
Parallel and Mini-Batch Stable Matching for Large-Scale
Reciprocal Recommender Systems
Kento Nakada1,∗, Kazuki Kawamura2 and Ryosuke Furukawa1

1Sony Network Communications, Inc.
2The University of Tokyo

Abstract
Reciprocal recommender systems (RRSs) are crucial in online two-sided matching platforms, such as online job or dating markets,
as they need to consider the preferences of both sides of the match. The concentration of recommendations to a subset of users on
these platforms undermines their match opportunities and reduces the total number of matches. To maximize the total number of
expected matches among market participants, stable matching theory with transferable utility has been applied to RRSs. However,
computational complexity and memory efficiency quadratically increase with the number of users, making it difficult to implement
stable matching algorithms for several users. In this study, we propose novel methods using parallel and mini-batch computations
for reciprocal recommendation models to improve the computational time and space efficiency of the optimization process for stable
matching. Experiments on both real and synthetic data confirmed that our stable matching theory-based RRS increased the computation
speed and enabled tractable large-scale data processing of up to one million samples with a single graphics processing unit graphics
board, without losing the match count.

Keywords
Reciprocal Recommender Systems (RRSs), Recruitment, Stable Matching, Parallel Computation, Sinkhorn’s Algorithm

1. Introduction
Two-sided online dating platforms, such as those found in
job search and online dating markets, have become increas-
ingly popular. Reciprocal recommender systems (RRSs) are
used on these platforms. [1, 2]. In a two-sided matching
platform, a recommender system that only considers pre-
diction accuracy may inadvertently cause recommendation
inequalities for two main reasons. First, on a two-sided
platform, preferences from both sides of the market deter-
mine the success of a match. Recommendations based solely
on the interests of one side are ineffective, and the recom-
mender system should only recommend when both users
have mutual interests. Second, users tend to have difficulties
finding compatible partners. For example, on job platforms,
employers frequently have a limited number of available
interview slots because of time constraints. If the system
recommends the same company to many candidates, it may
exceed the employer’s capacity, leading to missed opportu-
nities for those candidates who applied but were not granted
an interview.
The transferable utility (TU) matching model [3, 4] is a

framework that considers these matching problems under
the assumption that utilities, such as money, can be trans-
ferred between matching parties. This allows for resource
redistribution among market participants, thereby achiev-
ing stable matching states. Choo and Siow [5] applied the
TU matching market model to RRSs, which demonstrated
higher matching chances in empirical matching applica-
tions with TUs. Although stable matching methods have
a solid theoretical background, most of them face compu-
tational feasibility bottlenecks when executed on real data
sizes exceeding 10k. Thus, they are not practically feasible
for large-scale user platforms and are only useful for the ex-
perimental extraction of a subset of actual service users [6]
or matching at the level of the user group clustered by at-

RecSys in HR’24: The 4th Workshop on Recommender Systems for Human
Resources, in conjunction with the 18th ACM Conference on Recommender
Systems, October 14–18, 2024, Bari, Italy.
Envelope-Open Kento.Nakada@sony.com (K. Nakada); kwmr@acm.org
(K. Kawamura); Ryosuke.Furukawa@sony.com (R. Furukawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

𝑔

𝑘 𝑓

𝑙

𝜇 Matching Probability

to

Reciprocal Preference Factor Vector

to

Figure 1: We propose a fast and memory-efficient solution to
the TU matching problem, by viewing it as an optimal transport
problem with transport costs associated with the inner product
of the preference factor vectors.

tributes [7, 8].
In this study, we improve the computational efficiency of

the iterative proportional fitting procedure (IPFP), a coordi-
nate descent algorithm used to achieve a stable matching
state [9], through parallelization and online mini-batch com-
putation. For computational efficiency, we propose a matrix-
vector multiplication-based parallel computation method
following Sinkhorn’s algorithm [10], which considers sta-
ble matching as an entropy-regularized optimal transport
problem. To improve memory efficiency, we propose a mini-
batch update method assuming a model that uses user factor
vectors in the unilateral recommendation model, such as
matrix factorization [11]. The user set is divided into sev-
eral partitions (i.e., mini-batches), and a portion of the IPFP
coordinate vectors is sequentially updated. This approach
enables efficient estimation of update values when the over-
all preference scores for user combinations do not fit in
memory.

In summary, the following are the main contributions of
this study.

• We propose an optimization method for RRSs based
on the TU matching model to increase computa-
tional efficiency using parallel processing.

• Furthermore, we propose a memory-efficient mini-
batch update method that does not require approx-
imation and works even for large sizes that do not

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Kento.Nakada@sony.com
mailto:kwmr@acm.org
mailto:Ryosuke.Furukawa@sony.com
https://creativecommons.org/licenses/by/4.0/deed.en

fit in a single memory.
• Experiments on a synthetic dataset with up to a
million users verify the computational efficiency of
the proposed method.

To the best of our knowledge, this study is the first to demon-
strate how RRSs based on stable matching theory work with
large-scale data.

2. Related Work
Reciprocal recommender systems (RRSs) aim to achieve
matching by considering the preferences of both parties,
which are primarily used in areas where mutual matching
is crucial, such as dating sites, talent recruitment platforms,
and social networking services [1].
Existing RRSs first predict unilateral preferences that

represent the preference of one user toward another. In
unidirectional preference calculation, various recommenda-
tion methods are employed in recruitment matching prob-
lems, including content-based and collaborative filtering
approaches [12]. Among these, collaborative filtering is par-
ticularly well suited for scenarios with abundant interaction
logs. Herein, we focus on collaborative filtering-based meth-
ods for reciprocal recommender systems to apply matching
platforms with number of users.

