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Abstract
In this study, we explore advanced computer vision techniques to enhance wildlife management through
the automatic detection and classification of animal species from camera trap images. Leveraging
deep learning methods, our research focuses on the automated extraction of critical information from
these images to support forest and wildlife management, biodiversity monitoring, and reintroduction
program evaluations. We present a specialized data set with manually labeled and validated images and
comprehensive metadata, including species identification, sex, age class, and unique IDs for individual
animals. Our approach integrates both single-stage and two-stage detection and classification strategies,
utilizing models such as YOLO and EfficientNet. Initial results demonstrate the effectiveness of our
methods, achieving significant accuracies (up to 95%) and providing a user-friendly interface for further
refinement of classifications. Future work will expand the data set and explore transformer-based deep
neural networks to enhance the robustness and applicability of our wildlife classification system.
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1. Introduction

Wildlife cameras have become essential tools in contemporary wildlife research and conservation
efforts, being employed in a diverse range of applications. Their primary use involves monitoring
wildlife populations, which includes both common game species such as red deer, roe deer,
and wild boar, and more elusive or ecologically important species that play crucial roles in
maintaining biodiversity [1, 2]. These cameras offer a non-intrusive means of gathering vital
data, capturing images of animals in their natural habitats without interfering. Figure 1 shows
a camera trap mounted on a tree, demonstrating the typical setup used to capture images of
wildlife in their natural environments. This setup ensures minimal disturbance to the animals
while providing a strategic view point for monitoring. Figure 2 illustrates a typical image
captured by such a camera trap, showcasing its capability to provide detailed visual information.

4th International Workshop on Camera Traps, AI, and Ecology, September 5 - 6, 2024, Hagenberg, Austria
*Corresponding author.
$ sead.mustafic@joanneum.at (S. Mustafić); dominik.dachs@meles.eu (D. Dachs); rainer.prueller@pentamap.com
(R. Prüller); florian.schoeggl@pentamap.com (F. Schöggl); roland.perko@joanneum.at (R. Perko)
� 0000-0003-3374-4201 (R. Perko)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sead.mustafic@joanneum.at
mailto:dominik.dachs@meles.eu
mailto:rainer.prueller@pentamap.com
mailto:florian.schoeggl@pentamap.com
mailto:roland.perko@joanneum.at
https://orcid.org/0000-0003-3374-4201
https://creativecommons.org/licenses/by/4.0


Figure 1: Exemplary trail camera with a SIM card for near real-time data transmission and an infrared
flash for night recordings, mounted on a tree to monitor forest activity.

Figure 2: Exemplary labeled image from a red deer (Cervus elaphus) feedings site.

In this paper, we present a comprehensive investigation into the use of advanced computer
vision techniques to assist biologists in classifying wildlife based on images obtained from camera
traps. Our research leverages state-of-the-art machine learning methods to accurately identify
and categorize various animal species, focusing on the automatic derivation of information
from these images. The key stakeholders and beneficiaries of our approaches include:

1. Forest and wildlife management: Forest administrations, hunting authorities, and
avalanche control agencies can benefit from our approaches for effective planning and
implementation of forest protection strategies. The automatic information extraction from
camera trap images aids in making informed decisions regarding wildlife management
and habitat conservation.



2. Biodiversity monitoring: Ecologists, nature conservationists, and national park author-
ities can utilize our techniques to conduct comprehensive assessments of biodiversity.
By automating the identification of species diversity and population dynamics, our re-
search supports understanding the health of ecosystems and aids in the development of
conservation policies.

3. Reintroduction program evaluation: Nature conservationists and national park admin-
istrators can use our automated methods to gain insights into the success of species
reintroduction efforts. For example, tracking the reintroduction of predators such as
wolves and lynxes requires precise monitoring, which our research facilitates by providing
accurate identification and tracking of these species over time.

