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Abstract
The integration of intelligent and connected production systems has positioned artificial intelligence (AI) as a pivotal component in
society’s digital transformation, becoming indispensable. Leveraging the vast amounts of data generated, AI can now make critical
decisions to mitigate potential disasters. This study focuses on developing a method that combines computer vision and machine
learning algorithms to estimate tomato weights. A dataset of tomato images was compiled, and a modified Mask R-CNN algorithm
was employed to detect, segment, and extract individual fruit masks. Various regression models were evaluated to predict tomato
weight based on visual features. The results on the test dataset indicate that this approach can estimate the number and total weight of
tomatoes with approximately 93% accuracy. This research highlights the potential for automated monitoring of market garden crop
yields through AI.
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1. Introduction
Agriculture faces major challenges in sustainably feeding
a growing global population, making accurate crop yield
estimation essential for informed decision-making by farm-
ers. While traditional methods such as field surveys can be
helpful, they are often limited by issues of accuracy, cost,
and time efficiency.

Tomato (Solanum lycopersicum) is a crucial vegetable
crop globally, boasting 183million tonnes in 2018 [1]. Native
to Central and South America, the tomato was introduced to
Europe in the 16th century, quickly gaining popularity for
its delicious, nutrient-rich fruits loaded with vitamins, min-
erals, and antioxidants [2]. Major producers include China,
India, the United States, and Turkey, with significant cultiva-
tion also occurring in African nations such as Nigeria, Egypt,
Morocco, and Algeria, primarily for local consumption [3].
Tomatoes are generally classified into two main varieties:
determinate, which have limited growth, and indetermi-
nate, which continue growing throughout their lifecycle.
Whether cultivated in open fields or under protective covers
like greenhouses, tomato farming requires careful irriga-
tion due to the plant’s deep taproot system. Furthermore,
challenges such as pest infestations—like downy mildew
and Botrytis necessitate the use of appropriate cultivation
practices and phytosanitary measures to ensure optimal
yields.

Several approaches have been investigated in the liter-
ature to address the challenge of fruit weight estimation.
For instance, Yamamoto et al. [4] developed a method to
accurately count individual tomato fruits from images of
plants grown in a laboratory setting. This method employed
decision trees to analyze pixel color characteristics, achiev-
ing precise pixel-level segmentation. Post-processing was
then applied to group pixels corresponding to fruits, en-
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abling the extraction and counting of fruit centroids. The
study reported a detection precision of 0.88 and recall of
0.80, demonstrating the method’s efficacy in controlled en-
vironments for tomato detection and counting.

In Indonesia, the increasing demand for tomatoes neces-
sitates efficient post-harvest handling. A study by Sari et
al. [5] proposed a sorting system that categorizes tomatoes
based on color, size, and weight using image processing
with the OpenCV [6] library. The system sorts tomatoes
into red, yellow, and green categories and measures dimen-
sions by identifying the outermost points of the detected
fruits. It utilizes a weight sensor for mass measurement.
The prototype, which incorporates a webcam, Arduino, and
conveyor system, achieved 100% accuracy in color detec-
tion and 95% in weight measurement, although dimensional
measurement accuracy was only 5%.

Van Daalen et al. [7] examined the application of aug-
mented reality (AR) in agriculture, focusing on detecting
tomato ripeness using the 3D scanning capabilities of the
HoloLens [8]. Their experimental setup, which included
various tomato varieties, highlighted both the opportunities
and challenges of using AR for hands-free tasks like training
and harvesting in greenhouse environments.

Similarly, Lee et al. [9] proposed an artificial intelligence-
based system for tomato detection and mass estimation,
utilizing multi-class detection and instance-wise segmenta-
tion. By analyzing a tomato image dataset with a calibrated
vision system, the study demonstrated a high correlation
between fruit dimensions and mass. Their method achieved
a mean absolute percentage error of 7.09%, showcasing the
effectiveness of computer vision and machine learning for
automating tasks such as yield monitoring and fruit sizing.

In another study, Nyalala et al. [10] developed seven re-
gression models, including Support Vector Regression (SVR)
[11] and artificial neural networks (ANNs) [12] with differ-
ent training algorithms. These models effectively estimated
fruit weight and volume, offering significant potential for
improvements in fruit sorting and grading processes.

