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Abstract
Insects have the largest percentage of all living organisms worldwide, playing a pivotal role in maintaining
essential ecosystem services such as pollination, pest control, nutrient cycling, and food provisioning. However,
recent studies have reported alarming declines in insect populations globally, highlighting an urgent need for
automated methods to estimate and quantify these populations, to better understand the reasons of their decline
and to take proper measures. The ability to automatically estimate insect populations is crucial for shaping
appropriate environmental policies. Advances in AI and computer vision techniques are revolutionizing the study
of insects through non-invasive camera traps. However, the diversity of insects, close resemblances of many
species, and multi-level taxa classification remain significant challenges in image-based insect monitoring.

In this work, we propose TaxaNet a deep learning model for multi-level insect taxa classification, utilizing a
pretrained EfficientNet as a feature extractor, followed by six classification blocks. Each block predicts one of the
six taxonomic levels: Kingdom, Class, Order, Family, Genus, and Species. This hierarchical design and the loss
function improves lower-level taxa predictions by leveraging the higher-level features available. A class-weighted
hierarchical loss function, alongside the standard class-wise loss, allows the model to understand the relationships
between taxonomic levels while maintaining classification accuracy. Trained on the Diopsis insect camera trap
dataset containing 31,000 training images and 7,900 test images, the model achieved an average precision of 0.85
and a recall of 0.86 across five taxonomic levels. These results demonstrate the effectiveness of our approach in
harnessing multi-level insect taxonomy to achieve multi-level insect classification.
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1. Introduction

Insects, constitute the largest group of organisms on Earth and they play critical roles in sustaining
essential ecosystem services such as pollination, pest control, nutrient cycling, and food provisioning [1,
2]. Despite their ecological importance, recent studies have highlighted significant declines in insect
populations at a global scale, raising concerns about the biodiversity loss and potential disruption
of these vital ecosystem functions [3, 4]. This alarming trend underscores the need for accurate and
efficient methods to monitor insect populations, which is crucial for more informed environmental
policies, understanding the drivers of decline and ensuring biodiversity conservation [5].

Traditional methods for insect population monitoring include manual counting and identification, but
they are labor-intensive, time-consuming, and prone to human error [6]. The advent of AI and computer
vision technologies, such as deep learning, offer promising solutions by enabling automated, non-
invasive monitoring through camera traps and vision-based analytics [7, 8]. Hence, modern methods for
insect population consider highly automated and semi- or fully autonomous camera traps, which allow
visual monitoring of insects and AI techniques for detecting/classifying different insect individuals and
species. In spite of the significant advancements in the field, several challenges remain, particularly due
to the vast diversity of insect species, the high morphological similarities among many species, and
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the need for multi-level taxonomic classification that reflects the hierarchical structure of biological
taxonomy [9]. Existing approaches for insect classification often rely on”single-level” computer vision
classification models that do not account for the hierarchical relationships between different taxonomic
levels [10]. While effective to some extent, these models fail to fully leverage the taxonomic hierarchy,
limiting their overall accuracy and generalization capabilities. Hierarchical classification methods which
consider the evolutionary relationships between species, have been explored in various domains and
show promise in addressing the limitations of single-level classification [11].

In this work, we propose TaxaNet, which is a computer vision model based on deep learning for
multi-level insect classification that utilizes hierarchical classification properties of insects. Our TaxaNet
model is built upon a pretrained EfficientNet architecture, which serves as a feature extractor, followed
by a series of classification blocks designed to predict taxonomic levels such as Kingdom, Class, Order,
Family, Genus, and Species. Our main contribution is the introduction of a hierarchical loss function
that complements the standard class-wise loss which is mainly used in literature, enhancing a model’s
ability to capture the hierarchical relationships between levels, thereby guiding the model to make
more accurate and consistent predictions across the taxonomic hierarchy [12]. The proposed model was
evaluated using the ARISE Diopsis insect camera trap dataset [13]. The challenge focuses on developing
algorithms for classifying insect species within a public dataset of 39,445 insect images labeled with
a multi-level taxonomy across five levels. The labels are incomplete, meaning not all images have all
five taxonomic levels labeled. The challenge requires participants to submit their results to a portal
where the algorithms are tested on a private test dataset. This task is made even more difficult by the
highly imbalanced and fine-grained dataset, where image quality is often poor, and the data is organized
hierarchically by taxonomic levels. This paper aims to demonstrate the effectiveness of the hierarchical
classification approach, achieving high precision and recall across multiple taxonomic levels using
ARISE Diopsis challenge.