These unilateral preferences are then aggregated to calcu-
late reciprocal preference scores, which serve as recom-
mendation probabilities. Aggregation functions that in-
dependently calculate for each users pair—such as arith-
metic mean [2], harmonic mean [2, 13], and weighted aver-
age [14]—can scale to large data size [15]. Although these
methods can compute for a considerable number of user
data, they lack theoretical background and cannot consider
constraints on users’ limited capacity of matches.
RRSs based on fairness-aware aggregation models redis-

tribute recommendation scores to address the concentration
of recommendation issues [16, 17, 18]. Several approaches
have attempted to prevent concentration in job recommen-
dation by solving the entropy-regularized optimal transport
(OT) problem using reciprocal preference scores as a trans-
port cost matrix [19, 20]. These methods can be applied to
large-scale data following Sinkhorn’s algorithm [21]. How-
ever, there is a lack of theoretical background on the align-
ment between the OT and equilibrium-matching states in
terms of modeling user behavior.
The stable matching theory [3] is a behavioral model

based on game theory that balances supply and demand in
matching markets. Galichon and Salanié [9] demonstrated
that the TU matching theory corresponds to the dual prob-
lem of a special entropy-regularized OT problem, which
provides a theoretical foundation for the application of sta-
ble matching in recommender systems.

Although stable matching methods have a solid theoreti-
cal background, most of them face computational feasibility
bottlenecks when applied to real data sizes exceeding tens of
thousands. Galichon and Salanié [9] proposed that their op-
timization method could be computed in parallel, although
their experiment used a dataset of up to a size of 5000. Chen
et al. [7] applied stable matching to male–female matching
app data of approximately 1000. Tomita et al. [6] proposed
a TU matching theory-based memory-efficient inference
method for reciprocal scores. To optimize the parameters,
all user combinations must be loaded into memory, and

a sample size of up to 1000 was used in the experiments.
Thousands to hundreds of thousands of users use job or date
matching services. Therefore, we extend the applicability
of TU matching to the user bases of that scale.

3. Proposed Method
According to [7], this section provides a brief overview of
how the TU matching model can be formulated as a convex
optimization problem, as described in Section 3.1. There-
after, we propose a parallel update method using a mini-
batch approach for the iterative optimization algorithm in
Sections 3.2 and 3.3. This method enables tractable calcula-
tions in near-linear memory consumption, even for many
market users.

3.1. Matching Model with Transferable
Utility

We assume matching between candidate 𝑥 ∈ 𝒳 and em-
ployer 𝑦 ∈ 𝒴. The concept of utility explains why an indi-
vidual chooses where to apply or whom to recruit. Utilities
𝑈𝑥,𝑦, 𝑉𝑥,𝑦 that candidate 𝑥 or employer 𝑦 gains by matching
are expressed as follows:

𝑈𝑥,𝑦 = 𝑝𝑥,𝑦 + 𝜖𝑥,𝑦, 𝜖𝑥,𝑦 ∼ 𝒫 ,

𝑉𝑥,𝑦 = 𝑞𝑦,𝑥 + 𝜂𝑦,𝑥, 𝜂𝑦,𝑥 ∼ 𝒬,
(1)

where 𝑝𝑥,𝑦 denotes an observable utility from candidate
𝑥 to employer 𝑦, 𝑞𝑦,𝑥 denotes an observable utility from 𝑦
to 𝑥, and 𝜖𝑥,𝑦 and 𝜂𝑦,𝑥 are unobserved random utilities with
probability distributions of𝒫 and𝒬, respectively. We denote
the individual who is not matched to any counterpart as 0.
Let 𝒳0 = 𝒳 ∪ {0} and𝒴0 = 𝒴 ∪ {0} be a set of groups that
can be selected as potential partners.
In the TU matching model, we assume that the transfer-

able utility 𝜏𝑥,𝑦 is paid from an employer to a job candidate
upon matching (for example, to adjust supply and demand).
The matching results are adjusted by optimizing the utility.
Specifically, to mitigate the over-concentration of recruit-
ment efforts on highly sought-after candidates, a high cost
may be incorporated into the scouting process. Consider
observable joint utility 𝜙𝑥,𝑦 = 𝑝𝑥,𝑦 + 𝑞𝑦,𝑥 and probability
distribution 𝜇𝑥,𝑦 that specifies a match between candidate 𝑥
and employer 𝑦. Assuming that the distribution of random
utilities𝒫 and 𝒬 are independent and identically distributed
(i.i.d.) with a type-I extreme value distribution with scale
parameter 𝛽 > 0, Galichon and Salanié [9] revealed that
optimizing TU 𝜏𝑥,𝑦 to maximize the expected number of
matching in the market is defined as the following convex
optimization problem, which maximizes social welfare 𝑊:

𝑊(Φ) = max
𝜇∈ℝ𝒳×𝒴

(∑
𝑥∈𝒳,𝑦∈𝒴

𝜇𝑥,𝑦𝜙𝑥,𝑦 + 𝛽𝐸(𝜇)) ,

s.t. ∑
𝑦∈𝒴0

𝜇𝑥,𝑦 = 𝑛𝑥 ∀𝑥 ∈ 𝒳, ∑
𝑥∈𝒳0

𝜇𝑥,𝑦 = 𝑚𝑦 ∀𝑦 ∈ 𝒴,

(2)
where

𝐸(𝜇) = − ∑
𝑥∈𝒳
𝑦∈𝒴0

𝜇𝑥,𝑦 log
𝜇𝑥,𝑦
𝑛𝑥

− ∑
𝑦∈𝒴
𝑥∈𝒳0

𝜇𝑥,𝑦 log
𝜇𝑥,𝑦
𝑚𝑦

(3)

is the standard entropy; 𝑛𝑥 and 𝑚𝑦 are the normalized capac-
ity constraints of candidate group 𝑥 and employer group 𝑦,
respectively. 1 In recruitment matching problems, 𝑛𝑥 and𝑚𝑦
can correspond to the number of applications a candidate
can submit or the number of positions an employer wants to
fill. The parameter 𝛽 controls the weight of the entropy term
in (2). As 𝛽 increases, it promotes a more uniform match
result that is less dependent on individual preferences.
Equation (2) is an OT problem with entropy regulariza-

tion. We adopt the IPFP proposed in [9], a coordinate
decent method to solve (2). The detailed derivation of the
TU matching optimization is described in Appendix A.