This study focuses on the initial and critical task of detecting and classifying all animal
species present in the captured images. This step is essential for further advancements, where
our approach will also identify individual animals and determine specific attributes such as
sex and age class. This enhanced capability will enable more detailed ecological studies and
management practices. Additionally, it is important to note that our method, similar to most
camera trap-based computer vision techniques, also detects humans and vehicles. This aspect is
crucial as it addresses privacy concerns by ensuring that images containing humans or vehicles
(license plates) are promptly identified and deleted to protect individual privacy.

1.1. State of the Art

Various computer vision systems for wildlife detection and classification from camera trap
images have been proposed (e.g., [3]) and evaluated (e.g., [4]). In this respect, Microsoft developed
a specific detector for camera trap images called MegaDetector1 [5], which yields bounding
boxes for humans, vehicles, and animals and, thus, also classifies blank images. Up to version 4,
it was based on Faster R-CNN [6], and from version 5 onwards, it utilized YOLOv52.

To achieve finer-grained classification of species, two methodologies are pursued: (1) training
object detectors and classifiers specifically for this task, or (2) relying on a general detector
for animals (like MegaDetector) and classifying the corresponding bounding boxes. The first
approach is mostly based on one or two-stage detectors like Fast R-CNN [7], Faster R-CNN [6],
EfficientDet [8], and various YOLO versions [9] (including YOLOv1 to YOLOv8, YOLOR, and
YOLOX). The second approach is based on classifiers like VGG [10], Inception-v3 [11], Xception
[12], or EfficientNet [13].

An example of an one-stage approach is presented within Trapper-AI3. It is based on YOLOv84

and was trained for 18 European mammal species. An example of a two-stage approach is
DeepFaune [14], which can distinguish between 28 different species. It was trained on propri-
etary data from France and achieves relatively high accuracies on this data set. Additionally,
Swarovski’s AI-based binoculars AX Visio5 represent a significant advancement in real-time
wildlife observation, capable of distinguishing 9000 different bird species.
1https://github.com/microsoft/CameraTraps/blob/main/megadetector.md
2https://github.com/ultralytics/yolov5
3https://huggingface.co/OSCF/TrapperAI-v02.2024
4https://github.com/ultralytics/ultralytics
5https://www.swarovskioptik.com/us/en/birding/products/binoculars/ax-visio/ax-visio-binoculars/ax-visio
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Several studies have further demonstrated the potential of deep learning for the detection
and classification of animals from camera trap images [15, 16, 17, 18]. In most cases, these
studies achieved higher accuracy in detecting the region of the animal compared to fine-grained
classification [16, 18]. Additionally, research indicates that transfer learning, where a model
trained on data from one region is applied to another, can be effective [16, 17]. While detection
accuracy shows only minimal degradation, there is a notable decline in classification accuracy
when models are transferred [16, 19]. This outcome is expected, as similar species across different
regions may exhibit slight variations in appearance. Additionally, certain animal species may
experience changes in appearance due to environmental factors, seasonal variations (e.g., winter
vs. summer), or variations among subspecies.

Given the time-intensive nature of manually labeling camera trap images, recent research
has increasingly focused on training models using only partially manually labeled data, or
alternatively, fully automatically labeled or clustered data sets [20, 21]. This shift in focus aims
to reduce the reliance on extensive human effort while maintaining or even improving the
accuracy and efficiency of wildlife monitoring and species identification.

Overall, while methodologies for wildlife classification exist, they often lack comprehensive
data sets for specific animal species. Furthermore, the areas of attribute classification and
re-identification are not sufficiently addressed in the literature and represent a significant
technological gap.

1.2. Contribution

Our research introduces two innovative aspects that advance the current state-of-the-art:

1. Customized Data Set: We present a specific data set comprising labeled camera trap
images from various regions in Austria. This data set features manually validated im-
ages accompanied by comprehensive metadata. Unlike existing data sets, ours includes
additional information such as the sex and age class of the animals, alongside species
identification and unique IDs for re-identifying individual animals.

