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Abstract
The Lattice Boltzmann Method (LBM) is a computational technique of Computational Fluid Dynamics (CFD) that
has gained popularity due to its high parallelism and ability to handle complex geometries with minimal effort.
Although LBM frameworks are increasingly important in various industries and research fields, their complexity
makes them difficult to modify and can lead to suboptimal performance. This paper presents miniLB, the first, to
the best of our knowledge, SYCL-based LBM mini-app. miniLB addresses the need for a performance-portable LBM
proxy app capable of abstracting complex fluid dynamics simulations across heterogeneous computing systems.
We analyze SYCL semantics for performance portability and evaluate miniLB on multiple GPU architectures using
various SYCL implementations. Our results, compared against a manually-tuned FORTRAN version, demonstrate
effectiveness of miniLB in assessing LBM performance across diverse hardware, offering valuable insights for
optimizing large-scale LBM frameworks in modern computing environments.
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1. Introduction

In High-Performance Computing (HPC), mini-apps (or proxy-apps) are simplified codes that allow
application developers to share and analyze important key features of large applications without forcing
users to assimilate large and complex code bases. Mini-apps are often used as abstract models to
evaluate performance and assess performance, portability, and performance portability ( PP). Mini-app
can also capture programming methods and styles that drive requirements for algorithms, compilers,
and other toolchain elements. Developing mini-apps for relevant use cases is an important challenge in
pushing the boundaries of HPC application performance. Important projects such as the Exascale Proxy
Applications Project [1] aim to improve the quality of proxies produced by the Exascale Computing
Project by defining standards for documentation, building and testing systems, performance models
and evaluations, and templates and best practices for proxy developers to help meet these standards.

In recent years, the Lattice Boltzmann Method (LBM) has further strengthened its position as a
valuable tool in the field of computational fluid dynamics [2]. LBM has attracted increasing interest
in many industries and research organizations due to its high parallelism efficiency and ability to
discretize complex geometries with little effort. This has led to the development of large frameworks,
typically focused on specific LBM domains, with extremely complex and large code bases [3, 4, 5].
However, LBM frameworks have not evolved with the evolution of (massively parallel and distributed)
computing systems, resulting in complex codebases that are very difficult to modify. Unfortunately, no
mini-app for LBM can efficiently abstract the problem while providing hints for performance tuning
and optimization.

This paper proposes the first mini-application for LBM, with an implementation in SYCL that allows
not only performance evaluation but also performance portability on modern heterogeneous computing
systems. Specifically, this paper makes the following contributions:
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• The, to the best of our knowledge, first performance portable, tunable, SYCL-based Lattice-
Boltzmann mini-app, translated from an original FORTRAN implementation, capable of targeting
a wide range of multicore CPUs, GPUs, and accelerators.

• A performance portability analysis of SYCL semantics, including Unified Shared Memory, range,
and ND-range kernels using a performance portability metric.

• An experimental evaluation of miniLB on NVIDIA V100S, AMD MI100, and Intel Max 1100 GPUs,
using multiple SYCL implementations and different SYCL semantic combinations, compared to
the manually-tuned FORTRAN version using different parallelism paradigms and compilers.

2. Background and Related Work

Lattice Boltzmann Method The Lattice Boltzmann Method (LBM) emerged in the late 1980s as
an evolution of lattice gas cellular automata. It has since found numerous applications across various
complex flow problems, from fully developed turbulence to micro and nanofluidics, and even quark-
gluon plasmas.

The core concept of LBM is to solve a simplified Boltzmann kinetic equation for a set of discrete
distribution functions, known as populations, 𝑓𝑖(x; 𝑡). These functions represent the probability of
finding a particle at position x and time 𝑡, with a discrete velocity v = c𝑖. The discrete velocities are
selected to ensure sufficient symmetry, thereby satisfying the mass, momentum, and energy conservation
laws of macroscopic hydrodynamics and maintaining rotational symmetry. Figure 1 illustrates the
lattices used for 2D LB simulations, featuring a set of nine discrete velocities (D2Q9). Instead of directly
solving the Navier-Stokes equations (𝜌�⃗�), LBM solves a kinetic equation storing nine populations for
each grid point, corresponding to different c velocity directions, including c = (0, 0). It is not necessary
to store derived quantities like velocity and density.

In its compact form, the main LB equation is as follows:

𝑓(�⃗�+ 𝑐�⃗�, 𝑡+ 1)− 𝑓𝑖(�⃗�; 𝑡) = −𝜔(𝑓𝑖(�⃗�; 𝑡)− 𝑓𝑒𝑞
𝑖 (�⃗�; 𝑡)) + 𝑆𝑖, 𝑖 ∈ [0, 𝑏+ 1] (1)

where �⃗� and 𝑐�⃗� are position and velocity vectors in ordinary space, 𝑓𝑒𝑞
𝑖 is the equilibrium distribution

function, 𝑆𝑖 is a source term for the fluid interaction with external (or internal) sources. The local
equilibria are provided by a lattice truncation, to the second order in the Mach number 𝑀 = 𝑢/𝑐𝑠, of
the Maxwell-Boltzmann distribution, where 𝑐𝑠 is the lattice sound speed.