2. Literature Review

Deep learning (DL) has become an essential technique for classifying insects and other biological or-
ganisms, particularly with the rise of convolutional neural networks (CNNs). Traditional methods often
employ "single-level" classification models that do not consider the inherent hierarchical relationships
between taxa, as seen in studies such as [9, 14, 15, 16]. The limitation of this single-level classification
approach is that it fails to leverage the additional information available when the full taxonomic labels
of the organisms under study are known.

In the context of animal monitoring, taxonomic hierarchical classification offers a more nuanced
approach by considering the evolutionary relationships between species, which are typically structured
in a tree-like hierarchy. In the context of the classification of insects and other arthropods, hierarchical
classification has been explored using Deep Learning (DL) models like YOLOv3 [17], R-CNN [18], Faster
R-CNN [19], SSD [20], and EfficientDet [21]. The work in [22] highlights the effectiveness of using
hierarchical classification in the context of automated image analysis and deep learning, particularly for
challenging biological datasets that often feature class imbalance, high similarity between species, and
limited training examples. The study employed a two-step process where YOLOv3 was first used to detect
and classify arthropods into broad taxonomic categories, followed by a separate model for species-level
classification. This approach, tested on a custom dataset with 22 classes of arthropods, demonstrated
significant improvements over a global detector trained without hierarchical classification, achieving
a mAP of 75% compared to 48%. Despite its success, the method leverages hierarchical information
in a segmented manner, with separate models for each taxonomic rank, rather than fully integrating
hierarchical relationships within a single model.

The concept of integrating hierarchical classification within a single model has gained attention due
to its potential to enhance the predictability performance by harnessing multiple taxonomic levels at
the same time. This is achieved by incorporating class labels at each level of the hierarchy within a
unified model. A crucial component in this approach is the design of a loss function that accounts for



the hierarchical dependencies, penalizing incorrect predictions more severely when they occur higher
in the hierarchy. In the realm of hierarchical classification, various loss functions have been designed to
leverage the structured information inherent in taxonomies. For instance, triplet loss has been explored
to capture hierarchical relationships by ensuring that examples closer in the hierarchy are embedded
more closely together. However, it faces challenges such as requiring careful construction of triplets
and being limited in the extent of hierarchical information utilized at each iteration. To address these
limitations, rank-based loss functions have been introduced, which generalize well across hierarchies
with any number of levels and can handle incomplete hierarchical labels effectively [23].

For instance, [11] introduced a hierarchical cross-entropy loss function that organizes the output
classes into a meaningful hierarchy. However, the approach was primarily evaluated on text classifi-
cation tasks, where performance varied significantly across datasets, and it did not fully exploit the
hierarchical structure within the CNN architecture. Further advancements in hierarchical classifica-
tion involve embedding hierarchy directly into CNN architectures. Gao et al. [24] proposed a Deep
Hierarchical Classification (DHC) framework, which was tested on both text and image datasets, such
as Query-Category, Title-Category, and CIFAR-100. DHC demonstrated superior performance com-
pared to models like SVM, FastText, TextCNN, and KerasCNN across different hierarchical levels. The
study highlighted that DHC’s hierarchical loss function, combined with layer representation sharing,
significantly enhanced the model’s ability to accurately classify across multiple levels of a hierarchy.

LaGrassa et al. [25] introduced a hierarchical classification architecture using deep linear layers
with cross-entropy and center loss, optimizing local and global hierarchical relationships while penal-
izing hierarchy violations. Their model was tested on two datasets: VQA-Med 2019 and the Animals
Taxonomy8 dataset, which features a three-level taxonomic structure. The results highlighted the
effectiveness of their hierarchical loss combined with cross-entropy and center loss in improving multi-
level classification tasks. In another approach, Bjerge et al. [12] applied hierarchical classification
to the task of insect classification by incorporating multitask learning and anomaly detection into a
single model architecture. Their work is particularly notable for integrating a hierarchical loss function
that effectively models the taxonomic relationships between different insect species. This method
leverages both the hierarchical structure and multitask learning, resulting in improved classification
accuracy across multiple taxonomic levels. The inclusion of anomaly detection further enhances the
model’s ability to handle previously unseen species, making it a robust approach for real-world insect
classification tasks. The inclusion of anomaly detection further enhances the model’s ability to handle
previously unseen species, contributing to an overall improvement in performance.

