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Abstract
Object detection and tracking in drone imagery is still an open research field, especially for livestock
monitoring and when detection is carried out on the drone itself. In this paper, we present the first
annotated aerial video dataset of sheep, which we will make publicly available to the research community
to foster further research in this field. Our AUTH-Sheep dataset consists of 4 videos with frame-accurate
annotations of oriented bounding boxes and consistent track IDs per object and video. Furthermore, we
developed a full detection and tracking pipeline as a baseline implementation to give other researchers a
reference approach to compare their algorithms against. For this, we compared horizontal and oriented
bounding box detection for the task at hand. Therefor, the YOLOv8 nano detector is utilized, which
was pre-trained on a different dataset. To be able to train this detector of oriented bounding boxes, we
semi-automatically created new oriented annotations for an existing dataset of sheep images.
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1. Introduction

Recently, unmanned aerial vehicles (UAVs) equipped with camera systems and edge computing
devices have become an alternative to camera traps located on the ground as a promising tool
for monitoring wild as well as livestock animals. Due to the technical possibilities of UAVs, new
perspectives on monitoring are opened up. Typically, UAVs can only fly and record for several
minutes, but at the same time they can cover a larger area than camera traps. In this paper, we
focus on the livestock farming use-case. In particular, we consider free ranging sheep living
unattended at the island of Lesvos, Greece. The goal is to develop a system for autonomous
detection and tracking of sheep to enable a reliable counting and monitoring of the flock.
Usually, flocks of sheep are supervised by a shepherd who is continuously present to keep
track of their numbers, health and position. In the case of free-range sheep, there is no such
authority and those responsible must carry out checks at regular intervals. These inspections
can be difficult to carry out on terrain that is difficult to access and where visibility is limited.
UAVs are suitable for overcoming these difficulties, as they are not restricted by the terrain on
the ground. However, for drones to be a practical solution for the task at hand, the information
obtained from UAVs must be accurate and reliable. Instead of manual inspection of the obtained
video footage, recent developments in deep-learning based computer vision methods for
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object detection and tracking paved the way for fast and accurate automatic analysis. One
possible way to realize this is to stream videos from the drone to the ground and use dedicated
hardware as well as large and cutting-edge deep learning models for sheep detection and
tracking. Unfortunately, streaming high-quality videos in real-time from a drone to the ground
is often not trivial and hardly feasible, especially in areas without suitable infrastructure. An
arguably more practical approach is to integrate the necessary computer vision algorithms
on the UAV itself, and only stream the resulting metadata to the ground, which requires
drastically less bandwidth than streaming the video directly. However, this means that the com-
plexity of the algorithms must be kept to a minimum, as the available computing power is limited.

In this paper, we present the first publicly available annotated dataset of aerial videos of
sheep recorded at the University Farm of the Aristotle University of Thessaloniki (A.U.Th.).
Our AUTH-Sheep dataset consists of 4 videos with frame-accurate ground truth annotations
of oriented bounding boxes and consistent track ID per object and video. By providing such a
dataset together with a baseline implementation of a full detection and tracking pipeline, we
hope to stipulate further research in this field. As object detector we build upon the YOLOv8
nano model which we found to be most suitable in our previous work [1]. In our experiments,
we compare the utilization of horizontal bounding boxes (HBB) and oriented bounding boxes
(OBB) for detection directly on the drone. Sheep are often clustered in flocks and bounding
boxes are heavily overlapping, which often introduces ambiguity during tracking. We argue that
when using OBB instead of HBB the ambiguity is greatly reduced and thus more accurate results
can be expected. On top of that, a state-of-the-art tracking algorithm is tested based on the
obtained detections in order to be able to assign unique object IDs to the detected sheep. This
allows for more accurate counting and possibly even additional traits such as animal welfare
assessment.

To enable comparison of horizontal and oriented object detection, we semi-automatically
have created new annotations based on the available rectangular ground truth regions for a
publicly available UAV image dataset of sheep named SheepCounter [2].

The dataset and scripts will be made publicly available at https://github.com/idmt-odoll/
AUTH-Sheep/.

