
DF-Threads: A Scalable and Efficient Execution Paradigm
for Edge Computing and HPC
Roberto Giorgi1

Department of Information Engineering and Mathematics, University of Siena, Italy

Abstract
Scalable and distributed computing systems are widely deployed but hide a large toll in terms of energy consump-
tion. A wider adoption of dataflow concepts at any level of the software/hardware stack of HPC system can lead
to a reduction of the intrinsic inefficiency of current systems. By leveraging structured parallel programming
based on FastFlow, we are exploring the effectiveness of DataFlow Threads (DF-Threads) in tandem with such
programming model for Edge Computing and HPC.

1. Introduction

Dataflow methodologies have been explored at multiple levels of granularity. At the instruction level,
superscalar processors have effectively implemented this by enabling instructions to execute out-of-
order as soon as their operands are ready [1, 2].

Programming paradigms such as OmpSs2 and OpenMP manage data flow among tasks and orchestrate
the scheduling of potentially large dataflow/asynchronous tasks across available computational re-
sources, including CPU cores, GPU cores, and accelerators [3, 4, 5], while new programming workflows
are deemed more appropriate for the Compute Continuum [6, 7].

Despite these advancements, the hardware-software interface still faces challenges: i) a streamlined
and efficient mechanism for managing thread-level parallelization, and ii) a widely accepted memory
consistency model.

These challenges stem from the requirements for synchronization, consistency, and coherency—a
persistent issue exacerbated by the proliferation of cost-effective, massively parallel systems and
domain-specific accelerators. The TERAFLUX [8] and AXIOM projects [9, 3] have investigated DataFlow-
Threads (DF-Threads) as a potential solution for improving performance scalability while providing a
straightforward interface for future massively parallel systems [10, 11, 4] DF-Threads can be integrated
into the architecture with the addition of a few new instructions, thereby enhancing existing processors
to offer more efficient and effective parallelism. Our experiments indicate nearly perfect scalability for
systems with over 1000 general-purpose x86_64 (extended) cores operating on off-the-shelf Linux-based
operating systems [12, 13].

In this work, for the first time, a dataflow-based structured parallel programming model like FastFlow
[14, 15] is connected to a lower-level dataflow execution model like the DF-Threads. The main objective
of this work is to improve the overall energy efficiency and programmability of HPC applications.

2. A Brief introduction to DF-Threads and FastFlow

The FastFlow framework [14] consists of a header-only C++ template library that allows programmers
to create parallel applications structured as dataflow graphs. Adhering to the thread-based parallelism
model, in each FastFlow node embodies a sequential computational unit executed by a dedicated
thread. Communication between nodes relies on non-blocking synchronization for fast data processing,
especially in high-frequency streaming environments.

BigHPC2024: Special Track on Big Data and High-Performance Computing, co-located with the 3rd Italian Conference on Big Data
and Data Science, ITADATA2024, September 17 – 19, 2024, Pisa, Italy.
$ giorgi@unisi.it (R. Giorgi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:giorgi@unisi.it
https://creativecommons.org/licenses/by/4.0/deed.en

FASTFLOW-
BASED

PARALLEL
APPLICATIONS

FRAMEWORKS
USING

FASTFLOW AS
RUN-TIME

SYSTEM

BUILDING-BLOCKS
API

HIGH-LEVEL
PARALLEL-PATTERN API

RUN-TIME SYSTEM,
GATHERING+ROUTING POLICIES

WRAPPERS, CHANNELS, FEEDBACK MODIFIERS

- CHANNELS are SPSC FIFOs (can be bounded or unbounded)
- FEEDBACK CHANNELS are optional (and always unbounded)
- Concurrency control can be blocking or non-blocking

FASTFLOW

PARALLEL+SEQUENTIAL BUILDING BLOCKS (PBBs+SBBs),
CONCURRENCY GRAPH TRANSFORMER

SEQUENTIAL BUILDING BLOCKS (SBBs)

PARALLEL BUILDING BLOCKS (PBBs)

single input single output,
multi-input single output,
single input multi-output

NODE

f
COMBINER

PIPELINE
…

… FARM

… … ALL-TO-ALL

…
MASTER-WORKER

Figure 1: (Left) FastFlow software stack. (Right) Graphical notation of the FastFlow’s Building Blocks (from
[17]).