𝑓𝑒𝑞
𝑖 (�⃗�, 𝑡) = 𝑤𝑖𝜌(1 + 𝑢𝑖 + 𝑞𝑖) (2)

where 𝑤𝑖 is a set of weights normalized to the unit and,

𝑢𝑖 = 3
�⃗� * 𝑐�⃗�
𝑐𝑠

𝑞𝑖 = 9
(�⃗� * 𝑐�⃗�)2

2𝑐2𝑠
− 3

𝑢2

2𝑐2𝑠
(3)

where the left term is linear in velocity, the right one quadratic. The equation 1 represents two key
processes: the collision step (right-hand side), where the populations locally relax towards equilibrium,
and the streaming step (left-hand side), where the populations are propagated to neighboring locations
at x+ c𝑖 at time 𝑡+ 1. This scheme can be demonstrated to reproduce the Navier-Stokes equations for
an isothermal, quasi-incompressible fluid in terms of density and velocity [6].

In literature, several large Lattice Boltzmann frameworks exist, e.g. OpenLB[3], waLBerla[4],
Palabos[5]. However, such frameworks usually present very large and complex code bases, which makes
it difficult to experiment with for research purpose. Our work aims at staying as simple as possible
while providing a playground for experimenting with SYCL-specific or LB-specific optimizations while
providing good performance on multiple hardware. Other attempts to verify the performance of het-
erogeneous programming models on LB methods have been proposed in the literature: Ding et.al. [7]
explore the performance of the SYCL and Kokkos programming model on an LB application, showing
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performance pitfalls of both implementations. However, their work does not focus on evaluating single
SYCL features like miniLB but rather the raw application performance. Moreover, their analysis only
focuses on NVIDIA GPUs, while we examine performance portability across multiple vendors.

SYCL SYCL [8] is a royalty-free, cross-platform C++ abstraction layer that enables developers to
write code for multiple heterogeneous devices, such as CPUs, GPUs, and FPGAs, in a convenient and
performance-portable way. SYCL enhances the C++ programming language by adding abstractions for
managing heterogeneous computing within ISO C++, aiming to align closely with the core language
specifications. Originally designed to map onto OpenCL, the third revision of the SYCL 2020 specification
allowed for custom backends, like NVIDIA CUDA, AMD HIP, OpenMP, and others. Key implementations
of SYCL include Intel’s OneAPI Data-Parallel C++ [9] and AdaptiveCPP [10], along with several other
smaller-size implementations [11, 12, 13]. The versatility of SYCL has led to various extensions for
specific heterogeneous computing scenarios, including distributed computing [14], real-time energy
optimization [15], and approximate computing [16].

Performance Portability As HPC systems evolve with diverse hardware architectures, developing
efficient, cross-device application code becomes crucial. This has led to the rise of "performance
portability" in academic circles, which measures both an application’s ability to meet performance
benchmarks on specific platforms and its capacity to run across various hardware configurations.

However, a universally accepted definition is absent. In our research, we embrace the definition
of performance portability by Pennycook et al. [17]: "A measurement of an application’s performance
efficiency for a given task that can be successfully executed on all platforms within a specified set." The
formula to quantify performance portability is presented in Equation 4:

PP(𝑎, 𝑝,𝐻) =

⎧⎨⎩
|𝐻|∑︀

𝑖∈𝐻
1

𝑒𝑖(𝑎,𝑝)

, if platform 𝑖 is supported for all 𝑖 ∈ 𝐻

0, otherwise
(4)

Here, 𝑎 represents the application, 𝑝 denotes the problem addressed by 𝑎, and 𝐻 signifies the set
of target hardware. The performance portability metric PP is defined as the harmonic mean of the
application’s performance efficiency 𝑒𝑖(𝑎, 𝑝) over the set of hardware 𝐻 .

Pennycook et al. [17] highlight various methods for calculating application performance efficiency,
specifically: architectural efficiency, which measures achieved performance as a fraction of peak hardware
performance; and application efficiency, which measures achieved performance as a fraction of the
best-observed performance against the most optimized native implementation.

3. miniLB Overview

3.1. Computational Description

miniLB is a bidimensional computational fluid dynamic code for single-phase incompressible flows,
with nine discrete velocities (D2Q9 using CFD jargon). It is a downsizing of a 3D FORTRAN90
MPI+OpenACC full application, developed by CINECA [18, 19]. miniLB is written in C++20 and SYCL,
a single-source abstraction layer for heterogeneous computing. miniLB has no external dependencies
and uses no SYCL compiler-specific feature, allowing it to run out-of-the-box on every platform with
any SYCL compiler. The code is open-source and available on GitHub1.

miniLB implements a fused approach [20, 21], where the collision and streaming operation are performed
in a single kernel. In this approach, the app holds a pre-collision population 𝑓𝑝𝑟𝑒 and a post-collision
population 𝑓𝑝𝑜𝑠𝑡: at time 𝑡, input values read through a scattered read from 𝑓𝑝𝑟𝑒, and post-collision
results are written in 𝑓𝑝𝑜𝑠𝑡. Finally, the two populations are swapped at time 𝑡 + 1. Populations are

1https://github.com/Luigi-Crisci/miniLB
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(a) Lid-Driven cavity (b) Von Karman Street

Figure 1: Use case example outputs using the .vtk file with ParaView

stored using a Structure-of-Array (SoA) layout, with a unit-strided vector for each population 𝑓𝑖. miniLB
has been designed to be highly and easily tunable to measure SYCL performance in a wide range of
scenarios, with a total of 96 possible configurations, highlighted below in section 4.