Our approach differs from [12] by tailoring a hierarchical loss function to our dataset with incomplete
labels at deeper taxonomic levels, using a weighted sum of layer-wise entropy and dependency losses.
This strategy emphasizes consistent higher taxonomic levels while still considering lower levels, making
it particularly useful for incomplete datasets.

2.1. Our Contribution

Based on the literature review, our contributions can be summarized as follows:

1. We propose a pre-processing method to address datasets with high imbalance among insect
classes by employing a combination of under-sampling and over-sampling techniques. This
approach effectively balances the dataset, ensuring that it captures the diversity across all classes
while ensuring adequate representation for minority classes.

2. Inspired by the work in [12], we propose a hierarchical loss function tailored to our dataset,
which has incomplete labels at deeper taxonomic levels. Our proposal combines a weighted sum
of layer-wise entropy and dependency losses, allowing the model to focus on specific levels of
the hierarchy. This approach is particularly useful for incomplete datasets containing missing
labels at different levels, as it places more importance on higher taxonomic levels, where labels
are more consistent, while still considering the lower levels as well.

3. We propose TaxaNet, a model that utilizes EfficientNet as the backbone and is specifically adapted
to handle multi-level classification. This architecture allows us to effectively implement the



hierarchical loss function, enabling the model to output predictions across multiple taxonomic
levels, addressing the weaknesses of incomplete datasets.

Our approach has been effective, as shown by our position as the leader in the classification phase
of the ARISE Diopsis Challenge. This result shows that our methods and model can handle complex
hierarchical classification tasks well.

3. Methodology

3.1. Dataset

The Insect classification data set from Arise Biodiversity - Diopsis challenge dataset [13] is a comprehen-
sive collection of images for the purpose of insect detection and multi-level classification. The Diopsis
dataset includes 3,965 high-resolution images (3280 x 2464 pixels) containing a total of 48,216 labeled
insects. Each insect is annotated with a bounding box and a taxonomic label. For the purpose of this
work we employ only the classification dataset which contains 39,445 cropped images of individual
insects labeled with taxonomic level. These images are labeled at the most specific taxonomic level
possible(Fig: 1), identifying each insect to the most precise classification category allowed by the data,
resulting in 84 distinct "leaf" classes. A "leaf" class represents the most detailed level of classification,
where the taxonomic hierarchy concludes. If an insect can be identified at the species level, that species
is used as the label; otherwise, the label may be at a higher level, such as genus or family. Additionally,
a CSV file is provided to map each taxon’s name to its ancestors, aiding in hierarchical classification.

Figure 1: Visualization of insect samples with multiple taxonomic labels. The table at the bottom of each image
displays the taxonomic classification with the following levels: Kingdom, Phlum, Class, Order, Family, and
Genus.

3.1.1. Data Preprocessing:

The dataset presents several challenges, including the following: a) a significant imbalance in the number
of training examples per species, b) a relatively poor image quality due to trade-offs between camera
cost and resolution. To address these challenges, we implemented a combination of data under-sampling
and over-sampling techniques, explained below.



Figure 2: (a) Visualization of class distribution before and after applying the oversampling technique.
The graph illustrates how the oversampling method increased the representation of underrepresented
classes to achieve a more balanced dataset. (b) Visualization of the undersampling process showing the
formation of 5 clusters after applying PCA to reduce the data to four principal components, which explain
81% of the variance. The graph plots the first three principal components for visualization, highlighting
the cluster centers and the distribution of samples within each cluster.

1. Undersampling: To address the issue of data imbalance, we employed a data under-sampling
technique to reduce redundancy while maintaining the diversity of the dataset. The RGB images
were subjected to Principal Component Analysis (PCA) to reduce dimensionality, retaining the
first four principal components, covering a variance of 0.8193. These four components were then
used to create clusters using K-Means clustering, with the number of clusters experimentally
determined to be 5. Within each cluster, the distance of samples to their respective cluster
centers were calculated as in Fig:2. To maximize diversity and eliminate redundancy, samples that
were close to each other within the same cluster were removed. This undersampling technique
reduced the dataset size from 39,446 to 27,273, ensuring that we retained the most diverse and
representative samples.