2. Related Work

2.1. Animal Detection in Aerial Images

Despite advancements in object detection, detecting animals in UAV imagery is still a challenging
task and requires accurate detection models. At the same time, energy efficient models are
desired to enable implementation on edge-devices. Thus, recent trends in computer vision
investigate possibilities for smaller and more efficient models which do not suffer from a
significant drop in accuracy.

In [3], YOLOv4 and YOLOv5 models were compared for counting cattle at various altitudes
from 20 to 100 m, with YOLOv5 being better than YOLOv4 and all models exceeding a precision
of 92 %. Interestingly, the simpler YOLOv5-s model outperformed the more complex YOLOv5-m
model. Wang et al. [4] enhanced the YOLOX nano model for small object detection, a common
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weakness of YOLO detectors, enabling detection of cattle, sheep and horse at an altitude of 300 m.
They found that for increasing scale differences from training data, the detection performance
decreased, but differently for all classes. For common cranes, [5] showed that automatic
counting with the YOLOv3 model (99.91 % precision, 94.59 % recall) was more accurate than
manual counting for RGB images at daylight. In [6], YOLOv4 outperformed YOLOv3 and SSD
in detecting deer, achieving 86 % precision and 75 % recall. A different approach in [7] used a
segmentation algorithm based on species-specific sRGB color profiles, achieving 100 % precision
and 98.87 % recall for Arabian Oryx.

In our own previous work, we presented initial findings by comparing the performance of
different state-of-the-art object detectors on publicly available UAV images of sheep [1] in order
to be able to better pre-select potential object detectors for the task at hand. In this paper, we
will build on our previous work, where we showed that the nano version of the YOLOv8 model
series is best suited for sheep detection in aerial imagery on edge devices. It will thus be utilized
throughout the experiments in this paper as well.

2.2. Multiple Object Tracking

Multiple Object detection (MOT) is the task to detect and associate objects from a specific class
across a video. One approach to accomplish this is to use heuristic information such as spatial-
based and appearance-based information. In our work, we focus on tracker that strongly use
those spatial-based information. For short time intervals between frames, the movement of an
object is likely to be small and can usually be treated as linear. Most of those works, pioneered by
SORT (Simple online and realtime tracking) [8], utilize Kalman filter [9] to predict the location
of the object in the new frame based on previous movement of that object. The association then
is performed using the Intersection over Union (IoU) metric. ByteTrack improves this approach
by introducing a two-stage association step [10]. In the first step, the high confidence detections
are matched. A new feature is the matching of low confidence detections in the second step,
which can include partially occluded and motion blurred objects. BoT-SORT builds on ByteTrack
and introduces an improved Kalman filter and camera motion compensation, resulting in better
predictions of the object positions in new frames [11]. OC-SORT on the other hand improves
the prediction of new object positions during occlusion and non-linear movement [12]. They
compute a virtual trajectory using measurements of the object detector and allow the matching
with lost tracks.

3. Datasets

Two different datasets were used in this work. The SheepCounter dataset was used for training
and validation of the YOLO detectors. For testing, the AUTH-Sheep dataset was used, which will
be discussed in detail in section 3.2. The images of both datasets have a resolution of 3840 x 2160
pixels, while there are some images with a resolution of 4096 x 2160 pixels in SheepCounter.



3.1. SheepCounter

The SheepCounter dataset is available at roboflow and consists of 1727 images. They have
green meadows as backgrounds with different lighting conditions, saturation and shadow
lengths. The images are from several flights, but only selected frames were kept. Most of the
sheep are white. Besides sheep, a few cows appear, but they are not annotated. The original
annotations contain 55 435 instances of sheep.

We used these rectangular annotations as basis and transformed them into oriented bounding
boxes to be able to train and evaluate OBB detectors. First, we utilized Microsoft’s Segment
Anything Model (SAM) to generate one segmentation mask per bounding box [13]. If multiple
masks were generated, only the largest was kept. The image moment of the object is calculated,
which allows the determination of a major and minor axis and the orientation of the objects
with respect to their major axis [14]. In the next step, the found orientation is used to align the
major axis with the x-axis. This allows the smallest box around the region contour and parallel
to the major axis to be determined using a simple horizontal box. By reversing the alignment,
the oriented bounding box was obtained.