Basak et al. [13] introduced a non-destructive method
for estimating strawberry fruit weight using machine learn-
ing models. By analyzing 900 samples from three different
strawberry cultivars, they used image processing to calcu-
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late pixel numbers. Linear regression (LR) and non-linear
SVR models were applied, resulting in training and testing
accuracies of 96.3% and 89.6%, respectively.

This study focuses on applying recent advancements in
computer vision, particularly object detection, and machine
learning algorithms to estimate tomato weight from real-
world images. The subsequent sections describe the equip-
ment used, the structure and composition of the dataset,
and the methodology employed to generate accurate quan-
titative measures such as projected surface area and total
weight for detected fruits. Our findings demonstrate the
effectiveness of this approach. Additionally, we discuss the
challenges faced and propose recommendations for future
research.

2. Material and Methods

2.1. Dataset
The data used in this study consists of tomato fruit images
collected both online and in the field under real-world con-
ditions. The dataset includes a total of 180 images obtained
online and 100 images taken in the field, containing a to-
tal of 1143 tomato fruit instances. Table 1 illustrates the
composition of our dataset.

Images captured in the field helped to collect additional
information such as actual fruit area and actual fruit weight,
which enriches the dataset by providing accurate and rele-
vant measurements for tomato fruit weight estimation. Ta-
ble 2 presents additional insights concerning field-captured
images. Upon analysis of the table, the average fruit weight
is 35.30 g , with a standard deviation of 14.56 g . The aver-
age true area is 2673.48 mm2, with a standard deviation of
873.68 mm2. Quartile values provide insights into the distri-
bution of the data. Thus, 25% of the fruits have a weight of
less than 25.21 g, 50% have a weight of less than 37.00 g , and
75% have a weight of less than 43.49 g. For the actual surface
area, 25% of fruits have an area less than 2, 024.93 mm2, 50%
have an area less than 2, 779.53 mm2, and 75% have an area
less than 3, 219.12 mm2.

2.2. Methods
To estimate tomato fruit weights, we developed a four steps
approach (see figure 1)

2.2.1. Detection, segmentation and extraction of
tomato fruit masks

To train our segmentation model, we prepared a dataset
of tomato images, labeled in the COCO format. The
dataset consisted of 180 images containing 1043 instances of
tomatoes, sourced from both the internet and field pho-
tography, and annotated using the ROboflow platform.
We employed the Mask R-CNN instance segmentation
model through the Detectron2 framework, selecting the
mask_rcnn_R_50_FPN_3x configuration developed by Face-
book AI Research. This model, pre-trained on the COCO
dataset, combines the Mask R-CNN architecture with a
ResNet-50 backbone and Feature Pyramid Network (FPN)
for high-performance, multi-scale object detection.

Table 1
Dataset Overview

Source Number of Number of
images fruit instances

Online 180 1043
Field-collected 100 100

Total 280 1143

Table 2
Additional information on images taken in the field

weight real_surface (mm2)
count 100.000000 100.000000
mean 33.341900 2565.479377

std 13.884898 912.439551
min 9.930000 856.037079
25% 19.932500 1723.114236
50% 35.955000 2609.542487
75% 42.877500 3186.808853
max 63.760000 4931.281258

2.2.2. Projected Surface Area Estimation of Each
Tomato

To evaluate the projected area of each tomato from images,
a dataset was constructed, including individual images of
tomatoes, their actual weight in grams, the total number
of pixels in the image, the number of pixels corresponding
tomato (obtained by semantic segmentation), and the total
area of the image in square meters, obtained by camera
calibration.

The estimation of the projected area took place in two
steps: first, the segmentation mask allows us to calculate
the area in pixels occupied by the tomato in the image.
Then, a camera calibration converted this pixel area into
an actual metric area, using a coin as a reference object.
By photographing the tomatoes under the same conditions
as the reference piece, the resulting conversion factor was
used to convert the pixel area of each fruit into a measure
of its actual projected area in metric units. This method
uses a rule of three, where the actual surface area of the
tomato (𝐴𝑡𝑜𝑚𝑎𝑡𝑜) is estimated based on the number of pixels
corresponding to the tomato in the image (𝑃𝑡𝑜𝑚𝑎𝑡𝑜), using
the conversion factor established during calibration:

𝐴𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
.