2. Oversampling: To further address class imbalance, we implemented additionally an over-
sampling technique based on weighted random sampling. This approach was applied at the level
4 of the taxonomic hierarchy (Order), where the dataset contains the largest number of classes.
The core idea behind this method was to assign sampling probabilities inversely proportional
to the class frequencies. Specifically, class weights were calculated as the inverse of the total
number of items per class, ensuring that under-represented classes were given higher sampling
probabilities. This technique effectively balanced the dataset by increasing the representation of
minority classes without altering the original data distribution. By generating a sample set with



replacement, we maintained the total number of samples while ensuring a more uniform class
distribution across the dataset.

These preprocessing steps helped to address data imbalance and was crucial in enhancing the model’s
ability to learn effectively from all classes, particularly those with fewer examples, thereby improving
the overall classification performance.

3.2. Model

We named our classification model as TaxaNet. It is based on the EfficientNet-B0 architecture [26],
a convolutional neural network (CNN) known for its efficiency in both computational resources and
accuracy. EfficientNet-B0 was pretrained on the ImageNet dataset, to exploit transfer learning in our
specific insect classification task. TaxaNet leverages the EfficientNet-B0 backbone, which outputs a
1280-dimensional feature vector after passing through the series of its convolutional layers. To adapt
this backbone for our multi-level classification task, we modified the classifier head of the network. The
original fully connected layer of EfficientNet-B0, which outputs a 1000-dimensional vector for ImageNet
classification, was replaced by a custom classifier. This custom classifier is a sequential block that first
reduces the feature vector to 512 dimensions using a linear layer, followed by a ReLU activation and a
dropout layer with a dropout rate of 0.5, to prevent overfitting. Finally, another linear layer maps the
512-dimensional vector to the desired number of classes.

Given the hierarchical nature of the dataset, where class labels are organized across multiple taxonomic
levels, the TaxaNet model is designed to output predictions corresponding to these levels, such as
species, genus, and family. The output vector is split into segments corresponding to these different
taxonomic levels by connecting the feature vector to separate fully connected layers, each representing
a different taxonomic level. The size of each segment, and the number of neurons in each fully
connected layer, is determined by the number of classes at that particular taxonomic level, with
the size directly corresponding to the one-hot encoded labels. This one-hot encoding of class labels
ensures that each segment accurately represents the classes at its respective level, facilitating precise
class predictions. This design not only ensures efficient computation but also effectively captures the
hierarchical relationships between different classes, enhancing the model’s performance across various
taxonomic levels. Additionally, the architecture is specifically tailored to handle a hierarchical loss
function, which will be discussed in Sec: 3.3, ensuring that the training process is aligned with the
hierarchical structure of the dataset.

3.3. Loss function

The loss function used in TaxaNet is designed to handle the hierarchical nature of the classification
task, ensuring that the predictions are accurate at each taxonomic level and consistent across levels. We
implemented a combination of Cross Entropy Loss and a Hierarchical Dependency Loss, inspired by the
approach proposed in [12]. A summary of these components and their integration is described below.

3.3.1. Cross Entropy Loss

As a baseline, we initially trained our model using only Cross Entropy Loss, a standard choice for
classification tasks. For each taxonomic level 𝑙, the Cross Entropy Loss lloss𝑙 is defined as:

lloss𝑙 = −
𝑁∑︁
𝑗=0

𝑦𝑙𝑗 log(𝑦𝑙𝑗)

where 𝑦𝑙𝑗 is the true label and 𝑦𝑙𝑗 is the predicted probability for the 𝑗th sample. The predicted
probabilities 𝑦𝑙𝑗 are derived from a softmax function applied to the model’s output at level 𝑙.



Table 1
Evaluation results comparing three models trained on different loss functions: M-L1 (cross-entropy), M-L2
(hierarchical), and M-L3 (layer-wise weighted hierarchical).