3.2. Parallel Computation of TU Matching
Optimization

We propose a parallel update method to alleviate the com-
putational limitation of an IPFP update on a large user base.
At the optimum, an equation on a derivative of (2) derives
the following relation between 𝜙𝑥,𝑦 and 𝜇𝑥,𝑦:

𝜇𝑥,𝑦 = exp (
𝜙𝑥,𝑦
2𝛽

)√𝜇𝑥,0𝜇0,𝑦. (4)

By substituting this expression into the constraints in (2),
we obtain the following equation:

𝜇𝑥,0 + (∑
𝑦∈𝒴

exp (
𝜙𝑥,𝑦
2𝛽

)√𝜇0,𝑦)√𝜇𝑥,0 = 𝑛𝑥,

𝜇0,𝑦 + (∑
𝑥∈𝒳

exp (
𝜙𝑥,𝑦
2𝛽

)√𝜇𝑥,0)√𝜇0,𝑦 = 𝑚𝑦.

(5)

The IPFP algorithm solves (5) given scaling vector defini-
tions of 𝑢𝑥 = √𝜇𝑥,0 and 𝑣𝑦 = √𝜇0,𝑦, using 𝑖 as the number
of iteration steps to repeatedly run through the following
updates:

{
𝑢(𝑖+1)𝑥 = √𝑛𝑥 + 𝑠2𝑥 − 𝑠𝑥 where 𝑠𝑥 =

1
2 ∑𝑦∈𝒴 exp (

𝜙𝑥,𝑦
2𝛽) 𝑣

(𝑖)
𝑦

𝑣 (𝑖+1)𝑦 = √𝑚𝑦 + 𝑠2𝑦 − 𝑠𝑦 where 𝑠𝑦 =
1
2 ∑𝑥∈𝒳 exp (

𝜙𝑥,𝑦
2𝛽) 𝑢

(𝑖+1)
𝑥

,

(6)
Once the algorithm has converged after several iterations,
the stable match patterns 𝜇 are calculated according to Equa-
tion (4).
Equation (6) can be further expressed in matrix-vector

arithmetic as follows:

{
𝑢(𝑖+1) = √𝑛 + 𝑠2 − 𝑠 where 𝑠 = 1

2𝐴𝑣
(𝑖)

𝑣(𝑖+1) = √𝑚 + 𝑠2 − 𝑠 where 𝑠 = 1
2𝐴

𝑇𝑢(𝑖+1)
, (7)

where 𝐴 = exp (Φ
2𝛽). We denote the update method by

Equation (7) as batch IPFP. Because Equation (7) only in-
volves the matrix-vector product, it can be efficiently com-
puted through parallel computation. However, because the
size of the matrices scales in 𝑂(|𝒳 ||𝒴 |), the equation is com-
putationally intractable within the available memory.

3.3. Mini-batch Computation of TU
Matching Optimization

To alleviate the memory space limitation, we further pro-
pose a memory-efficient update method, mini-batch IPFP.
1Decker et al. [22] investigated the existence and uniqueness of the
equilibrium-matching solution.

×= 𝑭 𝑲𝜱
Reciprocal Preference

(𝜱) Calculation

𝑮T

𝑳T

𝒔 =

Mini-batch IPFP Iteration

𝒗

𝒖 = 𝒔2𝒎+ 𝒔2−

Scaling Vectors

(𝒖, 𝒗) Update

: 𝑗-th mini-batch

: (𝑗 + 1)-th mini-batch

exp
𝜱

2𝛽

1

2

Figure 2: Our Mini-batch IPFP update keeps only a part of the
matrices in memory during the update step, achieving parallel
computation and memory efficiency.

The inner product of the 𝐷 dimensional factor vectors
𝑓𝑥, 𝑔𝑦, 𝑘𝑥, 𝑙𝑦 ∈ ℝ𝐷 through matrix factorization is assumed to
compute unilateral preferences 𝑝𝑥,𝑦 and 𝑞𝑦,𝑥.

𝑝𝑥,𝑦 = ⟨𝑓𝑥, 𝑔𝑦⟩ , 𝑞𝑦,𝑥 = ⟨𝑘𝑥, 𝑙𝑦⟩ (8)

In such a case, user sets can be substituted for the IPFP
algorithm to be executed online. Let 𝒳𝑗(𝑗 = 1, ..., 𝐽𝑥, 1 <
𝐽𝑥 ≤ |𝒳 |) and 𝒴𝑗(𝑗 = 1, ...𝐽𝑦, 1 < 𝐽𝑦 ≤ |𝒴|) be a 𝑗-th mini-
batch of the candidate and employer sets, respectively. Now,
Equation (7) can be calculated for each 𝑗-th mini-batch.