Within a single node, FastFlow channels manage references to data allocated on the heap rather than
to plain data, with ownership of these references being transferred from the sender (producer) to the
receiver (consumer). The FastFlow programming paradigm has served as a foundational technology
in large projects such as ParaPhrase, REPARA, RePhrase, TextaROSSA [16] and in Flagship-3 of ICSC
Spoke-1 (FutureHPC). FastFlow Building Blocks define a reduced set of structured parallel components
to build and orchestrate skeleton, parallel patterns and more complex parallel structures [17] (Fig. 1).

At a lower level in the software stack is the execution paradigm called “Dataflow Threads” (DF-
Threads) [11] which has its roots in the dataflow execution models implemented in machines such
as the IBM BlueGene-C (Cyclops64) [18] and the Scheduled Data-Flow (SDF) architecture [19]. The
DF-Threads paradigm can be used to provide performance scalability, extensibility, fault tolerance
(repeating computations in time and/or space whose inputs are preserved), and isolation. DF-Threads is
a hybrid dataflow/controlflow representation of computation that allows for a reduction in excessive
synchronization. DF-Threads can also be mapped onto many forms of parallelization provided by
other programming models. DF-Threads were introduced in the TERAFLUX project for the x86_64
architecture [11, 4]. In the AXIOM project the DF-Thread execution model was further developed with
specific hardware to support scheduling [20].

Given the above premises, it seems natural to connect the high-level programming model provided by
FastFlow with the lower-level dataflow support provided by the DF-Threads (Fig. 2). The combination
of this two framework can provide a “win-win” solution as it can enhance the support for distributed
execution of FASTFLOW, while it can provide a power high-level programming model for the DF-threads.

2

Classical execution model

Set of parallel threads

APP.BIN

APP.C

DF-Threads execution model
inputs

DFTH1 DFTH2

DFTH3

DFTH5

outputs

DFT-APP.BIN

DFTH6

DFTH4

• Every instruction can write in any memory location
• High synchronization activity
• Coherency needed on multicores or DSMs
• 1 single instructions failing →the whole system to fails

• Regularization of data exchange
• Less synchronization activity
• No coherency needed
• Isolation of thread code
• Idempotency property

(more resilience,
lighter checkpointing)

Scalability,
Parallelism

Fault-tolerance,
Security

Figure 2: How DF-Threads work (simplified overview).

3. Preliminary Evaluation

3.1. Methodology

To show the potential of DF-Threads execution we compare here the execution time in case of a simple
benchmark with OpenMPI [21]. The evaluation is based on the HP-Labs COTSon1 simulator [22], an
X86_64 full-system simulator, which also accounts for OS effects. Key parameters for the modeled
cores are detailed in Table 1. Furthermore, the simulator has been extended to support DF-Threads [11],
including modeling a Distributed Thread Scheduler [23].

Table 1: Multicore architectural parameters.
Parameter Description
SoC single-core connected by a shared-bus, IO-hub, MC, high-speed transceivers
Core 3GHz, in-order superscalar
Branch Predictor two-level (history length=14bits, pattern-history table=16kB, 8-cycle missprediction penalty)
L1 Cache Private I-cache 32 KB, 4 ways, 2-cycle latency - private D-cache 32 KB, 2 ways, 3-cycle latency
L2 Cache Private 256 KB, 4 ways, 5-cycle latency
L3 Cache Shared 4GB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main Memory 4 GB, 100 cycles latency
I-L1-TLB, D-L1-TLB 64 entries, full-associative, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/Read queues 200 Bytes each, 1-cycle latency

3.2. Matrix Multiplication Benchmark

For the initial tests, we selected the Matrix Multiplication kernel. The Matrix Multiplication benchmark
has the following characteristics: blocked matrix multiplication using the classical 3 nested loops
algorithm; matrices 2 of size 𝑛× 𝑛, where 𝑛 = 216, 432, 864; block size 𝑏 = 8.

1Please note that the COTSon simulator is open-source: https://cotson.sf.net and other related open-source software is also
available at https://download.axiom-project.eu

2Please note that even if this matrix sizes may seem small, they cause a quite large simulation time (in terms of hours or days
in case of power estimation). Therefore, our focus is to derive the main properties of the framework while suggesting future

3

The input matrices’ sizes are chosen to avoid particular multiples of powers of 2 to prevent excessive
cache conflicts that might skew the evaluation of the system’s basic behavior. The threads in each
test case are generated so that each thread performs the dot-products of each block, thus the expected
number of threads is 𝑛/𝑏.

In the benchmark, we focus on the computation region of interest, excluding the data preparation
and result verification from the evaluation. Additionally, any I/O messages (e.g., ’printf’) are removed
from the computational part. Consequently, any OS-related activity pertains only to managing the data
needed for computation or moved across nodes.