2. Automated Image Classification with User Adjustments: We introduce a computer vision
approach designed to aid users in accurately classifying camera trap images. This method
performs automatic detection and classification, while also allowing users to refine the
results. It does so by presenting the top n categories with corresponding confidence levels
through an intuitive graphical user interface (GUI). As illustrated in Figure 9, the GUI
exemplifies how users can interact with the system, making corrections and adjustments
to the automatically detected and classified images.

2. Input Data Sets

A robust data set is a fundamental prerequisite for the effective training of machine learning
models. Therefore, the proposed data set has been carefully prepared and consists of three main
components covering 31 animal species. Firstly, data sets from various projects by the Meles
office were utilized. The images for these data sets were captured across 34 different locations,
providing a diverse range of environments and conditions. Secondly, the project leveraged a



data set from Deermapper cameras by Pentamap6, which includes millions of images taken
at numerous locations, from which a subset was randomly selected for the project. Although
these images predominantly feature common animal species, they also contain rare species
that are invaluable for studies of this nature. Thirdly, we strategically placed cameras in zoos,
specifically at the Hague Zoo and the Cumberland Wildlife Park Grünau, to capture targeted
images of rare animal species like the sika deer and lynx. These species were underrepresented
in the data sets from actual hunting areas. Overall, the data set is highly generic as it comprises
images from different cameras positioned at various locations, showcasing diverse weather,
daylight, and seasonal conditions (cf. Figure 3). The images were labeled using the TRAPPER
software7. We adopted the open standard Camtrap DP [22] for data formatting. In the initial
batch, 68.000 images containing 88.000 objects were labeled. Each bounding box containing
animals was annotated with species information, while age class, sex, and animal ID were
included whenever possible.

Figure 3: Data set for this study: Randomly selected crops of animals of our proposed data set. The
data set is generic and holds image from different cameras at various standpoints, altering weather,
daylight, and seasonal conditions.

Due to the highly unbalanced nature of the original data set, in this initial work, we only
considered classes with more than 300 images. To maintain data balance, for all classes that had
more than 3000 images, only 3000 randomly selected images were used for training, resulting
in 13 final classes.

The class distribution, bounding box centroids, and bounding box dimensions are illustrated
in Figure 4. Despite preselection and reduction to specific classes, an imbalance is still evident
(Figure 4, left). However, this current imbalance is manageable with various training techniques,
such as assigning higher weights to classes with fewer instances and applying targeted and
varied augmentations to balance the data effectively.

The centroids of annotated bounding boxes are well-distributed within the images (Figure 4,
middle), with a slightly lower density in the lower part of the image. This is expected in
camera trap images, as these cameras are usually mounted relatively low on a tree, causing
the centroids of animals further away to be positioned towards the middle or upper part of the
image. Conversely, if an animal is very close to the camera trap, it appears relatively large in

6https://www.deermapper.net
7https://os-conservation.org/projects/trapper
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the image, leading to larger bounding boxes with centroids closer to the center of the image.
To train the model optimally for all animals which are captured at various scales and different

sizes within the camera trap images, the distribution of bounding box sizes (width and height)
is crucial. It is important to have both large and small bounding boxes relative to the image size.
Figure 4 (right) shows a relative good distribution in our data set. It is evident that a significant
portion of the bounding boxes covers approximately a quarter of the image, but some bounding
boxes extend over even larger parts of the image. Additionally, many bounding boxes span
the entire image, as indicated by the yellow-red points at a width or height of around 1. These
statistics and visualizations demonstrate that the quality of the data is sufficient for successful
training.

The processed and partially balanced data set ultimately contains 25.000 labeled objects. This
might not seem like a large amount, especially for deep learning. However, as is well known,
the balance, quality, and diversity of the data are much more critical in training a model than
having a large number of similar low-quality images. This has also been confirmed by our own
investigations and tests.