3.1.1. Numerical precision

miniLB supports four different numerical precisions to control how data is computed and stored:(i)
Single: quantities are stored in single precision and all floating point operations are performed in
single precision. (ii) Double: quantities are stored in double precision and all floating point operations
are performed in double precision. (iii) Mixed1: quantities are stored in half precision and all floating
point operations are performed in single precision. (iv) Mixed2: quantities are stored in single precision
and all floating point operations are performed in double precision.

The Single precision option is the default one. A more comprehensive analysis of LBM numerical
precision has been explored in [22].

3.2. FORTRAN-based Parallelization

The original FORTRAN app uses a directive-based parallelization that minimize code refactoring from
CPUs to GPUs implementation. It implements several programming models: OpenACC pragmas,
OpenMP Offload, and the FORTRAN built-in operator DOCONCURRENT.

While GPU vendors provide native compilation toolchains for some of those programming models,
not all of them are supported by each vendor: for example, OpenACC supports only NVIDIA GPUs and
AMD through the CRAY compiler, while DOCONCURRENT is not supported on AMD discrete GPUs.
Furthermore, to achieve optimal performance on specific hardware, users must compile their programs
using the proprietary vendor compiler (e.g. nvFORTRAN for NVIDIA, amdclang for AMD, ifx for Intel).
This requirement increases fragmentation and adds complexity, as it necessitates testing with additional
toolchains.

3.3. Use Cases

miniLB supports three classic CFD benchmarks: Lid-Driven Cavity (LDC), Taylor-Green Vortex, and
Von Karman Street (VKS). The app also produces VTK output files for offline visualization with tools
like ParaView [23]. In this paper, we focus on the latter and the former: LDC and VKS.

Lid-Driven Cavity The LDC problem involves a square or rectangular cavity closed on all sides. The
top lid of the cavity moves at a constant velocity, while the other three walls remain stationary. This
setup generates a complex flow pattern within the cavity, characterized by the following: (a) no-slip
boundary conditions: all walls, including the moving lid, have a no-slip boundary condition, meaning
the fluid velocity relative to the wall is zero; (b) driven flow: the movement of the top lid at a constant
tangential velocity 𝑢0 drives the flow within the cavity. Figure 1a shows an example output.
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Von Karman Street The VKS occurs when fluid flows past a cylindrical object and the flow separates
alternately from either side of the object, creating a pattern of vortices in the wake. This phenomenon
is characterized by: (a) Periodic Vortex Shedding: alternating vortices are shed from opposite sides of
the cylinder, creating a staggered array of vortices downstream. (b) Flow Regimes: the flow pattern
depends on the Reynolds number, which is a dimensionless number representing the ratio of inertial
forces to viscous forces in the flow. A visual example is given in figure 1b.

4. SYCL Porting

In this section, we analyze the principal SYCL features used during the porting and the available miniLB
configurations.

4.1. Kernel Parallelism

SYCL uses parallel_for to declare parallel code regions. In particular, SYCL offers two variants of it:
range and NDrange. The range is the simplest as it requires the user to specify only the iteration
space. This allows the runtime to select the most appropriate number of threads depending on the
target device without user intervention. On the other hand, NDrange allows to manually tweak the
local iteration space (e.g. local workgroup size on OpenCL), allowing more fine-grained optimization
but also requiring the user to manually optimize the local size to match the current device. miniLB
kernels support both range and NDrange. The app defaults to range parallel for, but the latter can
be activated by setting the -DBGK_SYCL_ND_RANGE compile-time parameter. Currently, the app only
supports the tweaking of the collide and stream kernel size through the -DBGK_SYCL_ND_RANGE_[X,Y]

_SIZE parameter at compile-time.

4.2. Data Management and Access

miniLB uses Unified Shared Memory for data management instead of the Buffer-Accessor (BA)
paradigm as it shows more reliable and stable performance [24]. USM provides three allocation kinds:
malloc_device are allocated directly on the target device, malloc_host allocates host page-locked
memory accessible from both host and device, and malloc_shared, which are shared between devices
using an automatic memory migration system.
miniLB implements two memory management backends, one based on malloc_device and
malloc_host and one using malloc_shared, controllable via the compile-time parameter -

DBGK_SYCL_MALLOC_SHARED. In the former, miniLB stores a device and host pointer for each
population and manually migrates memory from the host and device. The host device is pinned
because this increases the bandwidth with some GPU architectures [25]; in the latter, a single
pointer is stored and the SYCL runtime handles the memory migration. In addition, the parameter
-DBGK_SYCL_ENALBE_PREFETCH enables hints to prefetch memory on the host/device to the SYCL
runtime.

Multi-dimensional data are defined with MDspan [26]. It is a lightweight, non-owning view that
allows a piece of memory to be treated as a multi-dimensional entity. MDspan allows us to define the
extents (i.e. the number of dimensions and sizes), the layout (e.g. row-major, column-major, etc.), and
the data accessor (i.e. how to translate the pointer/index pair to a memory location). miniLB stores
a two-dimensional MDspan for both host and device to reduce the view construction overhead. In
addition, a compile-time parameter -DBGK_SYCL_LAYOUT_[RIGHT|LEFT] switches the data layout to
row-major or column-major respectively. miniLB defaults to column-major as it is the default layout in
the original FORTRAN application.
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Feature Description Options

Precision Kernel’s floating point precision Single, Double, Mixed1, Mixed2

Queue SYCL queue Out-of-order, In-order

USM SYCL USM data management backend Device, Shared, Shared + Prefetch

Layout Data representation layout Row-major, Column-major

Ranges SYCL kernel types Range, NDRange

Table 1
miniLB tuning configurations

4.3. Task Scheduling

To submit tasks, a SYCL user needs to create a queue that binds to a specific device. SYCL supports
both out-of-order and in-order submissions. With the former, submitted tasks are executed without a
defined order, allowing for parallel kernels execution. With USM, data dependencies between kernels
must be explicitly tracked. With in-order submission, instead, kernels are executed in FIFO order. This
hinders the ability to parallelize kernel executions, but it removes the overhead of dependency tracking.
miniLB supports both queue configuration, controlled by the parameter -DBGK_SYCL_IN_ORDER_QUEUE.