𝐴𝑡𝑜𝑚𝑎𝑡𝑒 = 𝑃𝑡𝑜𝑚𝑎𝑡𝑒 ×
𝐴𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
(1)

With this method, we were able to estimate the real sur-
face area of each tomato in physical space from segmenta-
tion in image space, thanks to precise calibration using a
reference object.

2.2.3. Tomato Mass Estimation

To estimate the weight of the tomatoes based on their pro-
jected surface area, we tested several regression models,
including Simple Linear Regression (SLR), Multiple Linear
Regression (MLR), and Partial Least Squares Regression
(PLSR). These models aimed to establish a mathematical
relationship between the surface area (independent vari-
able) and the weight (dependent variable) of the tomatoes.



Figure 1: Summary illustration of the methodology

Figure 2: Model accuracy Figure 3: Evolution of the cost function

The performance of each model was evaluated on a vali-
dation set consisting of 20% of the total dataset, collected
under real-world conditions. Standard metrics, such as Root
Mean Square Error (RMSE) and the Coefficient of Deter-
mination (𝑅2), were employed to assess model accuracy.
We also applied 10 -fold cross-validation to each model to
reduce the likelihood of overfitting.

Figure 1 depicts the summary of themethodology adopted
in this study.

3. Results and Discussion

3.1. Results
Figure 2 illustrates the model’s accuracy, while Figure 3
depicts the evolution of the cost function

The performance of the model was evaluated on the test
set consisting of 19 images containing a total of 149 tomato
annotations. The Average Precision (AP) metric was used to
quantify the model’s ability to correctly detect and segment
tomatoes under various conditions.

Table 3 presents the results obtained for the detection
and semantic segmentation tasks. We observe an average
AP of 55.9% for detection and 54.6% for segmentation on
different IoU thresholds between 0.5 and 0.95. The model
achieves better performance on large fruits (AP of 66.1% in
detection) than on small tomatoes (AP of 30.3%).

These results confirm the model’s effectiveness in detect-
ing and segmenting tomatoes in real-world conditions. Fur-
ther data annotation and model optimization are expected

Table 3
Model results in terms of Average Precision

Metric AP AP50 AP75 APm APl

Detection 55.901 74.083 62.361 30.294 66.144
Segmentation 54.591 73.763 61.112 24.978 64.943

to enhance performance.
The projected surface area of each fruit was derived from

the segmented mask by calculating the pixel area, then con-
verting it to real-world units using camera calibration infor-
mation as defined in Equation 1. This method achieved a
precision of approximately 95.

For tomato weight estimation, a subset of the dataset con-
taining real-world images was used, which included precise
data on both the actual weight of each tomato and their pro-
jected surface area. A mathematical relationship between
the weight and projected area was established through the
evaluation of several regression methods. The algorithms
tested included Least Squares Regression (LSR), Multiple Lin-
ear Regression (MLR), and Support Vector Machines (SVM),
and their performance was compared using cross-validation
and Mean Square Error (MSE) as the evaluation metric.

Table 4 highlights the performance metrics of the tested
models.

Among the evaluated models, Lasso Regression achieved
the best performance, with a MAE of 5,776 and an MSE of
62.99.

The corresponding model equation is:



Table 4
Performance metrics of different models

MSE MAE RSE R2

Linear Regression 67.465310 5.959565 8.110772 0.614756
Lasso Regression 62.990660 5.775707 7.900871 0.659433
Ridge Regression 64.222324 5.820851 7.789839 0.662985
ElasticNet Regression 65.214001 5.919661 8.063410 0.534604
SVR 81.623252 6.884133 8.980888 0.564414
Random Forest 67.078331 6.002012 8.102465 0.622985
AdaBoost Regression 76.441269 6.757964 8.621712 0.578526
KNeighbors Regression 68.750815 6.179380 8.225651 0.634068
Decision Tree 126.243306 8.132200 11.068062 0.322372

