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Abstract
This paper presents a consensus-based distributed solution for orchestrating microservices at the Edge. Our
approach aims to distribute workloads among Edge nodes while ensuring trust and, at the same time, robust
decision-making in a distributed log system. The proposed framework enhances the benefits of distributed
systems for functionalities traditionally centralized, enabling trust through the use of consensus. We present the
details of our solution and then we evaluate its performance.
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1. Introduction

Edge Computing is a key technology to push the processing of huge amount of data close to the
data sources, spreading computation and storage functionalities across wide information systems.
By managing data locally, Edge Computing reduces latency and bandwidth consumption, improving
reliability against network issues and efficiency in (near)real-time services. Its decentralized approach
also adds an extra layer of security in terms of data privacy, as data can be processed and stored
locally, reducing the risk of data breaches during transmission. However, Edge Computing presents
some specific challenges related to the limited resources of Edge devices and security issues due to its
inherent distributed infrastructure. Unlike the Cloud, where computing nodes are packed into one or
more Data Centers under the control of the provider, at the Edge, the proliferation of heterogeneous
devices creates a larger attack surface, making it more difficult to protect against threats. In addition,
Edge devices are often deployed in remote locations, making them susceptible to physical tampering
and theft. Such challenges affect the implementation of management services, such as maintenance,
monitoring, scalability, and connectivity. In this paper, we specifically investigate strategies to implement
distributed orchestration of microservices at the Edge taking into consideration the above peculiar
issues. Our ambition is to ensure that nodes coordinate their activities in a trusted environment, where
the orchestration decisions are achieved by a group of nodes, even in the face of failures or uncertainties.
To this aim, we make use of a consensus algorithm to create a foundation of trust by establishing a
shared understanding of the system state and ensuring the integrity of data. This paper introduces
a consensus-based distributed framework for orchestrating microservices at the Edge, where all the
nodes share a unified view of the system’s state. The Edge nodes form a trusted system able to deploy
microservices according to reliability, consistency and security principles. In particular, we leverage the
Raft consensus algorithm to distribute workloads among Edge nodes while ensuring robust decision-
making in a distributed log system. In this paper, a ’trusted environment’ refers to a system where
decisions are made based on consensus among nodes, ensuring data integrity and security through
distributed logging and Raft-based coordination.
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The scientific contributions of this paper are:

• Adaptation of Raft consensus for Edge orchestration.
• Distributed logging strategy for fault tolerance.
• Performance analysis of distributed orchestration based on consensus.

The rest of the paper is organized as follows: Section 2 describes solutions in the literature on trusted
and distributed orchestration. In Section 3, we present key concepts of consensus. Then, in Section 4
we describe our proposed solution. Section 5 resumes the implementation and experiments that we
carried out, also discussing performance of our solution. In Section 6 we draw our conclusions and
present possible future works.

2. State of the art

In recent years, the topic of trust in distributed systems and microservice orchestration has received
considerable attention from the scientific community. Numerous studies have investigated innovative
solutions to ensure the security, integrity, and trustworthiness of operations [1], especially in decen-
tralized Edge Cloud environments [2]. In particular, Fog computing, which acts as a conduit between
the Cloud and the Edge resources, has shown significant potential in improving trust in distributed
systems. Researchers proposed a Fog orchestration system for the Edge [3] that employs advanced
encryption techniques to ensure that only necessary devices participate in monitoring, reducing latency
and energy consumption.

In parallel, Blockchain technology has emerged as a promising solution to address the challenges of
trust in distributed systems. [4] proposes an architecture based on permissioned distributed ledgers,
creating a trusted environment for Cloud service providers and mobile network operators. This ap-
proach enables secure and transparent management of the lifecycle of network services in a Multi-Cloud
environment. Other solutions [5, 6] describes the use of smart contracts and sharding techniques to
improve blockchain efficiency by supporting automated orchestration of microservices in IoT envi-
ronments. Moreover, a study [7] highlights how a Blockchain-based architecture can create a trusted
environment for the various stakeholders involved, including Cloud service providers, mobile network
operators and regulators. In addition, some studies have combined Blockchain with other technolo-
gies to further enhance the trust and efficiency of distributed systems. For example, the adoption of
self-sovereign identities and verifiable credentials for decentralized discovery and orchestration of
microservices has improved the security and reliability of operations [8]. Other approaches [9, 10]
combine Blockchain with containerized orchestration platforms, such as Kubernetes, to ensure the
integrity and transparency of orchestration decisions in Edge networks. Furthermore, recent research
[11] has explored the integration of Blockchain with deep reinforcement learning (DRL) techniques
to minimize orchestration costs and improve quality of service by dynamically adapting to network
conditions.