Model Data Loss Precision Recall
Level2 Level3 Level4 Level5 Level2 Level3 Level4 Level5

M-L1 Train 0.025 1.00 0.99 0.99 0.97 1.00 0.99 0.97 0.97
Valid 0.536 0.81 0.71 0.66 0.75 0.84 0.83 0.71 0.82

M-L2 [12] Train 0.287 0.99 0.99 0.97 0.98 1.00 0.98 0.97 0.98
Valid 0.735 0.91 0.85 0.88 0.80 0.90 0.82 0.76 0.82

M-L3 Train 0.327 1.00 1.00 0.99 0.97 0.99 0.99 0.99 0.97
Valid 0.814 0.91 0.86 0.87 0.79 0.92 0.84 0.85 0.82

Note: Metrics begin at Level 2 since Level 1 contains only one class and is not predicted by the model

3.3.2. Hierarchical Dependency Loss

In addition to Cross Entropy Loss, we incorporated a Hierarchical Dependency Loss [12] to penalize
inconsistent predictions across taxonomic levels. This loss ensures that predictions at lower levels (e.g.,
species) align with those at higher levels (e.g., genus, family). The dependency loss dloss𝑙 for each level
𝑙 is defined as:

dloss𝑙 = exp(𝐷𝑙)− 1, 𝐷𝑙 = {1 if 𝑦𝑙 ̸→ 𝑦𝑙−1, 0 otherwise}

Here, 𝐷𝑙 checks if the predicted label at level 𝑙 is a child of the predicted label at level 𝑙−1. A violation
of this relationship results in a penalty, guiding the model to respect and consider the hierarchical
consistency.

3.3.3. Weighted Sum with Decaying Weights

The method proposed in [12] assumes a well-labeled dataset with complete labels at all taxonomic
levels. However, our dataset contains missing labels at different levels, making it necessary to adapt our
approach accordingly. Thus, we used a Weighted Sum with Decaying Weights approach. This method
assigns decreasing weights 𝑤𝑖 to each taxonomic level, with higher levels (closer to the root) receiving
more emphasis. The total loss is calculated as:

Total Loss =
5∑︁

𝑖=1

𝑤𝑖 · (Entropy Loss𝑖 + Dependency Loss𝑖)

Where: 𝑤1 > 𝑤2 > · · · > 𝑤5, ensuring higher levels receive more emphasis. After some trial-
and-error experiments, we chose 𝑤 = [0.25, 0.25, 0.25, 0.15, 0.1] to prioritize higher levels while still
considering the lower levels. Entropy and dependency losses at each level are scaled according to these
weights.

This approach allows explicit control over the importance of each taxonomic level, which is particu-
larly advantageous given the incomplete labeling in our dataset. The flexibility of this method helps the
model learn effectively from the available data, improving overall classification performance.

4. Results and Discussion

We trained the TaxaNet model using the Adam optimizer with a learning rate of 0.001. The training
involved three separate models, each using a different loss function as described in the previous section:
the standard Cross Entropy Loss (M-L1), the hierarchical loss proposed by [12](M-L2), and our custom
hierarchical loss with decaying weights(M-L3). The model was trained on a dataset comprising 27,273
images, which were split into a 90:10 ratio for training(24,545) and validation (2,727) images. The results
from this training process are summarized in Table 1.



Table 2
Comparison of model performance on the ARISE Diopsis challenge private test set, showing accuracy and taxon
distance metrics [13].

Model Accuracy Taxon Distance

M-L1 0.50 4.40
M-L2 0.59 2.34
M-L3 0.62 2.25

The model trained with Cross Entropy Loss (M-L1) exhibits the lowest performance, in terms of
precision and recall at deeper taxonomic levels. This outcome is well expected, as Cross Entropy Loss
treats each class independently, without considering the hierarchical relationships between classes. As
a result, the M-L1 may accurately predict lower-level classes but fail to maintain consistency across
levels, leading to reduced overall performance. In contrast, the models trained with hierarchical loss
functions (M-L2 and 3) demonstrated significantly higher performance. The hierarchical loss proposed
by [12] (M-L2) performed better than the Cross Entropy Loss by incorporating penalties for inconsistent
predictions across taxonomic levels. This approach helps the model to learn not only the correct labels
but also the relationships between different levels, leading to more coherent predictions throughout the
hierarchy.

The model trained with our custom hierarchical loss function with decaying weights (TaxaNet, M-L3)
slightly outperformed the hierarchical loss from [12]. This slight improvement can be attributed to the
weight applied at different levels of the hierarchy. By assigning higher weights to predictions at higher
taxonomic levels (closer to the root of the hierarchical structure of the insects’ biological taxonomy),
our loss function ensures that TaxaNet places greater emphasis on learning these broader classifications.
This approach is particularly beneficial in scenarios where higher-level classes are more critical for
classification purposes, or in cases where data labeling is not complete, and the finer-grained classes at
lower levels need to be considered for better classification. Moreover, the decaying weights allow for a
balanced contribution from each taxonomic level, preventing the model from overfitting to any single
level of the hierarchy.