To improve the accuracy of detection and classification and to detect and classify additional
species, the data set will be further expanded throughout the project. The already trained
model will be utilized to selectively choose images for underrepresented species from millions
of images, excluding those that are heavily overrepresented, such as red deer, as candidates
for manual labeling. This approach will significantly reduce the number of images requiring
manual labeling, making the labeling process more efficient and resource-saving.

For training purposes, the described data set was divided into training, validation, and test
sets, containing 80%, 10%, and 10% of the total images, respectively. This subdivision was
performed randomly for each class to ensure a representative distribution.

Beery et al. [19] recommend using a location-based split (assigning locations exclusively to
either the training or test data sets), in addition to a random split, to mitigate the impact of
images captured from the same location with similar backgrounds, which can lead to inflated
accuracy results. While this approach was not incorporated in the initial tests, it is planned for
future experiments. The data set contains detailed location metadata for each image, which
will be utilized in upcoming analyses specifically designed to apply and assess the impact of a
location-based split. This approach is expected to further improve the model’s generalizability
and robustness across different environments.

Compared to object detection and classification in cities or in man-made environments,
detecting and classifying animals in the wild is significantly more challenging. As seen in
Figure 5 (left), animals can be quite difficult to spot in some images (actually two fawns are hiding
in the meadow). They often hide or blend into their surroundings. Additionally, the background
in wildlife images is highly diverse and can become even more unique and challenging due to
numerous factors. The daily (shadow) and seasonal changes, along with phenology, further
enhance the dynamic and diverse nature of the background.

Additionally, in some images only small parts of the animal are visible, as illustrated in
Figure 5 (right, bounding boxes: a-g). Such images can be challenging to label even manually.
Therefore, this type of images, along with other animals that do not fit into any predefined
class, is categorized under the unknown class. The unknown class plays a crucial role in the
model’s learning process by helping it recognize and correctly handle images that do not belong



Figure 4: Custom data set used for this study. Shown are the class distribution (left), the distribution of
the bounding box centroids holding animals within the images (middle), and the distribution of width
and height (i.e. the size) of bounding boxes (right).

to any of the defined categories. By including this class, the model is trained to identify and
avoid incorrectly predicting such images as belonging to one of the predefined classes. This
prevents the model from making false positive predictions when encountering unfamiliar or
ambiguous instances. During both training and evaluation, the unknown class is treated the
same as any other class. It is included in the loss function and contributes to the model’s overall
performance metrics. This approach ensures that the model is robust in distinguishing between
known classes and truly unknown or ambiguous examples, thereby enhancing its generalization
capabilities.

The data set used for model training was sourced from multiple project partners and is not
planned to be made publicly available.

Figure 5: Challenging image where the two fawns indicated by the red arrows are barley visible (left)
and exemplary bounding boxes of the unknown class (right: a-g).



3. Methodology

Our methodology for animal detection and species classification employs two distinct strategies,
namely single-stage and two-stage approaches as depicted in Figure 6.

The single-stage approach involves training object detectors to perform both detection and
classification simultaneously. We evaluated multiple advanced algorithms, such as Fast/Faster
R-CNN, EfficientDet, and various models from the YOLO family. These models were assessed
based on their runtime and accuracy on two devices: RTX A4000 GPU and NVIDIA Jetson TX2.
To find the optimal configurations, we tested multiple models with different parameters, e.g.,
the input image size.

In the two-stage approach, the process is divided into two steps. Initially, a detector is
trained to identify animals in the images. Subsequently, the detected bounding boxes are first
cropped and then classified into specific species using different CNN architectures, including
InceptionV3 [11], Xception [12], and EfficientNet (B0 to B7) [13]. Notably, we chose CNNs over
transformer-based deep neural networks (DNNs) because the latter require significantly larger
data sets to achieve comparable accuracy [23]. As the project progresses and more data becomes
available, we plan first to explore combined CNN and transformer-based DNNs, such as CCT
[24] and later pure transformer DNN like ViT [23] and SwinT [25].