Despite the advantages, implementing blockchain in Edge environments presents several challenges.
Latency and resource consumption are major concerns, as Edge devices often have limited computational
and memory capacity. For example, one study [12] highlights the need to efficiently orchestrate resources
without compromising performance, suggesting the use of semantic patterns to manage data and
software resources in the Edge layer. In summary, the state of the art in trust enhancement for distributed
systems and microservice orchestration demonstrates significant strides through the integration of
technologies such as Fog computing, Blockchain, and advanced cryptographic techniques. Despite
these advancements, many challenges remain unresolved. While Fog computing and Blockchain offer
promising solutions, they come with inherent limitations, such as latency and resource consumption
issues, which are particularly pronounced in Edge environments. The incorporation of additional
technologies, such as self-sovereign identities and deep reinforcement learning, has introduced new
ways to address these issues, yet these solutions are not without their own drawbacks.
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3. Consensus

A consensus algorithm allows a group of nodes working towards a common goal to reach an agreement
that ensures the reliability and consistency of the nodes’ activities. In Edge computing, a consensus
algorithm ensures agreement among distributed Edge nodes on how to carry on an efficient and reliable
management of computational, storage, and networking resources at the edge. In our solution, we used
Raft as consensus algorithm. Renowned for its simplicity and efficiency, Raft has found widespread
adoption in distributed systems demanding strong consistency and fault-tolerance, such as distributed
databases, key-value stores, blockchain systems, and cloud storage platforms. Raft is based on a leader-
follower paradigm. A single node assumes the role of leader, responsible for receiving and processing
client requests. This leader takes decisions and asks for approval from the remaining nodes, known
as followers. To track system progression and differentiate between competing leadership claims, a
concept known as "term" is employed. Each election of a new leader initiates a new term.

The Raft algorithm unfolds in 3 main phases:

• Leader Election: each participant node can candidate itself as leader, while the other nodes vote
for its election. Leader election is carried on whenever the current leader becomes unavailable.
Nodes independently initiate timers waiting for votes, and the node with the highest number of
votes is crowned the new leader. To detect if a leader becomes unavailable, Raft uses heartbeats
and terms: heartbeats are messages sent periodically by the leader to the followers to signal
its activity; a term is the period of time between two election phases. When a follower does
not receive the heartbeat in a term, it considers the leader failed and starts a new election, thus
initiating a new term. If the leader receives notice of a new term, it downgrades to a follower and
contributes to future elections.

• Voting: Raft operates using the principle of majority agreement. Before committing an operation,
the leader asks the followers to finalize a decision and waits for acknowledgements from most
of them. When any vote is taken, a quorum of 50%+1 is necessary for consensus to be reached,
regardless of whether the reply to the consensus request is positive or negative.

• Logging: after receiving the consensus on the decision, the leader appends new log entries to its
local log and disseminates them to followers. Followers validate the incoming log entries against
their existing logs, incorporating consistent entries while requesting missing segments in case of
discrepancies.

In the following section we explain how the basic functionalities of Raft have been adapted to
implement a new orchestration service.

4. Consensus in Resource Orchestration at the Edge

The high-level reference architecture of the proposed framework is shown in Figure 1. It is composed
of three key components: 1) a network of Edge nodes, 2) a distributed orchestration layer and 3) a
distributed log layer. Each Edge node can execute microservices as containerized units managed through
a dedicated Container Engine (e.g., Docker, RKT or LXD). Moreover, each node is equipped with a
Resource Monitoring Agent to track the consumption of local resources such as CPU, memory and
network utilization, and the activities of microservices. Some (or even all) Edge nodes (the green ones in
Figure 1) can receive requests for microservice deployment. The efficient deployment of microservices is
managed by the distributed orchestration layer. Based on the data collected by the Resource Monitoring
Agents, it manages the workload across the distributed computing resources. The distributed log layer
implements the functionality to keep track of the requests sent to the network on which consensus
was reached and for which an orchestration activity is performed. More details on the architecture
components are provided in the following.
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Figure 1: High Level Architecture

4.1. Orchestration

In general, orchestration activities implement two types of service:

• The deployment of a microservice: it consists of the provision of a service that is not already
being executed, for which an explicit request from an external user is expected.