{
𝑢(𝑖+1)𝑗 = √𝑛𝑗 + 𝑠2𝑗 − 𝑠𝑗 where 𝑠𝑗 =

1
2𝐴𝑗𝑣(𝑖)

𝑣(𝑖+1)𝑗 = √𝑚𝑗 + 𝑠2𝑗 − 𝑠𝑗 where 𝑠𝑗 =
1
2 (𝐴

𝑇)𝑗𝑢(𝑖+1)
, (9)

where subscript ∗𝑗 denotes the indices of users in the 𝑗-th
mini-batch and

𝐴𝑗 = exp (
𝐹𝑗𝐺𝑇 + 𝐾𝑗𝐿𝑇

2𝛽
) , (𝐴𝑇)𝑗 = exp (

𝐹𝐺𝑇𝑗 + 𝐾𝐿𝑇𝑗
2𝛽

) . (10)

According to Tomita et al. [6], once optimal 𝑢 and 𝑣 are
obtained, stable match patterns log 𝜇 can be calculated as the
dot product of the following two vectors with dimensions
(2𝐷 + 2).

log (𝜇𝑥,𝑦) =
1
2𝛽

⟨𝜓𝑥, 𝜉𝑦⟩ ,

𝜓𝑥 = Concat (𝑓𝑥, 𝑘𝑥, 𝛽 log (𝑢) , 1) ,

𝜉𝑦 = Concat (𝑔𝑦, 𝑙𝑦, 1, 𝛽 log (𝑣)) ,

(11)

where Concat(*) denotes the concatenation of vectors. In the
case of large data sizes (i.e., 𝐷 ≪ |𝑋 |), the space complexity
is reduced to 𝑂(|𝑋 |) or 𝑂(|𝑌 |). In practice, this reduction
allows the execution of the IPFP by adjusting the batch size
to fit within the memory limit.
The pseudocodes of the batch and mini-batch IPFP algo-

rithm is shown in Appendix B.

4. Experiments
Here, we first validate the IPFP algorithm by comparing it
with existing methods in terms of the expected number of
matches, using both real and synthetic data.

Thereafter, as our contribution, we validate the compu-
tational efficiency of the proposed batch and mini-batch
updates in the CPU/GPU settings. Furthermore, we investi-
gate the memory efficiency and calculation performance of
the mini-batch IPFP algorithm using various batch sizes. We
aim to improve the efficiency of the IPFP algorithm because
the expected number of matches is the same as that of IPFP.

4.1. Experiments on Expected Number of
Matches

4.1.1. Datasets.

We compared the IPFP algorithm with existing methods
using data from the online dating platform Libimseti [13].
This dataset includes user reciprocal ratings. We chose
500 male and 500 female users who submitted the highest
number of ratings. Any missing ratings were filled in using
probabilistic matrix factorization with the alternating least
squares (ALS) method [23].

In experiments with real data, it is impossible to know the
true preferences of each user in the market. Consequently,
the expected number of matches can only be calculated
using estimated preferences. To address this limitation, we
also conducted experiments using synthetic data, which
allowed us to control the true preferences in a structured
manner.

We evaluated the methods using synthetic data generated
based on the process described in [18]. The preference ma-
trices 𝑝𝑥,𝑦 and 𝑞𝑦,𝑥 are generated by interpolating random
values sampled from an independent uniform distribution
and values proportional to the index of samples, indicat-
ing crowding of preferences in the market. The degree of
preference crowding can be adjusted using the parameter
𝜆 ∈ [0, 1]. The experiment involved setting the number
of employers at 500, candidates at 1000, and the crowding
parameter was varied over 0.0, 0.25, 0.5, 0.75. The observa-
tional data are simulated by sampling binary values {0, 1}
from Bernoulli distributions based on the probabilities of
the generated preference matrices. The factor vectors are
obtained by the implicit alternating least squares (iALS)
method [24] from observational data.

For both real and synthetic dataset, we repeated this eval-
uation 10 times to obtain the average and standard error.

4.1.2. Algorithms and Metrics.

We compared the TU method with three baselines: naive,
reciprocal and cross-ratio (CR) methods. The naive method
uses the unidirectional preference from the candidate to
employer 𝑝𝑥,𝑦 to create the presentation list. The recipro-
cal method uses the product of preferences from both sides
𝑝𝑥,𝑦∗𝑞𝑦,𝑥 to create the presentation list. The CRmethod pro-
posed in [25] uses a cross ratio uninorm of preferences from
both sides. We attempted to apply the method proposed by
Su et al.[18] to both real and synthetic data, however the
optimization process did not complete in tractable time.
We further compared the optimization methods of the

TU method: batch and mini-batch IPFP. For the TU method,
we used 𝛽 = 1.0. In both the Libimseti and synthetic data
experiment, the baseline and batch IPFP methods utilized
the imputed preference matrix, which is the product of these
factor vectors. The mini-batch IPFP directly employed the
factor vectors.

Naive Reciprocal CR Batch IPFP Mini-batch IPFP
0

20

40

60

80

100

120

140

Ex
pe

ct
ed

 n
um

be
r o

f t
ot

al
 m

at
ch

es

Libimseti dataset; data size = (500, 500)

Figure 3: Results of Libimseti data experiments. The market
size is 500 men and 500 women, and the examination function is
𝑣(𝑘) = 1/ exp(𝑘 − 1).

We evaluate our method and the baselines in terms of
the expected total number of matches, which is calculated
by social welfare in a two-sided market, as defined in [18].
To simulate user groups with highly congested populations,
we used the exponentially decaying examination function
in the position-based model.

𝑣(𝑘) = 1/ exp(𝑘 − 1), (12)

, where 𝑘 denotes the index in the ranking list presented to
the candidate or employer. For synthetic datasets we calcu-
late social welfare using the generated preference matrix.
For the Libimseti dataset, we calculate social welfare using
the imputed preference matrix.