The primary advantage of the two-stage approach is its flexibility. The animal detection
model can remain unchanged while the classification model can be easily updated to include
new species and attributes. Additionally, this method reduces the labeling workload for the
detector, as it only requires bounding box annotations without needing detailed attribute labels.

Figure 6: Detection and classification workflows: One-stage and two-stage approaches.

To facilitate user interaction, our approach not only provides the top prediction but also
displays the best n species matches along with their confidence levels. This feature allows users
to adjust labels if necessary. The user interface for the mobile application, designed to enable
easy label modifications, is shown in Figure 9.



4. Results

Results are reported for one- and two-stage detection and classification of animal species, also
including the developed mobile application.

4.1. One-Stage Detection and Classification

Initial evaluations revealed that among the various object detectors tested, some exhibited
very slow performance (e.g., Fast/Faster R-CNN, EfficientDet). In contrast, scaled-YOLOv4
[26], YOLOX [27], and YOLOR [28] showed superior performance. Further testing indicated
that YOLOR (specifically YOLOR with cross-stage partial connection) outperformed the others,
followed by scaled-YOLOv4 and YOLOX, with all models using an input image resolution of
640 x 640 pixels. The inference speeds were 58.8/4.3 (YOLOR), 45.5/1.9 (scaled-YOLOv4), and
40.0/2.5 (YOLOX) frames per second on RTX A4000 / NVIDIA Jetson TX2, respectively.

The YOLOR-based detector was ultimately trained to recognize all animal species, as well as
humans and vehicles. Evaluation on the test set demonstrated a weighted accuracy of 86.5% and
an overall accuracy of 81.0% (cf. Figure 7, left). Certain classes, such as birds, had significantly
lower accuracy, which also accounted for most of the undetected objects. Further analysis
revealed that the bird class had relatively few available images, and the same bird species
appeared in over 90% of these images. Additionally, the size of the birds in the images posed a
challenge, as camera traps are sometimes triggered by birds that appear very small (only a few
pixels) and blurry due to their distance from the camera.

The confusion matrix (cf. Figure 7, left) also shows misclassifications between visually similar
species, such as roe deer, red deer, sika deer, and fallow deer. Moreover, animals are often only
partially visible in the images, either at the corners, at considerable distances, or captured while
moving rapidly, resulting in significant motion blur.

4.2. Two-Stage Detection and Classification

Initial tests of the two-stage approach revealed that EfficientNetB7 yielded the best performance,
achieving a weighted accuracy of 76.8% and an overall accuracy of 76.6% (cf. Figure 7, right).
The lower accuracies observed, compared to the one-stage approach, were anticipated due to
the limited scope of hyperparameter tuning and specific fine-tuning conducted during the study.
The following hyperparameters were varied during the experiments, with the final selected
values highlighted in bold:

• Optimizer: Adam, AdamW, RMSprop
• Learning Rate: 0.01, 0.001, 0.0001 in combination with Weight Decay: 0.001, 0.0001,

0.00001
• Batch Size: 4, 6, 12, 16, 32
• Image Size: 224, 299 (X- and Inception), 300 (EfficientNet), 528, 600
• Training Epochs: 25, 50, 75, 100

The selection of these hyperparameters was not entirely arbitrary, although it did not result from
an exhaustive optimization process. Instead, key hyperparameters were systematically varied,



and the most promising combinations were selected for the final models. Further automatic and
extensive hyperparameter tuning, as well as adjustments to the neural network architecture,
are expected to lead to improved accuracy and performance in future iterations.

Compared to the one-stage approach, similar challenges were encountered in this two-stage
method, particularly with confusions between visually similar classes such as roe deer, red deer,
sika deer, and fallow deer.