• The migration of a microservice: it is a process that only affects services already instantiated
on a node of the network; it requires that a certain service be assigned different resources from
those already allocated, resulting in the service running on another node. This must be done
without altering the execution state of the service itself and minimising the interruption time of
the service. This orchestration mechanism is useful for load balancing, improving latency and
throughput of the system.

Despite the fact that both these goals are equally important, in this work we focused only on service
deployment. In fact, a migration can be modelled as a deployment whose request comes from the
Edge nodes. So, migration involves the same orchestration policies and solutions of deployment.
When a gateway receives a request, the deployment routine is executed. Traditional orchestration
solutions, tied for the Cloud, tend to be centralized, which is not ideal for the distributed nature of Edge
Computing. Coordinating and managing a network of numerous, geographically dispersed Edge devices
involves ensuring consistent software updates, handling device failures, and maintaining overall system
performance while addressing the constraints of limited resources and varying connectivity conditions.
Effective orchestration in this context demands sophisticated tools and strategies to ensure seamless
integration and operation of all Edge components. The current centralized orchestration frameworks
are ill-suited to handle these dynamic and distributed environments effectively. The need for a more
efficient orchestration mechanism is evident. One promising approach is to enable Edge devices to
manage orchestration themselves in a distributed manner. This paradigm shift not only minimizes
latency by reducing data transmission distances but also enhances the system’s robustness and fault
tolerance. However, a distributed system introduces the problem of trust among the Edge devices, as
they must rely on each other to maintain system integrity and performance.

In our work, the orchestration system works following 4 steps:

1. The node receiving the request activates the Election phase of the consensus algorithm, announc-
ing its candidature as leader.
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2. During the consensus phase, the state of the nodes in the network is asked. In this context, the
state of a node is its workload, represented as a numeric quantity. Depending on the use cases, it
may coincide numerically with the average CPU usage in a given time interval, or the amount of
central memory used, or even the weighted average of these two quantities.

3. Once all the states are received, the leader makes the choice of the node on which to do the
deployment based on a workload ranking, choosing the node with the lowest load.

4. If consensus is reached, each node, including the leader, verifies that it is the chosen one; the
latter takes over the client request, sent by the leader in question, and deploys the requested
service.

In our solution, the orchestration layer is managed by the Raft consensus algorithm. The Raft
algorithm allows to maintain a trusted environment by ensuring consensus among nodes. It prevents
single points of failure by rotating the leader role, thus distributing trust across multiple nodes. This
guarantees that decisions, such as microservice deployment, are validated and agreed upon by a majority
of nodes, enhancing system robustness. The Raft algorithm was suitably modified to handle incoming
external requests for orchestrating microservices. In detail, a fourth phase (Pause) was added during
which there are no request to be handled and no node is the leader. When a new request arrives, the
node that receives it candidates itself as leader to handle it. This algorithm is crucial to guarantee
the consistency and availability of the system, ensuring that all nodes operate in a concerted and
synchronised manner. Underlying the architecture is a distributed logging system, which is used to
maintain a log of the operations and events that occur in the system in a distributed manner. This
distributed log is critical to the resilience of the system, allowing for the recovery and replication of
data in the event of failures, thus ensuring data consistency and business continuity.