In the next step, the new bounding boxes were manually verified using CVAT, a publicly
available tool commonly used by researchers for ground truth annotation of images and videos
[15]. A common problem was the existence of multiple bounding boxes for a sheep, while the
original bounding boxes of other sheep were erased. Other problems were multiple animals per
bounding box or shadows included as part of the animal, segmented by SAM. A few images
had no annotations at all or not all animals were annotated. The new annotations include
56 681 oriented bounding boxes and also include partial sheep that appear at the edge of the
image. Horizontal bounding boxes for the comparison of OBB vs. HBB algorithms were created
by taking the minimum and maximum pixel positions of the oriented box in each direction.
These new horizontal annotations have been created to ensure that the annotations from
SheepCounter and the new AUTH-Sheep dataset have similar label quality. For AUTH-Sheep,
there are no such best-fitting horizontal annotations to work with, they would have to be
created from scratch. This would have been a lot of extra work on top of the oriented bounding
boxes, which we wanted to avoid.

The size of objects is directly related to the altitude of the UAV. To better estimate the altitude
at which the detectors can reliably detect sheep, objects are classified by their bounding box
size in each frame. Inspired by the COCO dataset, five scale groups were defined and evaluated
separately [16]. We found it necessary to define new groups because the area sizes for COCO
were introduced for an image size of 640 x 480 pixels. The imagery used in this work has a
minimum resolution of 3840 x 2160 pixels, which results in a completely different scale of
objects. The five new scale groups are named nano, small, medium, large and extended. Objects
in the nano group contain less than 642 pixels. The thresholds for small, medium and large
objects are 962, 1282 and 1602 respectively while all objects larger than 1602 are considered as
extended. Since young animals are usually smaller than older ones, they are also categorized
as correspondingly smaller objects for most of the recording altitudes, which can lead to a
kind of bias. For our work, we ignore this because we only evaluate object size without paying



attention to the age of animals.

train valid all

images 1203 350 1727
instances 43 730 12 951 56 681

OBB HBB OBB HBB OBB HBB

nano 2759 1772 649 538 3408 2310
small 24 416 6576 5278 1320 29 694 7896
medium 12 471 18 075 6219 4515 18 690 22 590
large 1302 11 696 356 4638 1658 16 334
extended 2782 5611 449 1940 3231 7551

Table 1
New annotations for the restructured SheepCounter dataset, broken down for the 5 new scale groups.
Data are provided for oriented bounding boxes (OBB) and horizontal bounding boxes (HBB).

SheepCounter was used for training and validation, but not for testing. Also, the frames of
the original videos seem to be evenly distributed among the predefined training, validation, and
test sets. This leads to similar frames in all three subsets, which is not beneficial for testing the
generalization capability of the model. In an attempt to correct this, the SheepCounter dataset
was restructured. The restructured dataset consists of a training and validation split only.
All frames were sorted into their original source videos based on their naming and content,
resulting in five source videos. These videos were then manually split up into two parts. This
reduces the amount of very similar samples in both subsets.

The new dataset annotations have been broken down in more detail in Table 1. As expected,
the horizontal bounding boxes are more often categorized into larger groups than the oriented
boxes. While for oriented boxes the most common objects are categorized as small or medium,
most horizontal boxes are categorized as medium or large. Oriented boxes have an average area
of 10 021 pixels, while horizontal boxes have an average area of 18 618 pixels.

