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Abstract
Music recommender systems frequently utilize network-based models to capture relationships between music

pieces, artists, and users. Although these relationships provide valuable insights for predictions, new music

pieces or artists often face the cold-start problem due to insufficient initial information. To address this, one

can extract content-based information directly from the music to enhance collaborative-filtering-based methods.

While previous approaches have relied on hand-crafted audio features for this purpose, we explore the use of

contrastively pretrained neural audio embedding models, which offer a richer and more nuanced representation of

music. Our experiments demonstrate that neural embeddings, particularly those generated with the Contrastive

Language-Audio Pretraining (CLAP) model, present a promising approach to enhancing music recommendation

tasks within graph-based frameworks.
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1. Introduction

Music and artist recommendations have become a cornerstone of streaming services, profoundly in-

fluencing how users discover and engage with music. Algorithmically generated playlists, tailored to

individual tastes, are integral to the listening experience, enabling users to find music that suits their

mood and environment, as well as discover new artists. For artists, inclusion in these playlists can

significantly boost their listener base, while exclusion poses challenges for discovery. Music recom-

mendation systems can be broadly categorized into collaborative filtering-based approaches [1] and

content-based approaches [2]. Collaborative filtering leverages relational data, capturing relationships

between artists or tracks from manually curated similarities, tags, and user listening behavior. Content-

based approaches utilize descriptive data to encapsulate the essence of an artist’s music, representing

attributes like melody, harmony, and rhythm. Hybrid recommender systems [3, 4] combine both types

of data to enhance recommendation quality. In recent years, contrastive learning approaches have

gained traction for their effectiveness in representing various types of data [5, 6]. One such model,

Contrastive Language-Audio Pretraining (CLAP) [7], maps text and audio into a joint multi-modal space,

offering a novel method for representing music. Our work explores the utility of CLAP representations

as descriptive data in music recommendation systems.

As a proof-of-concept, we examine a graph-based artist-relationship prediction task, where additional

musical information has previously enhanced model performance [8]. The goal is to predict relationships

between previously unseen artists using the attached information. By varying this information and

incorporating CLAP embeddings, we evaluate its utility in a controlled environment and benchmark

the effectiveness of different representations.
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2. Related Work

Artist Similarity with Graph Neural Networks. Graph Neural Networks (GNNs) [9] extend deep

learning techniques to graph-structured data, addressing the limitations of traditional neural networks

that require structured inputs. GNNs operate on graphs defined by nodes and edges, leveraging message

passing to aggregate and update node information based on their neighbors. This approach has shown

success in tasks such as node classification, edge prediction, and graph classification [10]. GNNs lend

themselves to music recommender tasks as they can encode the structural, relational information

together with additional features [11, 12].

The study by Korzeniowski et al. [8] introduces the OLGA dataset, which includes artist relations

from AllMusic
1

and audio features from AcousticBrainz [13]. Their GNN architecture combines graph

convolution layers with fully connected layers and was trained with a triplet loss. Performance

evaluations on an artist similarity task demonstrated that incorporating graph layers and meaningful

artist features significantly improved prediction accuracy over using deep neural networks alone.

Neural Embeddings for Recommender Tasks. Various methods have been explored for music

similarity detection. Previous approaches used a graph autoencoder to learn latent representations in an

artist graph [14], or leveraging a Siamese DCNN model for feature extraction and genre classification [15].

Oramas et al. [16] use CNNs to extract music information, which, in contrast to our work, can not

benefit from contrastive pertaining. Furthermore, hybrid recommendation systems using GNNs have

been applied in other domains, such as predicting anime recommendations by combining user-anime

interaction graphs with BERT embeddings [17].

Contrastive Language-Audio Pretraining (CLAP) [7] learns the (dis)similarity between audio and

text through contrastive learning, mapping both modalities into a joint multimodal space. Through

the contrastive learning approach, even the audio embeddings alone maintain semantic information,

making it suitable for tasks such as music recommendation and artist similarity.

3. Neural Audio Embeddings for Artist Relationships

We investigate an established artist similarity task similar to the OLGA dataset to evaluate the effective-

ness of neural audio embeddings over classical audio features in music recommendation tasks. This

dataset comprises a large graph of artists, and the performance of our model is assessed based on its

ability to predict new relationships between previously unseen artists, represented as nodes within

the graph. Each node is annotated with features extracted from the music produced by the respective

artist. Previous research demonstrated that incorporating musical information significantly improves

model performance [8]. We extend this analysis by extracting CLAP embeddings from the music and

comparing their effectiveness against other feature sets. Our goal is to determine if CLAP embeddings

provide better representations.

3.1. Experimental Setup

Our setup is inspired by the approach of Korzeniowski et al. [8] on OLGA, where artists are represented

as connected nodes based on their relationships described in AllMusic. Following the same methodology,

we create an updated version of the original dataset. This allows us to ensure that the song for which we

extract features from AcousticBrainz is consistent with the song for which we create CLAP embeddings.