4.2. Logging

Distributed logging is the functionality that keeps track of the requests sent to the network on which
consensus was reached and for which an orchestration activity is performed. There are two possible
approaches for enabling distributed log: 1) to store the log in an external system, accessible by all the
Edge nodes, such as a networked database; 2) to store the log in a distributed data collection system on
the Edge nodes themselves, for example, in a distributed file system. The first approach involves a log
storage system external to the orchestration one, which may also involve different nodes or a remote
collection system (e.g. on the Cloud). However, this makes the proposed solution dependent on external
entities, which may lead to problems with the effectiveness of the entire solution. Therefore, it was
decided to opt for the second approach, in which the Edge nodes are responsible for all functionalities
of the proposed system. This makes the solution more robust in the event of problems connecting the
Edge network to the Internet or remote systems. Log writing is an event that occurs at the conclusion
of the consensus phase, once it has been reached, prior to deployment, in order to keep track of the
choices made and the deployment command sent. The actual instantiation of the service and/or any
problems arising during the deployment itself are not tracked by the system as they are activities
outside the scope of orchestration. While the proposed solution does not currently handle faults arising
during deployment (e.g., node failures), future work could involve integrating advanced monitoring
and self-healing mechanisms to address this gap. Fault tolerance could be enhanced by allowing nodes
to dynamically recover from failures during the deployment process. The different functionalities of
our proposal and their integration are described in the sequence diagram in Figure 2.

5. Implementation and validation

We have implemented the Edge network using 6 virtual machines configured with minimal resources,
so to replicate the performance characteristics of Raspberry Pi 4 devices, and the virtual machines were
connected to the same private subnetwork. Edge nodes have installed Ubuntu 22.04 LTS as Operating
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Figure 2: Sequence diagram of the three phases of the designed system

System and Docker1 as the Container Engine. The microservices were deployed as Docker containers.
GlusterFS2 was adopted as distributed file system for logging. The Orchestration algorithm has been
implemented using the Go programming language. The code repository is available on GitHub3.

5.1. Performance analysis

We conducted some temporal tests, which involved timing the execution or communication of various
parts of the algorithm. Figure 3, resumes the entire software execution, expliciting the significant
intervals on which the tests were carried out. The tests were executed by varying the number of Edge

Figure 3: Diagram of the entire software execution

nodes acting as gateway (2, 4 and 6) and by varying the rate of the requests (2 req/s, 4 req/s, 6 req/s).
The following execution times were computed:

1https://www.docker.com/
2https://www.gluster.org/
3https://github.com/fcrlab-unime/distributed-orchestration-consensus.git
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• RequestElab. The processing time for the received request, which includes the time needed to
parse it and separate any multiple requests.

• ElectionNetworkMean. The transmission time in the network for election-related messages.
This value is averaged from the transmission times between the leader and all voters in the
network, after subtracting the election request processing time at the node being considered from
each individual value.

• VoteElectionMean. The processing time for the election request at the voting node.
• ChoosingPhase. The selection time among the voters to determine the node on which the

deployment will be performed.
• VoteConsNetMean. The transmission time in the network for consensus-related messages. This

value is averaged from the transmission times between the leader and all voters in the network,
after subtracting the vote processing time at the node being considered from each individual
value.

• VoteConsElabMean. The processing time for the vote at the voting node.
• WriteLog. The time to write the log to the file system shared among the nodes.
• TransfertReq. The transmission time in the network for deployment-related messages.

Figure 4 presents a summary of the results. Specifically, it highlights that the execution times for
ChoosingPhase and VoteConsElabMean are negligible compared to the other phases. In contrast,
the phases that consume the most time are VoteElectionMean and WriteLog. The overall system
performance improves as the number of gateway nodes increases: more nodes distribute the load more
effectively. The number of requests per second, instead, does not significantly impact performance, as
shown by the confidence intervals in Figure 4.

6. Conclusion

In this paper, we proposed a consensus-based distributed solution for orchestrating microservices
at the Edge. The proposed solution allows to distribute workloads among Edge nodes, mantaining
successful decision-making activities in a distributed log system. The system is trusted, since consensus
implies that a majority of nodes must agree on the orchestration-related decisions. The results from the
experimental evaluations indicate that this approach to orchestration is promising, as it allows for the
benefits of distributed systems to be obtained for functionalities that are traditionally developed in a
centralized manner. The decision to persistently maintain a file containing essential information about
decision-making allows infrastructure administrators to observe inconsistencies and identify critical
issues. Additionally, the choice to enable any node to become the leader increases the algorithm’s level
of distribution, thereby reducing the likelihood of having a single point of failure. Future work will
address additional functionalities, such as microservice migration, horizontal scaling and enhanced
fault tolerance, to further improve robustness and applicability in dynamic environments.
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