3.2. AUTH-Sheep

The new dataset we present in this paper consists of four videos recorded at the University
Farm of the Aristotle University of Thessaloniki (A.U.Th.). Figure 1 shows the first, middle, and
last frame of each video, which gives some idea of the movement of the drone and objects. The
drone was moving in all the videos, constantly changing its position and altitude, but with
different patterns. Videos 1 and 2 were recorded at the same location but at different times,
with goats also present in video 2. Video 3 was recorded at a different location and also the
animals and the camera movement are the least dynamic of all the videos. Video 4 seems to
be the most challenging recording, with the highest altitude and most clustered sheep. The
combined length of all the videos in the dataset is 2:58 minutes, or 5328 frames, and contains
a total of 152 837 annotated instances. The annotations consist of oriented bounding boxes
and unique object IDs, which allow the evaluation of tracking algorithms. For each video, the
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Figure 1: Sample frames from the 4 videos of AUTH-Sheep, including the first, middle and last frame
of each video.

frames instances sheep human goat horse
video 1 1198 21 336 20 814 522 - -
video 2 929 31 408 16 509 1638 13 261 -
video 3 1406 46 644 26 598 62 19 984 -
video 4 1795 53 449 31 612 10 402 - 11 435

Table 2
Overview of the annotations per video and class of AUTH-Sheep.

ID of an object remains the same, even if the object leaves the frame or is occluded for some
time. Four different classes are annotated, namely goats, horses, humans and sheep. One thing
missing is metadata for accurate information about the drone’s altitude, speed, and orientation.
A more detailed overview of the dataset is presented in Table 2, including the length of the
videos and the number of instances for each class.

For our experiments, we focus only on the sheep class with a total of 95 533 object instances.
In Table 3 the sheep instances are analyzed by size in the same way as for the SheepCounter
dataset. Based on the amount of instances per scale group, it can be seen that the four videos
were recorded for different flight altitudes and patterns. Video 4 has the highest amount of
nano and small bounding boxes and lowest amount of medium to extended instances. It can be



sheep per scale group
extended large medium small nano

video 1 6109 1925 2889 5208 4683
video 2 2 1719 5863 5579 3346
video 3 17 448 6005 2833 312 -
video 4 1 407 1171 13 545 16 488

Table 3
Distribution of the sheep annotations from AUTH-Sheep per video, with respect to the scale group.

said with a high degree of certainty that this video was recorded at the highest average flight
altitude. Video 2 also has only 2 extended instances, but is more balanced in the remaining four
groups than video 4. The most balanced video seems to be video 1. The lowest average altitude
can be expected in video 3, where almost all instances are medium to extended.

4. Object Detection

For the detection task, two different variants of the YOLOv8-nano model were compared. The
first was pre-trained on the COCO dataset [16] and predicts horizontal bounding boxes, hence
this version will be referred to as the HBB model. A second variant was pre-trained on the
DOTAv1 dataset [17] and predicts oriented bounding boxes, hence this variant is called OBB
model. All pre-trained models used were provided by Ultralytics, whose environment was also
used for the transfer learning for the task at hand.

Both models were transfer learned and validated on the restructured SheepCounter dataset
described in section 3.1. The loss was monitored on the validation set until convergence. If
no improvement in the mAP50-95 score was observed for the last 50 epochs, the training was
stopped. The model layers were not frozen and all weights could be adjusted. For augmentations
during transfer learning, the standard Ultralytics hyperparameter optimized for the COCO
challenge were used. These augmentations include translation, scaling, left-right flipping,
altering of the HSV color space, and erasing random portions of the image. Only the mosaic
augmentation was disabled, as previous experiments showed that this improves the learning
process for our use case. The batch size was set to 16 and the AdamW optimizer was used
with an initial learning rate of 0.002 and a momentum of 0.9. As a post-processing step, only
predictions with a confidence of 0.25 or higher were kept and non-maximum suppression was
performed with an IoU threshold of 0.6.

