
on a single NVIDIA A100 GPU (40GB). In this work, we
do not consider other training approaches including data
augmentation, knowledge distillation, or negative sampling
strategies as delving into their effects falls outside the scope
of our objectives.

5. Results and Analysis
Retrieval and Ranking. Table 2 presents our evaluation
results on document retrieval and passage ranking tasks.
The key observations are as follows: (i) MPC significantly
outperforms SPC in document retrieval task by aggregat-
ing multiple 𝑘 passages, alleviating the problem of limited
context size in SPC. In particular, one can see that PFiD out-
performs RFiD by a large margin on both document ranking
and passage ranking task. This indicates that by leveraging
passage-wise context to guide the decoder, we can better
identify relative passage relevance. Note that compared with
the existing SPC baselines, our method achieves ranking effi-
ciency by explicitly removing the need for each granularity
ranking. PFiD directly consumes the entire document, and
scores the relevance of the entire passages and document
simultaneously. (ii) RFiD, implicitly guiding the decoder
with rationale embedding shows improvement over FiD by
a large margin, however, it is still even worse than BM25. It
suggests that implicitly guiding indeed benefits the model’s
ranking ability to some extent. However, when ranking



Table 2
The evaluation results of different baselines. As for the document retrieval, we rank the top 100 documents retrieved by BM25,
while the passage ranking task ranks the passage within the retrieved document. 𝑁 denotes the number of documents to
rank, whereas 𝑃 denotes the number of passages in the document. The best performances are in †. Latency indicates the total
inference time from document retrieval to passage ranking, which is measured by averaging the time taken for each query
with a single thread and a single batch on the GPU.

Model Category
Document Retrieval Passage Ranking

Complexity Latency (s)
top-𝑘 MRR@10 Recall@5 Recall@10 MRR@10 nDCG@5 nDCG@10

BM25 - |C| 0.3951 0.3683 0.4736 0.7366 0.7718 0.7856 - 0.32 (x1.00)

MonoT5 SPC 100 0.6204 0.5141 0.5794 0.8571 0.8774 0.8803 𝑂(𝑁 +𝑁𝑃 ) 5.65 (x17.65)
RankT5 SPC 100 0.6352 0.4992 0.5605 0.8778† 0.8916† 0.8952† 𝑂(𝑁 +𝑁𝑃 ) 5.64 (x17.62)
FiD MPC 100 0.6322 0.5139 0.5821 0.3464 0.3725 0.4260 𝑂(𝑁) 1.17 (x3.65)
RFiD MPC 100 0.7177 0.5743 0.6407 0.5617 0.6036 0.6359 𝑂(𝑁) 1.21 (x3.78)
PFiD (Ours) MPC 100 0.7231† 0.5937† 0.6516† 0.8530 0.8726 0.8780 𝑂(𝑁) 1.23 (x3.84)

various passages from multi-documents, traditional MPC
is completely indistinguishable, suggesting cross-attention
score from the decoder is not suited for the passage ranking
task. (iii) SPC achieves superior performance over MPC
in passage ranking task, as it is trained with rich negative
samples from other documents, while MPC is only trained
with in-document negatives. Additionally, even with in-
document negatives, when trained with inter-passage atten-
tion, PFiD can achieve ranking effectiveness that rivals that
of SPC, suggesting that incorporating an additional module
to identify relevant passages is more effective than relying
solely on the cross-attention mechanism of the decoder.

Results on real-world RAG scenario. Next, we investi-
gate the effectiveness of PFiD in real-world RAG scenarios.
We first retrieve # documents from the candidates, and
rerank # passages within the retrieved documents. Figure 1
represents the result of our evaluation. Notably, from Table 2
we observed that MPC outperforms SPC in document re-
trieval tasks, however, the performance drastically drops in
this setting, as cross-attention scores from the decoder are
indistinguishable across passages from multi-documents.
Additionally, despite RankT5 reaching the best effective-
ness on the passage ranking task, it did not exhibit any im-
provements over our method in real-world RAG scenarios,
suggesting the importance of the multi-granularity rank-
ing. Instead, PFiD consistently outperforms all baselines,
by leveraging the complementary nature of SPC and MPC.
PFiD is capable of more efficiently retrieving documents
and ranking passages, and capturing the relative semantic
correlation between different passages, leading to superior
performance.

Cross-attention vs PFiD. As discussed above, PFiD has
the advantage of identifying relevant passages compared to
previous models like RFiD since it explicitly models relative
passage relevance. We investigate the effects of the cross-
attention scores of the decoder and our passage ranking
scores for the passage ranking task. Figure 2 illustrates the
distribution of the rank of positive passages. As depicted
in Figure 2, the PFiD is more strongly correlated with pas-
sage relevances than cross-attention scores, suggesting the
PFiD focuses more on positive passages by explicitly learn-
ing relative passage relevance. Our experimental results
show that the enhanced ability to identify relevant passages
contributes to overall performance improvement.
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Figure 2: Distribution of the rank of positive passages.
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