The results in Table 1 are based on a dataset that was split into a 90:10 ratio for training and validation,
respectively. While the validation set is slightly smaller than usual, this was a deliberate choice due to
the limited data available for training. The aim was to encourage the model to see as many samples as
possible during training to improve its accuracy. Despite the small validation set, we performed a more
robust evaluation by testing the three models on a private test dataset provided by the ARISE Diopsis
Challenge portal. This final evaluation on the private dataset is important for assessing the models’
generalization in real-world challenges.

The results, summarized in Table 2, show the accuracy of our models on the ARISE private test set.
Table 2 includes two key metrics: overall accuracy and taxon distance. Accuracy refers to the percentage
of insects correctly classified, providing an overall measure of model performance, though it tends to be
influenced by the majority classes. Taxon distance, on the other hand, is a custom metric specific to
hierarchical labels. It quantifies the number of edges that need to be traversed within the taxonomic tree
to move from the true taxon to the predicted taxon. This metric accounts for the nature of hierarchical
misclassifications. Lower taxon distances indicate predictions that are closer to the correct classification,
even if not entirely accurate, thus providing a more nuanced view of model performance. As shown in
the table, TaxaNet (Model 3), which utilizes our custom hierarchical loss function with decaying weights,
achieved the highest accuracy and the lowest taxon distance. We currently lead the competition at
the ARISE Diopsis Challenge, outperforming the other participants in both accuracy and taxonomy
distance [13]. We strongly believe that the key elements which allow us to lead the competition are the
ones described in this paper.



4.1. Future Work

As future work, we intend to further experiment with the loss function by incorporating taxon distance
together with the existing entropy and dependency loss, either as a differentiable term or as a regu-
larization term. The taxon distance, used in the Diopsis challenge, seems to be an interesting metric
we intend to investigate integrating into our loss function, as it could potentially improve accuracy.
By explicitly penalizing predictions that deviate significantly from the correct classification within the
taxonomic hierarchy, we aim to enforce greater hierarchical consistency.

Our work has already been compared with the approach by Bjerge et al. [12], as shown in Table 1.
Moving forward, we plan to extend our comparison to include the work by LaGrassa et al. [25], who
introduced a hierarchical classification architecture using deep linear layers with cross-entropy and
center loss. Their focus on optimizing both local and global hierarchical relationships while penalizing
hierarchy violations offers another valuable perspective. Comparing our work with theirs will help us
further refine our loss function and overall model architecture.

We will also work on preprocessing the data to better handle the varying image resolutions in our
dataset. Currently, we resize all images to a uniform size, which may result in the loss of important
information. Future work will involve exploring techniques that can preserve more detail and improve
model performance.

Additionally, we plan to extend our work on new datasets, which can also be incomplete, and focus
on other insect species. This will allow us to assess how well TaxaNet generalizes to other problems,
challenges, and datasets. A candidate such dataset is one that we are currently collecting at our field
sites. This new dataset will present unique challenges and opportunities, particularly in dealing with
diverse environmental conditions, insect species, and variations in image quality.

5. Conclusion

In this work, we proposed a method for hierarchical insect classification using the TaxaNet model, built
on top of the EfficientNet architecture. Our approach involved data preprocessing based on under- and
over-sampling techniques, as well as the proposal of a novel loss function, which is based on a custom
hierarchical loss with decaying weights, to improve classification accuracy and maintain consistency
across taxonomic levels. The model was trained and evaluated on an incomplete dataset with many
challenges, demonstrating superior performance, in comparison to existing approaches.

The experimental results showed that TaxaNet performs particularly well in scenarios where hier-
archical relationships between classes are critical and at the same time the datasets have incomplete
information in some taxonomical levels. The inclusion of hierarchical dependencies in the loss function
proved to be highly effective, with our model achieving higher accuracy and lower taxon distance
compared to models trained with standard Cross Entropy Loss. This indicates that TaxaNet not only
predicts the correct classes but also respects and harnesses the hierarchical structure, resulting in more
meaningful and accurate predictions. As the current leader in the open competition of the ARISE
Diopsis Challenge, the proposed method demonstrates significant potential for application in large-scale
insect classification and conservation efforts, providing a robust tool for biologists and ecologists to
monitor species with greater accuracy and efficiency.
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