4.1.3. Results.

Figure 3 presents the results of the Libimseti dataset. The
batch and mini-batch IPFP methods demonstrated the high-
est number of matches, indicating its effectiveness in op-
timizing match outcomes. Figure 4 presents the results
of the synthetic data experiments conducted with various
crowding parameters. The results demonstrate that the
IPFP-based recommendation policy maintains superior per-
formance as crowding parameters increase. Specifically, the
expected number of matches not only remains consistently
higher than the baseline methods but also exhibits remark-
able resilience to performance degradation under increased
crowding conditions. This suggests that IPFP is particularly
effective in highly crowdedmarkets. Considering that factor
vector-based preference matrix calculations, such as matrix
factorization, are commonly used for large-scale real-world
recommender systems, we believe that mini-batch IPFP re-
mains a viable approach for efficiently handling large-scale
matching problems.

4.2. Experiments on Computational
Efficiency

4.2.1. Datasets.

We generated synthetic market data with the same number
of candidates and employers. For batch IPFP experiments,
we set the sample size parameters |𝒳 | = |𝒴 | in {102, 103, 104}.
For mini-batch IPFP experiments, we further expanded the
size parameters in {102, ..., 106}.
To calculate the unidirectional preference score, we

sampled the factor vectors of candidates and employers
𝑓𝑥, 𝑘𝑥, 𝑔𝑦, 𝑙𝑦 from a uniform distribution 𝑈 [0, 1

√𝐷
], where the

NaiveReciprocal CR IPFP Mini-batch
0

50

100

150

200

250

Ex
pe

ct
ed

 n
um

be
r o

f t
ot
al
 m

at
ch

es

Crowding = 0.0

NaiveReciprocal CR IPFP Mini-batch

Crowding = 0.25

NaiveReciprocal CR IPFP Mini-batch

Crowding = 0.5

NaiveReciprocal CR IPFP Mini-batch

Crowding = 0.75

Figure 4: Synthetic data experiment results at various crowding parameter levels. The market size is 500 jobs and 1000
candidates, and the examination function is 𝑣(𝑘) = 1/ exp(𝑘 − 1). When following the IPFP-based recommendation policy, the
expected number of matches remains higher than the baseline methods as crowding parameters increase. For mini-batch IPFP,
the number of matches slightly decreases because the preference matrix is approximated using the product of factor vectors.

dimension of the factor vector is 𝐷 = 50 during the experi-
ments. We assumed that all users have the same capacity
value – ∀𝑥 ∈ 𝒳, 𝑛𝑥 = 𝐶/|𝒳 | and ∀𝑦 ∈ 𝒴, 𝑚𝑦 = 𝐶/|𝒴 |,
where 𝐶 is a constant value.

4.2.2. Algorithms and Metrics.

We compared the following four IPFP variants in terms of
computational cost and memory efficiency: (a) Batch IPFP
on CPU (vanilla IPFP, as baseline), (b) Batch IPFP on GPU, (c)
Mini-batch IPFP on CPU, and (d) mini-batch IPFP on GPU.
We set 𝛽 = 1.0 for all methods. Formini-batch IPFPmethods,
we experimented with various batch sizes in 𝐵 ∈ {1, 10, 100}
to fit within our computer memory. We executed iteration
𝐼 = 100 loops and evaluated the average calculation time
per loop and the overall CPU or GPU memory consumption.
We also measured the computation time and memory

consumption for a population of |𝒳 | = |𝒴 | = 104 while
varying the dimension of factor vectors in the mini-batch
IPFP. 2

The source codes were written by inheriting from OTT-
JAX [26], a solver kit for solving optimal transport problems
using the vector computation library JAX [27]. 3

4.2.3. Results.

Figure 5 presents the average computation time per iteration
for each method. The GPU implementation of IPFP is faster
than the CPU implementation for both batch andmini-batch.
Batch IPFP requires more memory than mini-batch IPFP
because it requires loading the preference matrices into
memory in advance. In our experimental environment, an
out-of-memory error prevented execution when the data
size exceeded 105. The mini-batch IPFP handled memory
consumption via its online factor vector product calculation
and yielded a calculation time comparable to batch IPFP.
Figure 6 presents the computation time and memory us-

age of mini-batch IPFP for large datasets with different batch
sizes. The execution time increases by a constant factor with
the batch size. However, because of the effective memory
processing of JAX, memory usage remains linear scaling
regardless of batch size. In our calculation environment,
setting 𝐵 = 100 allows IPFP to be performed in tractable
time even with a data size of 106. In practical applications to

2We conducted experiments on an Intel Core i9-12900K CPU and single
NVIDIA GeForce RTX 3080 (10GB memory) GPU computer.

3https://github.com/74hcnklULDuids89/minibatch-ipfp.git

102 103 104

Sample Size (n)

10−2

10−1

Ti
m
e
pe

r S
te
p
(
)

Execution Time
(a) Batch (CPU)
(b) Batch (GPU)
(c) Mini-Batch (CPU)
(d) Mini-Batch (GPU)

102 103 104

Sample Size (n)

10−1

100

101

102

M
em

or
y

Us
ag

e
(M

B)

Memory Usage
(a) Ba ch (CPU)
(b) Ba ch (GPU)
(c) Mini-Batch (CPU)
(d) Mini-Batch (GPU)

Figure 5: Calculation time (left) and memory usage (right) of
batch and mini-batch IPFP with varying data size values. The
average calculation times span over 100 iterations. Memory usage
is measured on CPU memory for (a) and (c) and GPU memory
for (b) and (d).

real-world scenarios, it is conceivable that the overall com-
putation time could be reduced by implementing an early
stopping criterion. This could be achieved by terminating
the process when the ranking for candidates and employers
remains stable for a predetermined number of epochs.

Figure 7 presents the results on the computation time and
memory efficiency of the algorithm on synthetic dataset
with various dimensions of factor vectors. The increase in
computation time and memory consumption of minibatch-
IPFP has an almost linear relationship with the increase in
the dimension of factor vectors.