5. Experimental evaluation

5.1. Experimental Setup

We evaluated miniLB on three GPUs from three principal GPU vendors, i.e. NVIDIA Tesla V100S, AMD
MI100, and Intel Max 1100. We tested the app on two use cases: Lid-Driven Cavity (LDC) and Von
Karman Street (VKS), using a 4096 * 4096 grid with Reynolds number 𝑅𝑒 = 10000 and with 100.000
timesteps. As performance metric, we use MLUPs (Mega Lattice Update per second) that indicates how
many millions of gridpoints are updated each second.

For the SYCL implementations, we chose AdaptiveCpp (commit sha a3c5c9d), and DPC++(commit sha
ea0c067), where both support all three architectures. For AdaptiveCpp, we target the generic backend,
which can target every hardware through an integrated JIT compiler. For the FORTRAN version, we
used NVHPC 24.5 for NVIDIA, amdclang ROCM 6.0 for AMD, and IFX 2024.0.0 for Intel. To reduce the
number of combinations in the tuning space, this paper explores all combinations except Mixed 1
and Mixed 2 precision, SYCL out-of-order queues, row-major layout, and the Shared+Prefetch
configuration.

5.2. Use Case Evaluation

Figure 2 shows the achieved SYCL performance, while figure 3 shows the SYCL performance normalized
to the best FORTRAN implementation on a given hardware (e.g. OpenACC on LDC-NVIDIA, OpenMP
on AMD-VKS). For each use case and hardware combination, the result of the best SYCL configuration
is shown (e.g. for DPC++ on the NVIDIA V100S with the LDC use case, we pick NDrange + device
allocation). Both AdaptiveCpp and DPC++ show similar performance on every hardware on both use
cases. The SYCL version outdo FORTRAN on almost every platform and precision with both compilers,
achieving an average of 1.16x speedup on the NVIDIA V100S, 1.03x on Intel Max 1100, and 1.54x on
AMD MI100. An interesting case is AMD: while the results are similar to the ones obtained on other
platforms, the speedup over FORTRAN is way higher(e.g. 1.55x compared to 1.16x on NVIDIA with
AdaptiveCpp). To find the cause of this speedup, we profiled both the FORTRAN and SYCL application
on single precision using OmniPerf [27]. We found that amdclang performs an aggressive thread
coarsening, reducing the iteration space by a factor of 30. This results in a significantly higher L1I
and L1D cache misses by duplication, 26 miss per wave against the 0.04 miss per wave of the SYCL
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Figure 2: Best SYCL configuration Million Lattice Update per seconds (MLUPs) for Lid-Driven Cavity and Von
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Figure 3: Best SYCL configuration speedup normalized over the Fortran best implementation

implementation. Moreover, the FORTRAN version achieves 53% more L2 cache misses, severely limiting
application bandwidth. Similar considerations apply to the double precision too.

5.3. SYCL Feature Evaluation

SYCL provides a great variety of built-in constructs to parallelize an application on heterogeneous
hardware. However, the performance of each construct heavily depends on the target use case [24].
Furthermore, different SYCL platforms could implement the same feature in different way, adding
additional complexity. Figure 4 shows the performance of the Lid-Driven Cavity use case with each
combination of USM allocations and SYCL kernel’s type on every hardware and precisions, using both
AdaptiveCpp and Intel DPC++. For NDrange kernels, the work group size is the biggest one possible
on the target GPU (i.e. 1024 threads), organized as a block of 1x1024 threads. The values are normalized
with the FORTRAN OpenMP offload backend, as it is the only one available on every hardware. In
those benchmarks, we add a checkpoint at T = 50.000 to force data movement between host and device.

From the picture is clear that kernel performance in SYCL is heavily dependent on the adopted
SYCL parallelization type. In particular, SYCL range are above the baseline in 33% of the cases. On
the other hand, NDrange kernels beat the baseline in 85% of the configuration. However, some
discrepancy between SYCL implementations arises: AdaptiveCpp range uses a work group size of
128 threads, organized in a 16x16 grid with 2-dimensional kernels. On NVIDIA GPUs, the gridsize is
divided into 256x256 blocks. This results in 15% more uncoalasced global memory acccess compared to
the NDrange version, where the work group size is unrolled along the y-axis (1x1024, or 1024x1 if
in row-major). Similar considerations apply also to other architectures. On the other hand, DPC++
range kernels always select the largest possible work group size on GPU and put all the threads in
one dimension (e.g. 1x1024 if the kernel is 2-dimensional). This heuristic performs well on both AMD
and Intel, where range picks the same size as the one manually specified for NDrange. However,
on NVIDIA GPUs, range kernels performance are detrimental, achieving only 15% of the NDrange
performance. The difference in performance between hardware is due to a small, but significant change
in the work group size definition heuristic on Nvidia hardware: while on AMD and Intel hardware,
threads are placed on the first dimension (e.g. 1024x1x1), on NVIDIA hardware DPC++ place the
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Figure 4: SYCL speedup over FORTRAN offload parallelism model by varying kernel and allocation type with
column-major layout and in-order queues, on Lid-Driven Cavity

threads on the second dimension (1x1024x1). This results in 93% more uncoalasced access on the Tesla
V100S compared to the other hardware. By switching to a row-major layout, NVIDIA performance
improves but it crashes performance on AMD and Intel GPUs for the same reason. This discrepancy
between work group size definitions severely limits therange performance portability across hardware.