For DF-Threads, the kernel activity is mostly under 10% (except in the case of 16 nodes, where the
number of threads 𝑛/𝑏 is too low, resulting in an imbalance).

3.3. DF-Threads versus OpenMPI

In OpenMPI, the workload is distributed among the available worker threads, even in a single-node
configuration, which incurs a greater overhead compared to DF-Threads. A direct comparison between
OpenMPI and DF-Threads is provided in Fig. 3, where it is evident that:

• OpenMPI slightly benefits from local cores.

• DF-Threads scales well with both the number of cores and the number of nodes, achieving an
advantage of about 28x compared to the execution OpenMPI on the same number of nodes for
n=216. This is due to the good performance and scaling of DF-Threads as well as the relatively
poor performance of OpenMPI for this input size.

For an input size of 864, DF-Threads still shows a significant advantage, about 3.5x over OpenMPI
on the same number of nodes, confirming DF-Threads’ competitive edge. When comparing a system
with 8 nodes and 4 cores per node, DF-Threads achieve a speedup of 14x over OpenMPI (not shown in
the figure). The diminishing execution time advantage of DF-Threads vs. OpenMPI highlights a large
advantage for DF-Threads in case of smaller granularity. However, our preliminary results confirm that
when combined with the power consumption evaluation, the DF-Threads offer a greater advantage also
as the number of nodes increases.

3.4. FastFlow versus OpenMPI

While FastFlow was originally designed for support shared-memory application running on multicores,
the distributed version of FastFlow currently optionally uses the OpenMPI backend. Furthermore, the
shared-memory version defaults to using non-blocking concurrency control mode, while the distributed
version employs blocking mode for its runtime system.

FastFlow supports various parallel programming paradigms, and matrix multiplication can be im-
plemented using different patterns such as pipelines or task farms. While the framework primarily
focuses on shared-memory parallelism, it also supports distributed memory systems using extensions
like FastFlow-DM.

For distributed systems, leveraging OpenMPI alongside FastFlow can provide an efficient solution.
FastFlow’s high-level parallel constructs simplify the development process while maintaining perfor-
mance. Previous experiments on FastFlow targeting distributed systems show that there is a substantial
overhead in using MPI based primitives [24]. Therefore, DF-Threads can offer a good opportunity for
enhancing the performance of a parallel application, while relying and skeleton, parallel patterns and
building blocks offered by FastFlow.

engineering work.

4

0x

10x

20x

30x

216 432 864 216 432 864 216 432 864

1 NODE 2 NODES 4 NODES

G
ai

n
 in

 e
xe

cu
ti

o
n

 t
im

e
D

F-
Th

re
ad

s
vs

 O
p

en
 M

P
I

OMPI DF-Threads

Figure 3: (Data adapted from [4]) Gain in execution time of DF-Threads compared to Open MPI (normalized to
1). The benchmark is Blocked Matrix Multiplication for different sizes of the square matrices (216, 432, 864 – the
block size is 8 elements) and 1, 2, 4 nodes. FULL-SYSTEM simulation.

3.5. Power Savings

The power consumption estimation is also based on the COTSon framework via the MCPAT utility.
In the preliminary experiments, with the matrix size 𝑛 = 216 we have measured a consistent power
saving when using DF-Threads (Tab.2) of a factor of about 2.7x.

Table 2: Power Consumption of DF-Threads versus OpenMPI for the matrix size 𝑛 = 216, 1 node, 1
core.

OpenMPI DF-Threads
0.5115 W 0.1867W

4. Conclusions

In this paper we analyzed the potentials offered by using a tandem approach based on FastFlow for the
high-level programming and on DF-Threads for the underlying execution model. Based on OpenMPI as
a common reference for evaluating this potential of improvement, we expect a considerable benefit
for both extending FastFlow and DF-Threads. The future work will include a prototype system for
demonstrating the combined performance on a set of parallel applications such as P3ARSEC suite [25].

Acknowledgement

We thank the anonymous reviewers for their comments that helped improve this work. This work is
partly funded by the European Union - NextGenerationEU - via the PNRR M4C2-Inv1.4 Italian Research
Center on High-Performance Computing, Big-Data and Quantum Computing, cascade funding project
EDGE-ME, MUR-ID: CN0000013.