102 103 104 105 106

Sample Size (n)

10−2

10−1

100

101

102

103

Ti
m
e
pe

r S
te
p
(
)

Execution Time
Mini-Batch (GPU) size=1
Mini-Batch (GPU) size=10
Mini-Batch (GPU) size=100

102 103 104 105 106
Sample Size (n)

100

101

102

103

M
em

or
y
Us

ag
e
(M

B)

Memory Usage
Mini-Batch (GPU) size=1
Mini-Batch (GPU) size=10
Mini-Batch (GPU) size=100

Figure 6: Calculation time and memory usage of mini-batch
IPFP for large sample sizes with various batch sizes. The average
calculation times span over 100 iterations.

101 102 103 104
Factor Dimension (dim)

10−1

Ti
m
e
 e
r S

te

(s
)

Execution Time
Mini-Batch (GPU) batch_size=100

101 102 103 104
Factor Dimension (dim)

100

101

102

103

M
em

or
y
Us

ag
e
(M

B)

Memory Usage
Mini-Batch (GPU) batch_size=100

Figure 7: Calculation time andmemory usage ofmini-batch IPFP
for various dimensions of factor vectors. The average calculation
times span over 100 iterations.

5. Conclusion and Future Work
In this study, we propose a novel method that significantly
improves the computational efficiency and memory usage
of the IPFP algorithm to use the TUmatching theory in RSSs
with large data. Our method achieved the same matching
probabilities as the conventional IPFP algorithm, while op-
erating efficiently even for large-scale data using parallel
and mini-batch computation techniques. Our experiments
on synthetic and real datasets have demonstrated that our
method can process computations for up to a million users,
even in typical CPUs/GPUs.
In future work, we plan to apply the acceleration tech-

niques developed in the field of OT problems. Initially, we
approximated the transportation cost matrix using the low-
rank Sinkhorn factorization algorithm[28], reducing the
spatial complexity. Second, we calculated the derivative
values for the preference matrix and backpropagated them
to a unilateral recommendation model [20].

References
[1] I. Palomares, C. Porcel, L. Pizzato, I. Guy, E. Herrera-

Viedma, Reciprocal recommender systems: Analysis
of state-of-art literature, challenges and opportunities
towards social recommendation, 2021. doi:10.1016/
j.inffus.2020.12.001.

[2] L. Pizzato, T. Rej, T. Chung, I. Koprinska, J. Kay, Re-
con: A reciprocal recommender for online dating,
in: RecSys, New York, NY, USA, 2010, p. 207–214.
doi:10.1145/1864708.1864747.

[3] L. S. Shapley, M. Shubik, The Assignment Game I:
The Core, volume 1, Physica-Verlag GmbH, DEU, 1971.
doi:10.1007/BF01753437.

[4] G. S. Becker, A theory of marriage: Part i, Journal
of Political Economy 81 (1973) 813–846. URL: http:
//www.jstor.org/stable/1831130.

[5] E. Choo, A. Siow, Who marries whom and why, Jour-
nal of Political Economy 114 (2006) 175–201. URL:
http://www.jstor.org/stable/10.1086/498585.

[6] Y. Tomita, R. Togashi, Y. Hashizume, N. Ohsaka, Fast
and examination-agnostic reciprocal recommendation
in matching markets, in: RecSys, New York, NY, USA,
2023, p. 12–23. doi:10.1145/3604915.3608774.

[7] K.-M. Chen, Y.-W. Hsieh, M.-J. Lin, Reducing rec-
ommendation inequality via two-sided matching: a
field experiment of online dating, International
Economic Review 64 (2023) 1201–1221. doi:10.1111/
iere.12631.

[8] A. Saini, F. Rusu, A. Johnston, Privatejobmatch: A
privacy-oriented deferred multi-match recommender
system for stable employment, In: RecSys, New
York, NY, USA, 2019, p. 87–95. doi:10.1145/3298689.
3346983.

[9] A. Galichon, B. Salanié, Cupid’s invisible hand: So-
cial surplus and identification in matching models,
The Review of Economic Studies 89 (2021) 2600–2629.
doi:10.1093/restud/rdab090.

[10] P. Knopp, R. Sinkhorn, Concerning nonnegative ma-
trices and doubly stochastic matrices., Pacific Journal
of Mathematics 21 (1967) 343–348.

[11] Y. Koren, R. Bell, C. Volinsky, Matrix factorization
techniques for recommender systems, Computer 42
(2009) 30–37. doi:10.1109/MC.2009.263.

http://dx.doi.org/10.1016/j.inffus.2020.12.001
http://dx.doi.org/10.1016/j.inffus.2020.12.001
http://dx.doi.org/10.1145/1864708.1864747
http://dx.doi.org/10.1007/BF01753437
http://www.jstor.org/stable/1831130
http://www.jstor.org/stable/1831130
http://www.jstor.org/stable/10.1086/498585
http://dx.doi.org/10.1145/3604915.3608774
http://dx.doi.org/10.1111/iere.12631
http://dx.doi.org/10.1111/iere.12631
http://dx.doi.org/10.1145/3298689.3346983
http://dx.doi.org/10.1145/3298689.3346983
http://dx.doi.org/10.1093/restud/rdab090
http://dx.doi.org/10.1109/MC.2009.263

[12] G. Özcan, S. G. Ögüdücü, Applying different classifica-
tion techniques in reciprocal job recommender system
for considering job candidate preferences, in: 2016
11th International Conference for Internet Technology
and Secured Transactions (ICITST), 2016, pp. 235–240.
doi:10.1109/ICITST.2016.7856703.