Regarding data management, shared allocations are not shown on AMD hardware: on AMD
GPUs, on-demand page migration between host and device memory relies on the XNACK feature,
which is disabled by default. However, XNACK is known to be experimental and unstable. When we
enabled it, we encountered random kernel failures and GPU hangs. Consequently, we disabled it for
this analysis. Without XNACK enabled, shared allocations function like host allocations, meaning the
data is allocated on the host and transferred to the device at each memory access, generating up to
1000x slowdown compared to the other implementation. Therefore, for this evaluation, we consider
the AMD shared backend as not available. On average, device allocation beat the baseline in 60% of
the configuration, while shared allocation only on 43% of the cases. However, shared allocations
performance depends on hardware support: for example, on NVIDIA GPU they beat the baseline 50%
of the time, while on the Intel GPU they only achieve better performance than the baseline on 37%.
This variability, together with the unreliability of UVM on AMD, raises questions on its application to
production scenarios.

5.4. Performance Portability evaluation

SYCL Impl. Hardware USM Kernel 𝐴𝐼
𝐹𝑅

(GFlop/s)
𝑃

(TFlop/s)
𝑒′

In
te

lD
PC

++

NVIDIA V100S

Shared Range 0,38 125 0,43 29%

Shared NDrange 1.37 976 1.55 63%

Device Range 0.38 124 0.43 29%

Device NDrange 1.27 934 1.55 60%

AMD MI100 (Est.)

Shared Range X X X X

Shared NDrange X X X X

Device Range 1.41 1132 1.60 70%

Device NDrange 1.41 1132 1.60 70%

Intel Max 1100

Shared Range 1.22 781 0.976 80%

Shared NDrange 1.22 782 0.976 80%

Device Range 1.21 772 0.968 79%

Device NDrange 1.21 775 0.968 80%

Table 2
miniLB performance data for col_MC kernel,
single precision w/ Intel DPC++

SYCL Impl. Hardware USM Kernel 𝐴𝐼
𝐹𝑅

(GFlop/s)
𝑃

(TFlop/s)
𝑒′

A
da

pt
iv

eC
pp

NVIDIA V100S

Shared Range 1,07 657 1.21 54%

Shared NDrange 1.32 926 1.49 62%

Device Range 1.05 588 1.18 49%

Device NDrange 1.32 885 1.49 59.2%

AMD MI100 (Est.)

Shared Range X X X X

Shared NDrange X X X X

Device Range 1.14 601 1.38 44%

Device NDrange 1.13 976 1.36 72%

Intel Max 1100

Shared Range X X X X

Shared NDrange 1.21 769 0.968 79%

Device Range 1.04 603 0.83 72%

Device NDrange 1.21 900 0.968 93%

Table 3
miniLB performance data for col_MC kernel,
single precision w/ AdaptiveCpp

To measure the application performance portability, we employ the Pennycook PP metric [17].
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However, we don’t have a native optimized application version for each target hardware. In addition,
calculating the application architectural efficiency can be challenging, as it requires the identification of
relevant bottlenecks on each hardware. For those reasons, to calculate the performance portability we
employ the roofline efficiency, which measures the distance between the application FLOP/s to the top
of the roofline. Roofline efficiency has been demonstrated to successfully approximate architectural
efficiency [28]. To calculate roofline efficiency, one needs to calculate the device peak performance

𝑃 = min (𝐹𝑅𝑚, 𝐵𝑊𝑚 ×𝐴𝐼𝑘)

where 𝐹𝑅𝑚 is the device floating point peak, 𝐵𝑊𝑚 is the device bandwidth peak, and 𝐴𝐼𝑘 is the
arithmetic intensity for the application 𝑘, measured as the ratio between the application FLOP 𝐹𝐿 and
memory transferred. To capture those values, we used Nsight Compute on NVIDIA platform [29] and
Intel Advisor on Intel [30]. However, we encountered two difficulties.

First, the AMD MI100 does not provide FLOP counters, therefore it is not possible to calculate the
application FLOP/s. However, miniLB kernels do not have any device-dependent branch, therefore we
expect the number of floating point operations to be the same on all three platform. To estimate the
application FLOP/s, we use a similar methodology to the one defined in [28]:
𝐹𝑅𝑎𝑚𝑑 = 𝐹𝑅𝑛𝑣𝑖𝑑𝑖𝑎 * 𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑎𝑚𝑑

𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑛𝑣𝑖𝑑𝑖𝑎
, where 𝐹𝑅𝑛𝑣𝑖𝑑𝑖𝑎 is the floating point ratio of the corresponding

implementation on NVIDIA hardware, and 𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑎𝑚𝑑
𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑛𝑣𝑖𝑑𝑖𝑎

is the ratio between the two application
kernel performance.