This suggests that the difficulties are inherent to the data set and the nature of the ani-
mal species rather than the detection method itself. For example, certain species were often
partially visible, located at a distance, or captured while moving, resulting in motion blur,
which presents a challenge for accurate classification. Future efforts will focus on refining the
model through extensive hyperparameter tuning and exploring additional neural networks
(e.g., transformer-based) to enhance performance. By addressing these challenges, we aim to
improve the robustness and accuracy of the two-stage detection and classification system.

Figure 7: Results of one-stage detection and classification with YOLOR (left) and two-stage classification
of reference bounding boxes using EfficientNetB7 (right).

Additionally, a detailed analysis was carried out to assess whether the correct species is
included within the top 3 or top 5 predictions based on confidence scores. Figure 8 highlights
the comparison using the confusion matrix and illustrates the accuracy improvements between
the top 1, top 3, and top 5 predictions. The results show an accuracy increase of about 13% when
considering the top 3 predictions compared to the top 1. Furthermore, there is an additional 6%
gain in accuracy when expanding from the top 3 to the top 5 predictions. Overall, this results
in a nearly 20% increase in accuracy when comparing the top 1 to the top 5 predictions. For
some classes, the top 5 predictions achieved 100% accuracy, bringing the overall accuracy to
95%. However, despite the average accuracy improvement of nearly 20%, certain classes exhibit
smaller accuracy gains. This is particularly evident in the unknown class, where the accuracy
difference between the top 1 and top 5 predictions is only 7%. The likely reason for this modest



improvement is the high heterogeneity within the unknown class, which includes a wide range
of animals that do not fit into any predefined category. This inherent diversity makes it more
challenging for the model to accurately classify these instances. As a result, the unknown class
remains more difficult to accurately predict than other more homogeneous classes.

Figure 8: Classification of reference bounding boxes using EfficientNetB7 showing the improvements
between top 1, top 3, and top 5.

4.3. Mobile Application

To demonstrate the practical benefits of considering the top 3 or top 5 predictions, we can look
at specific examples from our data set. For instance, the fallow deer depicted in Figure 9 was
initially misclassified as a red deer in the top 1 prediction. However, when considering the top
3 predictions, fallow deer was correctly identified as the second highest confidence prediction.

5. Conclusions and Outlook

This study provided valuable insights into wildlife classification, achieving species classification
accuracies ranging from 77% to 87%. Both one-stage and two-stage approaches were explored,
showing comparable performance, with the two-stage approach slightly lagging behind, likely
due to the only partially exploited potential in hyperparameter optimization and fine-tuning.
The strategy of using top 3 and top 5 predictions proved to be highly effective. Utilizing Top 3
predictions increased accuracy by 13% compared to top 1, and an additional 6% improvement
was observed between top 3 and top 5, resulting in an overall accuracy of 95% with top 5
predictions.

The ability for users to correct automatically classified species (Figure 9) offered dual benefits:
It allowed for easy and efficient correction of remaining misclassified images with minimal
effort (just 1-2 clicks) and significantly enhanced the data set’s value for retraining. Corrected
images could then be incorporated into the training set, effectively implementing a kind of
active learning approach to improve the models accuracy.



Figure 9: Mobile application which servers three purposes: Service for the users, validation of the users,
and preselection of images to enhance the current data set.

Future developments will focus on optimizing and expanding the data set by including
underrepresented and rare species. With an expanded data base, transformer-based DNNs will
be employed and evaluated for classification tasks. Given that our current data sets already
contain additional attributes such as age, sex, and partial individual identification, future methods
will also aim at automatically determining these characteristics. Additionally, re-identification
of individual animals will be a key area of development, further enhancing the robustness and
applicability of the classification models.

By integrating these advancements, we aim to create a more accurate and versatile wildlife
classification system that can adapt to new challenges and continuously improve through user
interaction and expanded data.
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