4.1. Metrics

The main metric used was the COCO variant of the mean average precision (mAP). The mAP is
the mean value of the average precision (AP) over all classes averaged over ten IoU thresholds
𝐼𝑜𝑈 = 0.5, 0.55, ..., 0.95. In accordance with the Ultralytics framework [18] used for the
experiments, this metric is called mAP50-95 in the following. In addition, the mean average
recall (mAR) is also used in the same version, resulting in the mAR50-95 score. To evaluate
the oriented bounding boxes, they were treated as segmentation masks. For better insight, the



model input size pixels usable size percentage used MACs (B)
640 x 640 409 600 640 x 360 56.25 % 4.53
832 x 480 399 360 832 x 468 97.50 % 4.42

Table 4
Comparison of two model input sizes with a similar amount of pixels in terms of used area when the
input image has a 16:9 aspect ratio. It is assumed that the image is padded to the full model input size.
MACs (in billions), as measure of computational effort, have been calculated for ONNX models.

mAP50-95 is also calculated for the five scale groups defined in section 3.1. The evaluation was
performed using pycocotools, an API for the evaluation methods used for COCO.

4.2. Model Input Size

When applying the object detector on the edge, power is limited and hence should be used
optimally. Typically, deep learning models expect square images as input, while the actual
images are often non-square. These images are then typically padded to fit the input size of the
deep learning model, which introduces unnecessary data and thus avoidable overhead.

Since we already knew that most of the training images and all the test videos had a 16:9
aspect ratio, a fixed new input size with a similar aspect ratio was calculated. There were
two boundary conditions that were taken into account. First, the used YOLO model has five
downsampling layers, which requires the input size to be a multiple of 25 = 32. Second, the
new input should not contain more pixels than the original input size of 640 x 640.

The new model input size was set to 832 x 480 pixels. Table 4 shows the theoretical
comparison with the standard input size of 640 x 640. While the amount of pixels for the
new input size is 2.5 % lower, the percentage of the input area used increases by 41.25 % to
a total of 97.5 %. Therefore, it can be expected that there will be only minimal additional
padding at the edge of the image. As expected, the computational effort, expressed in MACs
(Multiply-Accumulate Operations), decreases by 2.5 %, proportional to the amount of pixels.

Comparing the actual results on the validation set, it’s clear that the new model input size
improves performance for both model types and for all metrics used. For the HBB model, all
mAP metrics were improved by about 0.06 for all scale groups, except the nano objects. The
mAR50-95 score also increased by 0.053. For the OBB model, however, the improvement is
not as significant. mAR50-95 improved by 0.043 and mAP50-95 by 0.042. The largest gain was
seen for small objects (0.056) and the smallest gain for extended objects (0.012). A notable
result is that although the OBB model is better than the HBB model in all scale groups except
medium objects, the value for mAP50-95 (all) is lower. This can be attributed to the fact that
there are more small and nano objects for OBB, and the models generally perform worse on
these compared to medium to large objects.



mAP50-95 (per scale group)
mAR50-95 all extended large medium small nano

HBB (640 x 640) 0.706 0.665 0.759 0.717 0.649 0.463 0.044
HBB (832 x 480) 0.759 0.724 0.817 0.781 0.711 0.527 0.055

OBB (640 x 640) 0.644 0.604 0.818 0.752 0.650 0.573 0.093
OBB (832 x 480) 0.687 0.646 0.830 0.787 0.687 0.629 0.122

Table 5
Comparison of model performance when the model input size is adjusted to match the aspect ratio of
the input images, while maintaining similar computational complexity. Results are for the validation set
of the restructured SheepCounter dataset.

HBB model mAP50-95 (per scale group)
mAR50-95 all extended large medium small nano

video 1 0.403 0.298 0.076 0.336 0.462 0.497 0.434
video 2 0.302 0.220 - 0.190 0.325 0.281 0.154
video 3 0.371 0.301 0.307 0.295 0.352 0.268 -
video 4 0.093 0.057 - 0.015 0.034 0.109 0.082

Table 6
Detection results of the HBB model on the AUTH-Sheep dataset. For videos 2 and 4, there are no mAP50-
95 results for extended objects because there were only 1 and 2 ground truth instances, respectively.
There were no nano objects in video 3.