The second problem is related to AdaptiveCpp on Intel. Profiling an AdaptiveCpp-compiled applica-
tion with Intel Advisor results in a profiler’s internal exception, therefore we couldn’t measure the flop
rate on Intel Max. Depending on the kernel type, we followed different procedures:

• NDrange: Both DPC++ and AdaptiveCpp use the same work group size, therefore we approxi-
mate the flop rate by multiplying DPC++ flop rate by the ratio between the AdaptiveCpp and
DPC++ performance.

• range Because AdaptiveCpp uses a different work group size compared to DPC++, we can’t
approximate the kernel bandwidth with high precision, therefore we skip this configuration.

We measured the memory bandwidth of each hardware: our results showed a 1.1TB/s bandwidth
on the NVIDIA V100S, 0.89TB/s on the AMD MI100, and 0.8TB/s on the Intel Max 1100. Table 2, 3,
shows the performance value collected for the fused collide and stream kernel, called col_MC kernel. 𝑒′

indicates the distance from the roofline peak. The roofline results for both precision are shown in figure
5. As with every LB application, miniLB is bandwidth-bound, therefore the device peak depends on the
device bandwidth and arithmetic intensity. For space constrain, we only show the results for single
precision. Interestingly, miniLB achieves at least 62% of the device peak on every target hardware. We
can see that on Intel Max we achieve the highest roofline efficiency, getting up to 91% of the peak on
AdaptiveCpp with NDrange. While DPC++ and AdaptiveCpp show similar roofline efficiency for
NDrange kernel, AdaptiveCpp range is 37% and 8% slower than DPC++ respectively on AMD and
Intel device allocation. However, because of the previously mentioned uncoalesced access issue,
DPC++ is 46% and 42% slower than AdaptiveCpp with shared and device allocation respectively
on the NVIDIA V100S. This means that, while DPC++ could achieve better performance, on average
AdaptiveCpp range heuristic is more portable among devices.

Finally, table 4 and 5 show the performance portability ( PP) metric results for each precision. PP′

represents the value of performance portability considering only the current combination of data
management backend and kernel type, while PP is the maximum PP′ across all data management
backend . Because we treated shared allocation as not available on AMD hardware, PP is 0 for each
shared configuration. miniLB achieves a minimum of 60% of performance portability among every
precision, showing how SYCL can efficiently target any of the major vendor GPUs. NDrange achieve
a medium portability of 78% among all precision, while range gets a medium portability of 62%. It is
worth noting that, while NDrange required a tuning phase to find the best work group size for each
hardware, range achieved such results without any user intervention.
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Figure 5: miniLB roofline models per target hardware

Precision Kernel type USM allocation PP′ PP

Si
ng

le

Range
Device 64%

64%
Shared 0

NDrange
Device 78%

78%
Shared 0

Table 4
miniLB performance portability metric
for col_MC kernel, single precision

Precision Kernel type USM allocation PP′ PP

D
ou

bl
e Range

Device 61%
61%

Shared 0

NDrange
Device 78%

78%
Shared 0

Table 5
miniLB performance portability metric
for col_MC kernel, double precision

6. Conclusion and Future Work

We presented miniLB, the first, highly tunable, SYCL-based lattice Boltzmann mini-app. We successfully
ported the original FORTRAN application to C++ and SYCL, achieving a considerable speedup on every
platform. We analyzed a subset of the 96 possible miniLB configuration settings to evaluate multiple
combinations of SYCL features. We found that AdaptiveCpp and DPC++ portability can severely
depend on the target SYCL feature, e.g. DPC++ range heuristic being less performance portable than
AdaptiveCpp. Finally, we analyze miniLB performance portability using the well-known PP metric. Our
results show that miniLB achieves high performance portability, with a PP value up to 78%.
As a future work, we plan to implement more SYCL features and optimizations, e.g. local memory,
Buffer-Accessors, specialization constants, etc., as well as extending the app to multi-GPU
systems, using both low-level MPI calls and high-level SYCL frameworks like Celerity. Furthermore, we
would like to extend miniLB to the 3D case and measure the impact of mixed precision computation in
SYCL, for both numerical stability and energy consumption.

Acknowledgments

This project has received funding from the Italian Ministry of University and Research under PRIN 2022
grant No. 2022CC57PY (LibreRT project).

10



References

[1] Exascale proxy applications project, https://proxyapps.exascaleproject.org/, 2024.
[2] K. V. Sharma, R. Straka, F. W. Tavares, Lattice boltzmann methods for industrial applications,

Industrial & Engineering Chemistry Research 58 (2019) 16205–16234. URL: https://doi.org/10.1021/
acs.iecr.9b02008. doi:10.1021/acs.iecr.9b02008.

[3] M. J. Krause, A. Kummerländer, S. J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke,
N. Hafen, A. Mink, R. Trunk, J. E. Marquardt, M.-L. Maier, M. Haussmann, S. Simonis, Openlb—open
source lattice boltzmann code, Computers and Mathematics with Applications 81 (2021) 258–288.
URL: https://www.sciencedirect.com/science/article/pii/S0898122120301875. doi:https://doi.
org/10.1016/j.camwa.2020.04.033, development and Application of Open-source Soft-
ware for Problems with Numerical PDEs.