[13] P. Xia, B. Liu, Y. Sun, C. Chen, Reciprocal recom-
mendation system for online dating, in: ASONAM,
New York, NY, USA, 2015, p. 234–241. doi:10.1145/
2808797.2809282.

[14] A. Kleinerman, A. Rosenfeld, F. Ricci, S. Kraus, Op-
timally balancing receiver and recommended users’
importance in reciprocal recommender systems, in:
RecSys, ACM, New York, NY, USA, 2018, p. 131–139.
doi:10.1145/3240323.3240349.

[15] R. Ramanathan, N. K. Shinada, M. Shimatani, Y. Ya-
maguchi, J. Tanaka, Y. Iizuka, S. K. Palaniappan, A
reciprocal embedding framework for modelling mu-
tual preferences, in: AAAI, volume 35, 2021, pp.
15385–15392. doi:10.1609/aaai.v35i17.17807.

[16] F. Borisyuk, L. Zhang, K. Kenthapadi, Lijar: A system
for job application redistribution towards efficient ca-
reer marketplace, in: KDD, New York, NY, USA, 2017,
p. 1397–1406. doi:10.1145/3097983.3098028.

[17] V. Do, N. Usunier, Optimizing generalized gini indices
for fairness in rankings, 2022. doi:10.48550/arXiv.
2204.06521.

[18] Y. Su, M. Bayoumi, T. Joachims, Optimizing rankings
for recommendation in matching markets, in: WWW,
2022. doi:10.1145/3485447.3511961.

[19] G. Bied, E. Perennes, V. A. Naya, P. Caillou, B. Crépon,
C. Gaillac, M. Sebag, Congestion-avoiding job recom-
mendation with optimal transport, in: FEAST work-
shop ECML-PKDD 2021, Bilbao, Spain, 2021.

[20] Y. Mashayekhi, B. Kang, J. Lijffijt, T. De Bie, Recon:
Reducing congestion in job recommendation using op-
timal transport, in: RecSys, ACM, New York, NY, USA,
2023, p. 696–701. doi:10.1145/3604915.3608817.

[21] M. Cuturi, Sinkhorn distances: Lightspeed computa-
tion of optimal transport, in: NIPS, Curran Associates
Inc., Red Hook, NY, USA, 2013, p. 2292–2300.

[22] C. Decker, E. H. Lieb, R. J. McCann, B. K. Stephens,
Unique equilibria and substitution effects in a stochas-
tic model of the marriage market, Journal of Economic
Theory 148 (2013) 778–792. doi:10.1016/j.jet.2012.
12.005.

[23] A. Mnih, R. R. Salakhutdinov, Probabilistic
matrix factorization, in: J. Platt, D. Koller,
Y. Singer, S. Roweis (Eds.), Advances in Neu-
ral Information Processing Systems, volume 20,
Curran Associates, Inc., 2007. URL: https:
//proceedings.neurips.cc/paper_files/paper/2007/file/
d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf.

[24] A. Paterek, Improving regularized singular value de-
composition for collaborative filtering, Proceedings
of KDD Cup and Workshop (2007).

[25] J. Neve, I. Palomares, Latent factor models and ag-
gregation operators for collaborative filtering in re-
ciprocal recommender systems, in: Proceedings of
the 13th ACM Conference on Recommender Systems,
RecSys ’19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 219–227. URL: https://doi.
org/10.1145/3298689.3347026. doi:10.1145/3298689.
3347026.

[26] M. Cuturi, L. Meng-Papaxanthos, Y. Tian, C. Bunne,

G. Davis, O. Teboul, Optimal transport tools (ott): A
jax toolbox for all things wasserstein (2022). doi:10.
48550/arXiv.2201.12324.

[27] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, Q. Zhang, JAX: com-
posable transformations of Python+NumPy programs,
2018. URL: http://github.com/google/jax.

[28] M. Scetbon, M. Cuturi, G. Peyré, Low-rank sinkhorn
factorization, in: M. Meila, T. Zhang (Eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of PMLR, PMLR, 2021, pp.
9344–9354.

http://dx.doi.org/10.1109/ICITST.2016.7856703
http://dx.doi.org/10.1145/2808797.2809282
http://dx.doi.org/10.1145/2808797.2809282
http://dx.doi.org/10.1145/3240323.3240349
http://dx.doi.org/10.1609/aaai.v35i17.17807
http://dx.doi.org/10.1145/3097983.3098028
http://dx.doi.org/10.48550/arXiv.2204.06521
http://dx.doi.org/10.48550/arXiv.2204.06521
http://dx.doi.org/10.1145/3485447.3511961
http://dx.doi.org/10.1145/3604915.3608817
http://dx.doi.org/10.1016/j.jet.2012.12.005
http://dx.doi.org/10.1016/j.jet.2012.12.005
https://proceedings.neurips.cc/paper_files/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf
https://doi.org/10.1145/3298689.3347026
https://doi.org/10.1145/3298689.3347026
http://dx.doi.org/10.1145/3298689.3347026
http://dx.doi.org/10.1145/3298689.3347026
http://dx.doi.org/10.48550/arXiv.2201.12324
http://dx.doi.org/10.48550/arXiv.2201.12324
http://github.com/google/jax

A. Derivation of Transferable Utility
Matching

Let 𝜇𝑥,𝑦 be a probability distribution that specifies a match
between candidate 𝑥 and employer 𝑦. The set of feasible
matchingℳ is defined under the following constraint:

ℳ(𝑚, 𝑛) = {𝜇𝑥,𝑦 ≥ 0 ∣ ∑
𝑦∈𝒴0

𝜇𝑥,𝑦 = 𝑚𝑥 ∀𝑥 ∈ 𝒳,

∑
𝑥∈𝒳0

𝜇𝑥,𝑦 = 𝑛𝑦 ∀𝑦 ∈ 𝒴},
(13)

where 𝑚𝑥 and 𝑛𝑦 are the normalized masses of the candidate
group 𝑥 and employer group 𝑦, respectively. We set the total
mass of each group to a constant 𝐶.