4.3. Results on AUTH-Sheep

The AUTH-Sheep dataset is used for the final evaluation. In three cases there are no mAP50-95
results for a particular scale group because there were not enough or no ground truth instances.
These cases are extended objects in videos 2 and 4 and nano objects in video 3. Table 6
shows the detection results of the HBB model for each video. Compared to the results on
the validation set of SheepCounter, the model performs worse. The only exception is that
nano objects are detected much more reliably in all videos than on the validation set, with an
increase of 0.379 for video 1. In the same video, nano to medium objects are better detected
than large and extended objects, which is completely different from the training results. Similar
observations can be made for video 2, but without the nano objects. For video 3, the mAP50-95
score is the most balanced across all scale groups. For video 4, the model seems to fail completely.

The trend of results for the OBB model, shown in Table 7, is comparable to that of the HBB
model. In general, the OBB model performed worse than the HBB model for all metrics on all
videos, with the only exceptions being extended objects in videos 1 and 3, and also large objects
in video 2. While the OBB model performed better on nano objects in training than the HBB
model, the opposite is true for the test set.

There are several possible reasons why the detection performance is worse on the test set. One
reason could be overfitting of the models. The YOLOv8 nano models used are quite small and
the diversity of training data was limited. In addition, the AUTH-Sheep dataset is quite different



OBB model mAP50-95 (per scale group)
mAR50-95 all extended large medium small nano

video 1 0.353 0.259 0.121 0.294 0.394 0.355 0.254
video 2 0.261 0.193 - 0.277 0.294 0.179 0.103
video 3 0.327 0.272 0.318 0.225 0.210 0.139 -
video 4 0.041 0.025 - 0.010 0.015 0.031 0.030

Table 7
Detection results of the OBB model on the AUTH-Sheep dataset. For videos 2 and 4, there are no mAP50-
95 results for extended objects because there were only 1 and 2 ground truth instances respectively.
There were no nano objects in video 3.

from the SheepCounter dataset used fpr training and is more challenging. AUTH-Sheep is more
dynamic, including new perspectives, backgrounds, classes, and scaling of objects. Sheep are
more often occluded with only small parts visible, making them more difficult to detect. Another
factor is that the training images almost exclusively included sheep, so the model didn’t learn
to discriminate sheep from other classes. One aspect to consider is that the annotations for the
horizontal bounding boxes were generated from the rotated boxes. This resulted in boxes that
were coarser, including more background and parts of other objects. It can be assumed that this
affected the adaptability of the HBB model to the new dataset.

5. Object Tracking

For the tracking task, we used the BoT-SORT algorithm without the re-identification module.
As for the detection task, the implementation of the Ultralytics framework was used, since it
includes the tracking of oriented bounding boxes. While the Kalman filter was not changed, the
matching algorithm and the tracklet include the rotation of the boxes. The Kalman filter uses a
constant-velocity model to predict the bounding box in the next frame. Camera motion can
interfere with these predictions, resulting in an incorrect location of the predicted box. The BoT-
SORT includes a camera motion compensation model to counteract this problem. An optional
re-identification module was not used because such a pre-trained module was not available and
would have a high impact on the computational complexity anyway. A main objective of our
work is an application on the edge, which demands more lightweight algorithms.

5.1. Metrics

Tracking performance is evaluated using three metrics, namely CLEAR metrics [19], IDF1
[20] and Higher-Order Tracking Accuracy (HOTA) [21]. For testing, all frames were used
consecutively without skipping any frames. The evaluation tool used was the TrackEval
framework [22] and all tracking results were transformed into the mots format [23]. The most
important score of the CLEAR metrics is MOTA (multiple object tracking accuracy), which
focuses more on detection performance than identity association. IDF1 focuses more on the
identity association performance of the tracker, while HOTA is a metric that considers both
detection and identification almost equally. In addition to these specific metrics, the number of
detections, ground truth objects, associated IDs, and ground truth IDs were considered.



5.2. Results on AUTH-Sheep

The results for the tracking task are less one-sided than those for detection. Overall, the HBB
model (Table 8) outperformed the OBB model (Table 9) in HOTA, MOTA, and IDF1 scores. For
both models, the performance is best on video 3, followed by videos 1 and 2, and worst on
video 4, which is similar to the mAP50-95 score for detection. Looking at individual videos, the
OBB model performed better on video 3 and slightly better on video 4. Especially for video 3
with mostly extended and large objects, the OBB model scored high for IDF1 (92.23) and MOTA
(93.40). The performance in video 4 is very low for both models on all scores, which leads to
the conclusion that tracking failed completely in this case.