[4] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger, F. Schornbaum,
C. Schwarzmeier, D. Thönnes, H. Köstler, U. Rüde, walberla: A block-structured high-performance
framework for multiphysics simulations, Computers and Mathematics with Applications 81 (2021)
478–501. URL: https://www.sciencedirect.com/science/article/pii/S0898122120300146. doi:https:
//doi.org/10.1016/j.camwa.2020.01.007, development and Application of Open-
source Software for Problems with Numerical PDEs.

[5] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi, M. B. Belgacem, Y. Thorim-
bert, S. Leclaire, S. Li, F. Marson, J. Lemus, C. Kotsalos, R. Conradin, C. Coreixas, R. Petkantchin,
F. Raynaud, J. Beny, B. Chopard, Palabos: Parallel lattice boltzmann solver, Computers and Mathe-
matics with Applications 81 (2021) 334–350. URL: https://www.sciencedirect.com/science/article/
pii/S0898122120301267. doi:https://doi.org/10.1016/j.camwa.2020.03.022, de-
velopment and Application of Open-source Software for Problems with Numerical PDEs.

[6] T. Krueger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. Viggen, The Lattice Boltzmann
Method: Principles and Practice, Graduate Texts in Physics, Springer, 2016.

[7] Y. Ding, C. Xu, H. Qiu, Q. Wang, W. Dai, Y. Lin, Y. Che, Evaluating perfor-
mance portability of sycl and kokkos: A case study on lbm simulations, in: 2023
IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data
and Cloud Computing, Sustainable Computing and Communications, Social Computing
and Networking (ISPA/BDCloud/SocialCom/SustainCom), 2023, pp. 328–335. doi:10.1109/
ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075.

[8] Sycl specification, https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2023.
[9] B. Ashbaugh, A. Bader, J. Brodman, J. Hammond, M. Kinsner, J. Pennycook, R. Schulz, J. Sewall,

Data parallel c++: Enhancing sycl through extensions for productivity and performance, in: Int.
Workshop on OpenCL, 2020, pp. 1–2. doi:10.1145/3388333.3388653.

[10] A. Alpay, V. Heuveline, Sycl beyond opencl: The architecture, current state and future direction
of hipsycl, in: International Workshop on OpenCL, 2020, pp. 1–1. doi:10.1145/3388333.
3388658.

[11] A. Gozillon, R. Keryell, L.-Y. Yu, G. Harnisch, P. Keir, trisycl for xilinx fpga, in: Int. Conference on
High Performance Computing and Simulation (HPCS), 2020.

[12] Y. Ke, M. Agung, H. Takizawa, Neosycl: A sycl implementation for sx-aurora tsubasa, in: The
International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2021,
2021, p. 50–57. doi:10.1145/3432261.3432268.

[13] P. Thoman, F. Knorr, L. Crisci, Simsycl: A sycl implementation targeting development, debugging,
simulation and conformance, in: Proceedings of the 12th International Workshop on OpenCL
and SYCL, IWOCL ’24, Association for Computing Machinery, New York, NY, USA, 2024. URL:
https://doi.org/10.1145/3648115.3648136. doi:10.1145/3648115.3648136.

[14] P. Salzmann, F. Knorr, P. Thoman, P. Gschwandtner, B. Cosenza, T. Fahringer, An asyn-
chronous dataflow-driven execution model for distributed accelerator computing, in: IEEE
23rd Int. Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2023, pp. 82–93.
doi:10.1109/CCGrid57682.2023.00018.

11

https://proxyapps.exascaleproject.org/
https://doi.org/10.1021/acs.iecr.9b02008
https://doi.org/10.1021/acs.iecr.9b02008
http://dx.doi.org/10.1021/acs.iecr.9b02008
https://www.sciencedirect.com/science/article/pii/S0898122120301875
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.04.033
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.04.033
https://www.sciencedirect.com/science/article/pii/S0898122120300146
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.01.007
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.01.007
https://www.sciencedirect.com/science/article/pii/S0898122120301267
https://www.sciencedirect.com/science/article/pii/S0898122120301267
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2020.03.022
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
http://dx.doi.org/10.1145/3388333.3388653
http://dx.doi.org/10.1145/3388333.3388658
http://dx.doi.org/10.1145/3388333.3388658
http://dx.doi.org/10.1145/3432261.3432268
https://doi.org/10.1145/3648115.3648136
http://dx.doi.org/10.1145/3648115.3648136
http://dx.doi.org/10.1109/CCGrid57682.2023.00018


[15] K. Fan, M. D’Antonio, L. Carpentieri, B. Cosenza, F. Ficarelli, D. Cesarini, Synergy: Fine-grained
energy-efficient heterogeneous computing for scalable energy saving, in: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2023. doi:10.1145/
3581784.3607055.

[16] L. Carpentieri, B. Cosenza, Towards a sycl api for approximate computing, in: International
Workshop on OpenCL, 2023, pp. 1–2. doi:10.1145/3585341.3585374.

[17] S. J. Pennycook, J. D. Sewall, V. W. Lee, A metric for performance portability, arXiv preprint (2016).
doi:arXiv:1611.07409.

[18] G. Falcucci, G. Amati, P. Fanelli, V. K. Krastev, G. Polverino, M. Porfiri, S. Succi, Extreme flow
simulations reveal skeletal adaptations of deep-sea sponges, Nature 595 (2021) 537–541. URL:
https://doi.org/10.1038/s41586-021-03658-1. doi:10.1038/s41586-021-03658-1.