∑
𝑥∈𝒳

𝑛𝑥 = ∑
𝑦∈𝒴

𝑚𝑦 = 𝐶. (14)

We assume that the two random utility distributions 𝒫
and 𝒬 are independent and identically distributed (i.i.d.)
with a type-I extreme value distribution with a scale param-
eter 𝛽 > 0. Equation (13) is transformed into the following
equation:

𝜇𝑥,𝑦 = 𝑚𝑥
exp (𝑝𝑥,𝑦 + 𝜏𝑥,𝑦)

∑𝑦 ′∈𝒴0
exp (𝑝𝑥,𝑦 ′ + 𝜏𝑥,𝑦 ′)

= 𝑛𝑦
exp (𝑞𝑦,𝑥 − 𝜏𝑥,𝑦)

∑𝑥′∈𝒳0
exp (𝑞𝑦,𝑥′ − 𝜏𝑥′,𝑦)

.

(15)

Let 𝜙𝑥,𝑦 = 𝑝𝑥,𝑦+𝑞𝑦,𝑥 be an observable joint utility. Accord-
ing to [9], the optimization problem in 𝜏𝑥,𝑦 in (15) is a dual
expression of the convex (primary) optimization problem
for social welfare 𝑊.

B. Algorithm of Batch and
Mini-Batch IPFP

Algorithm 1 displays the algorithm used in the batch IPFP
computation. Algorithm 2 displays the algorithm used in
the computation of the mini-batch IPFP.

Algorithm 1 Solving Equilibrium Matching by Batch IPFP
Require: preference score matrices 𝑃, 𝑄 in size (|𝒳 |, |𝒴 |),

normalized mass vectors 𝑚 of size |𝒳 |, 𝑛 of size |𝒴 |,
scale parameter 𝛽

Require: a maximum number of iterations 𝐼
Ensure: a matrix 𝜇 of size (|𝒳 |, |𝒴 |) denotes an equilibrium

matching pattern.
1: 𝑢 ← 1 {size (|𝒳 |)}
2: 𝑣 ← 1 {size (|𝒴 |)}
3: 𝐴 ← exp(𝑃+𝑄2𝛽)
4: for 𝑖 = 1, ..., 𝐼 do
5: 𝑠 ← 𝐴𝑣/2
6: 𝑢 ← √𝑠2 + 𝑚 − 𝑠
7: 𝑠 ← 𝐴𝑇𝑢/2
8: 𝑣 ← √𝑠2 + 𝑛 − 𝑠
9: 𝑖 ← 𝑖 + 1
10: end for
11: 𝜇 ← 𝐴 ⊙ (𝑢 ⊗ 𝑣)
12: return 𝜇

Algorithm 2 Solving Equilibrium Matching by Mini-batch
IPFP
Require: preference factor matrix 𝐹, 𝐾, in size (|𝒳 |, 𝐷), 𝐺, 𝐿

in size (|𝒴 |, 𝐷), normalized mass vectors 𝑚 of size |𝒳 |,
𝑛 of size |𝒴 |, scale parameter 𝛽, number of mini-batches
𝐽𝑥, 𝐽𝑦

Require: a maximum number of iterations 𝐼
Ensure: stable factor matrices Ψ of size (|𝒳 |, 2𝐷 + 2) and

Ξ in size (|𝒴 |, 2𝐷 + 2).
1: 𝑢 ← 1 {size (|𝒳 |)}
2: 𝑣 ← 1 {size (|𝒴 |)}
3: for 𝑖 = 1, ..., 𝐼 do
4: for 𝑗 = 1, ..., 𝐽𝑥 do

5: 𝐴𝑗 ← exp (
𝐹𝑗𝐺𝑇+𝐾𝑗𝐿𝑇

2𝛽) {size (𝐵, |𝒴 |)}

6: 𝑠𝑗 ← 𝐴𝑗𝑣/2

7: 𝑢𝑗 ← √𝑚𝑗 + 𝑠2𝑗 − 𝑠𝑗
8: 𝑗 ← 𝑗 + 1
9: end for
10: for 𝑗 = 1, ..., 𝐽𝑦 do

11: (𝐴𝑇)𝑗 ← exp (
𝐹𝐺𝑇

𝑗+𝐾𝐿𝑇𝑗
2𝛽) {size (𝐵, |𝒳 |)}

12: 𝑠𝑗 ← (𝐴𝑇)𝑗𝑢/2

13: 𝑣𝑗 ← √𝑛𝑗 + 𝑠2𝑗 − 𝑠𝑗
14: 𝑗 ← 𝑗 + 1
15: end for
16: 𝑖 ← 𝑖 + 1
17: end for
18: Ψ ← Concat (𝐹, 𝐾, 𝛽 log (𝑢) , 1)
19: Ξ ← Concat (𝐺, 𝐿, 1, 𝛽 log (𝑣))
20: return Ψ, Ξ

	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Matching Model with Transferable Utility
	3.2 Parallel Computation of TU Matching Optimization
	3.3 Mini-batch Computation of TU Matching Optimization

	4 Experiments
	4.1 Experiments on Expected Number of Matches
	4.1.1 Datasets.
	4.1.2 Algorithms and Metrics.
	4.1.3 Results.

	4.2 Experiments on Computational Efficiency
	4.2.1 Datasets.
	4.2.2 Algorithms and Metrics.
	4.2.3 Results.

	5 Conclusion and Future Work
	A Derivation of Transferable Utility Matching
	B Algorithm of Batch and Mini-Batch IPFP