Table 5
Prediction results on the test set

Projected area actual weight Estimated weight Absolute error Relative error (%)
3219.122984 48.370 42.042340 6.327660 13.081785
2566.503710 30.760 33.377463 2.617463 8.509306
3279.246427 38.690 42.840604 4.150604 10.727847
2635.552676 30.600 34.294231 3.694231 12.072651
1273.816970 105.590 16.214358 89.375642 84.644040
2733.490428 30.360 35.594558 5.234558 17.241629
2521.044293 28.530 32.773894 4.243894 14.875199
3122.755376 37.570 40.762860 3.192860 8.498430
3501.459234 50.850 45.790941 5.059059 9.948985
2535.848511 35.070 32.970451 2.099549 5.986738
3098.277947 41.740 40.437871 1.302129 3.119618
… … … … …
2782.959320 26.520 36.251361 9.731361 36.694423
2436.892034 33.990 31.656598 2.333402 6.864966
2810.053656 37.080 36.611095 0.468905 1.264578
3040.780757 44.260 39.674477 4.585523 10.360424
3229.282192 46.620 42.177225 4.442775 9.529762
Total 1361.29 1257.726200 96.563799 7.09

𝑀 = 0.01327708 × 𝑃𝐴 − 0.69821033 (2)

Table 3.1 presents the prediction results on the test dataset,
where our model achieved a relative error of 7.09% in esti-
mating the total weight. When applied in an autonomous
field system, this method shows great potential to enhance
yield estimation efficiency, helping farmers save time and
reduce labor costs.

3.2. Discussion
The study employed a multi-step methodology to estimate
tomato fruit weights from images. First, a Mask R-CNN
model, using the mask_rcnn_R_50_FPN_3x configuration,
was trained on a dataset of 180 images containing 1043
tomato instances. After detection and segmentation, the
projected surface area of each tomato was estimated us-
ing a calibrated conversion from pixel area to metric units,
achieving approximately 95% accuracy. For weight estima-
tion, several regression models were evaluated on a subset
of real-world images with known weights and projected
areas. Among the regression models evaluated, the Lasso
Regression algorithm demonstrated superior performance
in estimating tomato weights. This model achieved a Mean
Absolute Error (MAE) of 5.776 grams and a Mean Squared
Error (MSE) of 62.99 grams2̂. Our model outperformed the
approach described by Lee et al. [9], which reported an

MAE of 7.09 grams for a similar tomato weight estimation
task.

When applied to the test dataset, this model achieved
a relative error of 7.09% in estimating the total weight of
tomatoes. These results demonstrate the potential of this
combined approach for automated tomato yield estimation,
although the ideal conditions of the study (fully visible fruits)
suggest that further research is needed to address real-world
challenges such as occlusion.

While this study yielded promising results, it’s impor-
tant to acknowledge its primary limitation: the experiments
were conducted under idealized conditions that do not fully
represent real-world agricultural environments. All toma-
toes in the study were fully visible and unobstructed, which
rarely occurs in actual fields where fruits are often partially
hidden by leaves, branches, or other fruits. This idealization
may lead to overly optimistic performance estimates.

To bridge this gap and enhance the model’s practical
applicability, future research will focus on developing ro-
bust occlusion handling techniques, such as implementing
advanced image processing algorithms for reconstructing
partially obscured fruits or using ellipse fitting methods to
estimate the full shape of partially visible tomatoes.

Additionally, creating more representative datasets that
reflect the challenging conditions found in real agricultural
settings, including various levels of occlusion and diverse
growth stages, will be crucial. By addressing these limita-
tions and training on more diverse and challenging datasets,



future iterations of this system could significantly improve
in accuracy and robustness, making it a more reliable tool
for automated agricultural yield estimation in real-world
scenarios.

4. Conclusion
This study successfully introduced an innovative approach
for accurately assessing tomato crop yields through the
use of advanced image processing, computer vision, and
artificial intelligence techniques. The results align closely
with the objectives of estimating both the quantity and total
weight of fruits, highlighting the practical benefits of this
methodology for farmers.

Looking ahead, future enhancements will focus on re-
fining the approach by integrating multispectral imaging
to improve data acquisition. Additionally, algorithmic ad-
vancements, including image generation and ellipse fitting
techniques, will be employed to tackle challenges related to
occlusion. These developments will enhance the model’s
scalability and robustness, facilitating large-scale deploy-
ment in real-world agricultural settings. The anticipated
implementation of this approach in automated systems that
utilize drones and ground-based robots presents exciting
opportunities for digital agriculture, paving the way for
precise, efficient, and automated yield estimation.
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