References

[1] W. Hwu, P. Y. N., Hpsm, a high performance restricted data flow architecture having minimal
functionality, ACM SIGARCH Computer Architecture News 14 (1986). URL: http://dx.doi.org/10.
1145/17356.17391. doi:10.1145/17356.17391.

[2] D. K. Wang, N. S. Kim, Diag: a dataflow-inspired architecture for general-purpose processors,
Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (2021). URL: http://dx.doi.org/10.1145/3445814.3446703. doi:10.
1145/3445814.3446703.

[3] R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos, D. Theodoropou-
los, C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, Modeling

5

http://dx.doi.org/10.1145/17356.17391
http://dx.doi.org/10.1145/17356.17391
http://dx.doi.org/10.1145/17356.17391
http://dx.doi.org/10.1145/3445814.3446703
http://dx.doi.org/10.1145/3445814.3446703
http://dx.doi.org/10.1145/3445814.3446703

multi-board communication in the axiom cyber-physical system, Ada User Journal 37 (2016)
228–235.

[4] R. Giorgi, Scalable embedded computing through reconfigurable hardware: comparing df-threads,
cilk, OpenMPI and jump, ELSEVIER Microprocessors and Microsystems 63 (2018) 66–74. doi:10.
1016/j.micpro.2018.08.005.

[5] R. Giorgi, F. Khalili, M. Procaccini, AXIOM: A Scalable, Efficient and Reconfigurable Embedded
Platform, in: IEEE Proc.DATEi, IEEE, Florence, Italy, 2019, pp. 1–6.

[6] I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino, C. Spampinato, R. Morelli,
D. C. Rosario, N. Magini, C. Cavazzoni, Distributed workflows with jupyter, Future Generation
Computer Systems 128 (2022) 282–298. URL: http://dx.doi.org/10.1016/j.future.2021.10.007. doi:10.
1016/j.future.2021.10.007.

[7] M. Danelutto, P. Dazzi, M. Torquati, Structuring the continuum, in: L. Barolli (Ed.), Advanced
Information Networking and Applications, Springer Nature Switzerland, Cham, 2024, pp. 212–223.

[8] R. Giorgi, Exploring future many-core architectures: The TERAFLUX evaluation framework,
in: Advances in Computers, Advances in Computers, Elsevier, 2017, pp. 33 – 72. URL: http:
//www.sciencedirect.com/science/article/pii/S0065245816300584. doi:10.1016/bs.adcom.2016.
09.002.

[9] D. Theodoropoulos, D. Pnevmatikatos, C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-
Gonzalez, X. Martorell, N. Navarro, C. Segura, C. Fernandez, D. Oro, J. R. Saeta, P. Gai, A. Rizzo,
R. Giorgi, The axiom project (agile, extensible, fast i/o module), 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (2015). URL:
http://dx.doi.org/10.1109/samos.2015.7363684. doi:10.1109/samos.2015.7363684.

[10] R. Giorgi, et al., TERAFLUX: Harnessing dataflow in next generation teradevices, ELSEVIER
Microprocessors and Microsystems 38 (2014) 976–990.

[11] R. Giorgi, P. Faraboschi, An introduction to DF-Threads and their execution model, in: IEEE MPP,
Paris, France, 2014, pp. 60–65.

[12] N. Ho, A. Portero, M. Solinas, A. Scionti, A. Mondelli, P. Faraboschi, R. Giorgi, Simulating a
multi-core x86-64 architecture with hardware isa extension supporting a data-flow execution
model, in: IEEE Proceedings of the AIMS-2014, Madrid, Spain, 2014, pp. 264–269. doi:10.1109/
AIMS.2014.41.

[13] L. Verdoscia, R. Giorgi, A data-flow soft-core processor for accelerating scientific calculation on
FPGAs, Mathematical Problems in Engineering 2016 (2016) 1–21. Article ID 3190234.

[14] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: High-level and efficient
streaming on multicore, 2017. URL: http://dx.doi.org/10.1002/9781119332015.ch13. doi:10.1002/
9781119332015.ch13.

[15] M. Danelutto, G. Mencagli, A. Ottimo, F. Iannone, P. Palazzari, Fastflow targeting fpgas, in: 2023
31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), IEEE, 2023. URL: http://dx.doi.org/10.1109/PDP59025.2023.00023. doi:10.1109/pdp59025.
2023.00023.

[16] W. Fornaciari, F. Terraneo, G. Agosta, Z. Giuseppe, L. Saraceno, G. Lancione, D. Gregori, M. Celino,
The TEXTAROSSA Approach to Thermal Control of Future HPC Systems, Springer International
Publishing, 2022, p. 420–433. URL: http://dx.doi.org/10.1007/978-3-031-15074-6_27. doi:10.1007/
978-3-031-15074-6_27.