We start with the same set of artists and collect additional information during preprocessing, specifically

the categorical features for moods and themes of an artist, which we use during evaluation. Low-level

music features for songs were retrieved from AcousticBrainz, and CLAP embeddings were computed

using the LAION CLAP model from tracks on YouTube. In contrast to the original OLGA dataset, we

only use one song per artist and do not aggregate the features over multiple songs. Due to constantly

1
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(a) Comparison of CLAP features with Random,

Moods-Themes, and AcousticBrainz features.

CLAP outperforms all other features when used

with enough layers.
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(b) Comparison of various feature combinations. With

fewer layers, feature combinations perform better

than single features, whereas they perform on par

for more layers.

Figure 1: Comparison of input features used for the artist relationship prediction task. We report the mean
performance and indicate the standard deviation over three seeds for each configuration, testing all setups with
0 to 4 GNN layers. The 0-layer configuration serves as the baseline, where no message-passing is performed, and
only the input features are used to predict node pairs.

changing information on AllMusic, some artists without connections to other artists or missing matches

on MusicBrainz or AcousticBrainz had to be dropped. Overall, this reduced the total number of artists

from 17,673 in the original to 16,864 in our version. We reuse the split allocation of the OLGA dataset,

which is possible since every artist in our dataset is present in the OLGA dataset as well. This resulted in

13,489 artists in the training, 1,679 artists in the validation, and 1,696 artists in the test split. We utilize

the same loss functions and GNN backbone as proposed by Korzeniowski et al. [8], but with a uniform

sampling based on triplets instead of distance-weighted sampling. More specifically, we employed the

triplet loss, finding that using both endpoints as anchors performed better than randomly selecting

one endpoint. Euclidean distance was used for the loss, and the Normalized Discounted Cumulative

Gain (NDCG) serves for the evaluation. For the graph neural network layers, we experimented with

SAGE [18], GatedGCN [19], and GIN [20], with SAGE demonstrating the best performance.

We vary two primary aspects in our experiments: the number of graph layers and the node features.

The number of graph layers ranges from zero to four and is varied to assess the contribution that the

graph topology can make to the task. With zero graph layers, the architecture only utilizes an MLP

to make predictions and does not consider the graph topology, thus serving as a baseline for models

that use GNN layers. As the number of graph layers increases, nodes can aggregate information from

a larger neighborhood, enhancing the model’s capacity to learn from the graph structure. For node

features, we use random features as a baseline and experimented with AcousticBrainz features, CLAP

features, and Moods-Themes features. We also test combinations of these non-random features.

3.2. Results

Figure 1a compares the performance of models using random features, AcousticBrainz features, Moods-

Themes features, and CLAP features. The baseline model, which does not utilize any graph convolution

layers, performs significantly worse than models incorporating graph topology information. Perfor-

mance generally improves with the addition of more graph layers. Random features consistently

underperform, while CLAP features show better results with increased layers in comparison to the

others. Moods-Themes features perform well without graph layers but only achieve results similar to

random features with four layers, indicating that the information they provide can be compensated

by knowledge of the neighborhood around an artist. Based on these findings, we conclude that CLAP

embeddings are effective in enhancing music recommendation tasks and provide information that is

missing in other features.

We further compare combinations of CLAP embeddings with other features to assess their effec-



tiveness. Our analysis in Figure 1b reveals that for lower layer numbers, the combination of features

can greatly increase performance in comparison to single features (as depicted in Figure 1a). For more

layers, the tested feature combinations approach the performance of the model that only uses CLAP

features. This could mean that the other features do not provide much additional value for the task or

that the information gained from the graph topology is sufficient to compensate for it. Overall, feature

combinations that include CLAP perform better, while we can see a clear increase of AcousticBrainz +

Moods-Themes over the single feature baselines.

Limitations Our experimental evaluation has two main limitations: the potential for model architec-

ture improvements and the limited representation of artists using only one song.

First, regarding model architecture, there is room for enhancement through more advanced techniques,

such as distance-weighted sampling, more sophisticated GNN layers, or Graph Transformers. We

anticipate these improvements would likely lead to better overall performance. However, our conclusions

primarily focus on the relative performance gains of different feature sets. We believe these relative

differences would remain consistent even with improved models and training techniques, though

absolute performance might increase.

Second, we only use a single song to represent each artist. This approach could introduce variability

based on the choice of the song, potentially affecting the performance of the features. A more compre-

hensive representation involving multiple songs per artist could provide a more robust understanding,

but this would require careful consideration of how to aggregate these song embeddings. Additionally,

there is potential for exploring different versions of CLAP or other audio embedding models. Nev-

ertheless, the fact that we achieved consistent performance gains even with just one song per artist

demonstrates the effectiveness of CLAP embeddings as a viable approach for music recommendation,

which was the primary objective of this study.

4. Conclusion

In this work, we explored the use of CLAP embeddings as descriptive data for music recommendation

systems. Our experiments focused on a graph-based artist-relationship prediction task, comparing the

effectiveness of various feature representations, including AcousticBrainz, CLAP, and a combination of

both. Our results indicate that models incorporating CLAP embeddings significantly outperform those

using traditional features, particularly as the number of graph convolutional layers increases. This

highlights the potential of CLAP embeddings to capture rich and relevant information about music,

thereby enhancing the performance of music recommendation systems.
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