[19] G. Amati, S. Succi, P. Fanelli, V. K. Krastev, G. Falcucci, Projecting lbm performance on exascale
class architectures: A tentative outlook, Journal of Computational Science 55 (2021) 101447. URL:
https://www.sciencedirect.com/science/article/pii/S1877750321001289. doi:https://doi.org/
10.1016/j.jocs.2021.101447.

[20] K. Mattila, J. Hyväluoma, J. Timonen, T. Rossi, Comparison of implementations of the lattice-
boltzmann method, Computers and Mathematics with Applications 55 (2008) 1514–1524. URL:
https://www.sciencedirect.com/science/article/pii/S0898122107006232. doi:https://doi.org/
10.1016/j.camwa.2007.08.001, mesoscopic Methods in Engineering and Science.

[21] J. Latt, C. Coreixas, J. Beny, Cross-platform programming model for many-core lattice boltzmann
simulations, PloS One 16 (2021) e0250306. URL: https://doi.org/10.1371/journal.pone.0250306.
doi:10.1371/journal.pone.0250306.

[22] M. Lehmann, M. J. Krause, G. Amati, M. Sega, J. Harting, S. Gekle, Accuracy and performance of
the lattice boltzmann method with 64-bit, 32-bit, and customized 16-bit number formats, Phys. Rev.
E 106 (2022) 015308. URL: https://link.aps.org/doi/10.1103/PhysRevE.106.015308. doi:10.1103/
PhysRevE.106.015308.

[23] J. Ahrens, B. Geveci, C. Law, ParaView: An end-user tool for large data visualization, in:
Visualization Handbook, Elesvier, 2005. ISBN 978-0123875822.

[24] L. Crisci, L. Carpentieri, P. Thoman, A. Alpay, V. Heuveline, B. Cosenza, Sycl-bench 2020: Bench-
marking sycl 2020 on amd, intel, and nvidia gpus, in: Proceedings of the 12th International Work-
shop on OpenCL and SYCL, IWOCL ’24, Association for Computing Machinery, New York, NY,
USA, 2024. URL: https://doi.org/10.1145/3648115.3648120. doi:10.1145/3648115.3648120.

[25] How to optimize data transfers in cuda, https://developer.nvidia.com/blog/
how-optimize-data-transfers-cuda-cc/, 2012.

[26] D. S. Hollman, B. Adelstein-Lelbach, H. C. Edwards, M. Hoemmen, D. Sunderland, C. R. Trott,
mdspan in C++: A case study in the integration of performance portable features into interna-
tional language standards, CoRR abs/2010.06474 (2020). URL: https://arxiv.org/abs/2010.06474.
arXiv:2010.06474.

[27] X. Lu, C. Ramos, F. Zheng, K. W. Schulz, J. Santos, K. Lowery, N. Curtis, C. D. Pietrantonio,
Amdresearch/omniperf: v2.0.1 (03 june 2024), 2024. URL: https://doi.org/10.5281/zenodo.7314631.
doi:10.5281/zenodo.7314631.

[28] J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel, C. Knight, S. Parker, Evaluation
of performance portability of applications and mini-apps across amd, intel and nvidia gpus, in:
Int. Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2021, pp. 45–56.
doi:10.1109/P3HPC54578.2021.00008.

[29] Nvidia profiling tools, https://developer.nvidia.com/tools-overview, 2023.
[30] Intel advisor homepage, https://www.intel.com/content/www/us/en/developer/tools/oneapi/

advisor.html, 2024.

12

http://dx.doi.org/10.1145/3581784.3607055
http://dx.doi.org/10.1145/3581784.3607055
http://dx.doi.org/10.1145/3585341.3585374
http://dx.doi.org/arXiv:1611.07409
https://doi.org/10.1038/s41586-021-03658-1
http://dx.doi.org/10.1038/s41586-021-03658-1
https://www.sciencedirect.com/science/article/pii/S1877750321001289
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2021.101447
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2021.101447
https://www.sciencedirect.com/science/article/pii/S0898122107006232
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.08.001
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.08.001
https://doi.org/10.1371/journal.pone.0250306
http://dx.doi.org/10.1371/journal.pone.0250306
https://link.aps.org/doi/10.1103/PhysRevE.106.015308
http://dx.doi.org/10.1103/PhysRevE.106.015308
http://dx.doi.org/10.1103/PhysRevE.106.015308
https://doi.org/10.1145/3648115.3648120
http://dx.doi.org/10.1145/3648115.3648120
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://arxiv.org/abs/2010.06474
http://arxiv.org/abs/2010.06474
https://doi.org/10.5281/zenodo.7314631
http://dx.doi.org/10.5281/zenodo.7314631
http://dx.doi.org/10.1109/P3HPC54578.2021.00008
https://developer.nvidia.com/tools-overview
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

	1 Introduction
	2 Background and Related Work
	3 miniLB Overview
	3.1 Computational Description
	3.1.1 Numerical precision

	3.2 FORTRAN-based Parallelization
	3.3 Use Cases

	4 SYCL Porting
	4.1 Kernel Parallelism
	4.2 Data Management and Access
	4.3 Task Scheduling

	5 Experimental evaluation
	5.1 Experimental Setup
	5.2 Use Case Evaluation
	5.3 SYCL Feature Evaluation
	5.4 Performance Portability evaluation

	6 Conclusion and Future Work