[17] N. Tonci, M. Torquati, G. Mencagli, M. Danelutto, Distributed-memory fastflow building blocks,
International Journal of Parallel Programming 51 (2022) 1–21. URL: http://dx.doi.org/10.1007/
s10766-022-00750-5. doi:10.1007/s10766-022-00750-5.

[18] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, G. Gao, A study of the on-chip interconnection
network for the ibm cyclops64 multi-core architecture, Proceedings 20th IEEE International Parallel
Distributed Processing Symposium (2006). URL: http://dx.doi.org/10.1109/ipdps.2006.1639301.
doi:10.1109/ipdps.2006.1639301.

[19] K. M. Kavi, R. Giorgi, J. Arul, Scheduled dataflow: Execution paradigm, architecture, and perfor-
mance evaluation, IEEE Trans. Computers 50 (2001) 834–846.

6

http://dx.doi.org/10.1016/j.micpro.2018.08.005
http://dx.doi.org/10.1016/j.micpro.2018.08.005
http://dx.doi.org/10.1016/j.future.2021.10.007
http://dx.doi.org/10.1016/j.future.2021.10.007
http://dx.doi.org/10.1016/j.future.2021.10.007
http://www.sciencedirect.com/science/article/pii/S0065245816300584
http://www.sciencedirect.com/science/article/pii/S0065245816300584
http://dx.doi.org/10.1016/bs.adcom.2016.09.002
http://dx.doi.org/10.1016/bs.adcom.2016.09.002
http://dx.doi.org/10.1109/samos.2015.7363684
http://dx.doi.org/10.1109/samos.2015.7363684
http://dx.doi.org/10.1109/AIMS.2014.41
http://dx.doi.org/10.1109/AIMS.2014.41
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1109/PDP59025.2023.00023
http://dx.doi.org/10.1109/pdp59025.2023.00023
http://dx.doi.org/10.1109/pdp59025.2023.00023
http://dx.doi.org/10.1007/978-3-031-15074-6_27
http://dx.doi.org/10.1007/978-3-031-15074-6_27
http://dx.doi.org/10.1007/978-3-031-15074-6_27
http://dx.doi.org/10.1007/s10766-022-00750-5
http://dx.doi.org/10.1007/s10766-022-00750-5
http://dx.doi.org/10.1007/s10766-022-00750-5
http://dx.doi.org/10.1109/ipdps.2006.1639301
http://dx.doi.org/10.1109/ipdps.2006.1639301

[20] A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González, C. Álvarez, X. Martorell, E. Ayguadé,
D. Theodoropoulos, D. Pnevmatikatos, P. Gai, S. Garzarella, D. Oro, J. Hernando, N. Bettin,
A. Pomella, M. Procaccini, R. Giorgi, The axiom project: Iot on heterogeneous embedded platforms,
IEEE Design and Test 38 (2021) 74–81. doi:10.1109/MDAT.2019.2952335.

[21] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, Open MPI: Goals,
concept, and design of a next generation MPI implementation, in: Proc., 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, 2004, pp. 97–104.

[22] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, COTSon: infrastructure for full
system simulation, SIGOPS Oper. Syst. Rev. 43 (2009) 52–61.

[23] R. Giorgi, A. Scionti, A scalable thread scheduling co-processor based on data-flow principles,
ELSEVIER Future Generation Computer Systems 53 (2015) 100–108.

[24] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, M. Torquati, Targeting distributed systems in
fastflow, 2013, pp. 47–56. doi:10.1007/978-3-642-36949-0_7.

[25] D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli, M. Danelutto, Bringing parallel patterns
out of the corner: The p 3 arsec benchmark suite, ACM Transactions on Architecture and Code
Optimization 14 (2017) 1–26. URL: http://dx.doi.org/10.1145/3132710. doi:10.1145/3132710.

7

http://dx.doi.org/10.1109/MDAT.2019.2952335
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1145/3132710
http://dx.doi.org/10.1145/3132710

	1 Introduction
	2 A Brief introduction to DF-Threads and FastFlow
	3 Preliminary Evaluation
	3.1 Methodology
	3.2 Matrix Multiplication Benchmark
	3.3 DF-Threads versus OpenMPI
	3.4 FastFlow versus OpenMPI
	3.5 Power Savings

	4 Conclusions