HBB model HOTA MOTA IDF1 Dets GT-Dets IDs GT-IDs
video 1 49.53 60.44 72.84 17 801 20 814 63 19
video 2 40.75 63.74 53.08 14 601 16 509 84 19
video 3 63.37 85.21 90.18 28 504 26 598 70 19
video 4 6.91 6.17 12.19 5348 31 612 98 19
combined 45.64 49.95 61.09 66 254 95 533 315 76

Table 8
Tracking results for the HBB model on the AUTH-Sheep dataset.

OBB model HOTA MOTA IDF1 Dets GT-Dets IDs GT-IDs
video 1 39.62 55.64 67.43 12 788 20 814 32 19
video 2 35.14 51.68 54.72 11 746 16 509 77 19
video 3 66.68 93.40 92.23 27 574 26 598 51 19
video 4 7.40 6.36 11.91 8287 31 612 134 19
combined 42.65 49.16 59.53 60 395 95 533 294 76

Table 9
Tracking results for the OBB model on the AUTH-Sheep dataset.

Comparing the performance with the distribution of sheep in different scale groups in Table 3,
the results correspond to the sum of medium to extended objects per video. Video 3 has almost
only medium to extended objects (98.8 %) and shows the best tracking results. At the same time,
only a fraction of objects are medium to extended (5 %) in video 4, for which both models show
equally poor performance. This suggests that the models are able to track sheep in UAV images
when the sheep are large enough. The seemingly increased detection ability, in the form of the
MOTA score, compared to the pure detection results from section 4 can be explained by a lower
confidence threshold during tracking. BoT-SORT includes detections with a confidence of 0.1 or
higher, while for detection the threshold was set to 0.25. Also, the MOTA and IDF1 scores were
only calculated for an IoU threshold of 0.5, so the localization performance wasn’t taken into
account.



6. Conclusion

In this study, we presented AUTH-Sheep, the first UAV video dataset of sheep with frame-
accurate annotations of oriented bounding boxes and track IDs, which we will make publicly
available to the scientific community. Furthermore, we also investigated two methods for object
detection and tracking of sheep on the drone itself. The primary focus was on evaluating the
performance of detection and tracking when using horizontal and oriented bounding boxes. For
this purpose, the YOLOv8-nano model was used and tuned for specific input sizes. Surprisingly,
and against our expectations, the HBB model outperformed the OBB model for detection and
tracking. While the detection performance clearly favors the HBB model, the tracking results
are less clear and vary depending on the video and metric. This behavior definitely needs further
investigation in future work.

The restructured SheepCounter dataset, with its new annotations for horizontal and oriented
bounding boxes, significantly contributed to the training process. The manual verification
step ensured the accuracy of bounding boxes and ID tracks for both datasets used. The BoT-
SORT algorithm, without the re-identification module, was effective for tracking. However, the
tracking performance varied significantly between videos, indicating the influence of factors
such as flight altitude and flight patterns.

The limited amount of data and the inherent variations in flight altitude, lighting conditions,
and object size posed significant challenges. This was evident in the performance drop when
models were tested on the AUTH-Sheep dataset, which differed from the training dataset in
several aspects.

To further improve the robustness and accuracy of object detection and tracking in UAV
videos, we propose to increase the dataset size and diversity by including more varied en-
vironmental conditions and flight parameters to improve model generalization. Despite the
computational overhead, incorporating re-identification modules could improve tracking per-
formance, especially in scenarios with frequent occlusions and object reappearances.

In conclusion, although the study demonstrates promising results in object detection and
tracking of sheep in UAV videos, there is room for improvement. Addressing the identified
challenges and following the recommended future work will pave the way for more reliable and
efficient systems, with broader applications in wildlife monitoring and agricultural management.
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